

Simulation und Modellierung mit Scilab

Eine Einführung in die Ingenieuranalyse

Marek Simulation und Modellierung mit Scilab

Ihr Plus – digitale Zusatzinhalte!

Auf unserem Download-Portal finden Sie zu diesem Titel kostenloses Zusatzmaterial. Geben Sie dazu einfach diesen Code ein:

plus-gp65h-u82ec

plus.hanser-fachbuch.de

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Rudi Marek

Simulation und Modellierung mit Scilab

Eine Einführung in die Ingenieuranalyse

Mit 286 Abbildungen, 79 Tabellen, 87 Beispielen und 317 Übungsaufgaben

Autor:

Prof. Dr.-Ing. Rudi Marek Technische Hochschule Deggendorf Fakultät Bauingenieurwesen und Umwelttechnik

Alle in diesem Buch enthaltenen Informationen wurden nach bestem Wissen zusammengestellt und mit Sorgfalt geprüft und getestet. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Buch enthaltenen Informationen mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor(en, Herausgeber) und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht.

Ebenso wenig übernehmen Autor(en, Herausgeber) und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren) – auch nicht für Zwecke der Unterrichtsgestaltung – reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2021 Carl Hanser Verlag München Internet: <u>www.hanser-fachbuch.de</u>

Lektorat: Dipl.-Ing. Natalia Silakova-Herzberg Herstellung: Anne Kurth Covergestaltung: Max Kostopoulos Titelbild: © Prof. Dr.-Ing. Rudi Marek Coverkonzept: Marc Müller-Bremer, www.rebranding.de, München Satz: Prof. Dr.-Ing. Rudi Marek Druck und Bindung: Hubert & Co. GmbH & Co. KG BuchPartner, Göttingen Printed in Germany

Print-ISBN 978-3-446-46906-8 E-Book-ISBN 978-3-446-46936-5

Vorwort

Wissenschaftliches Rechnen und Simulation nehmen in Technik und Naturwissenschaft längst einen festen Platz ein. Scientific Computation, Computational Science oder Computational Engineering sind dabei etablierte Begriffe. Zweifelsfrei hat die Computertechnologie mit immer leistungsstärkeren Personalcomputern einerseits und Hochleistungsrechnern andererseits dazu einen wesentlichen Beitrag geleistet. Aber auch die den Rechnern vorgelegten Aufgaben sind in Umfang und Komplexität gewachsen. Schöne bunte Bilder sind heute mit Computern schnell und einfach generierbar. Allerdings besteht kein Grund, sich technophil tiefentspannt zurück zu lehnen und dem "Elektronengehirn" blind zu vertrauen. Vielmehr ist eine auf soliden Grundlagen und gesundem Verstand basierende kritische Interpretation und Plausibilisierung der Ergebnisse angezeigt.

Die benötigten Algorithmen, Programme und Modelle sind eine interdisziplinäre Schnittmenge aus Numerischer Mathematik, Informatik und spezifischem Fachwissen. Zwar ist der Stellenwert der Informatik in der Schulund Hochschulausbildung in der Vergangenheit gestiegen, allerdings sind gleichzeitig tiefgreifende Defizite in der mathematischen Ausbildung der Studienanfänger zu beklagen. Auf sicheren Grundlagen basierendes übergreifendes Verständnis, solide Rechenfertigkeiten und analytisches Denken sind vielfach einer vom "Knöpfchendrücken" geprägten Bedienungskompetenz gewichen, die für die erfolgreiche Lösung praktischer Problemstellungen bei weitem nicht ausreicht. Desweiteren erfordert die für die Lösung mittels "Rechnern" notwendige Modellierung der zu simulierenden Vorgänge ein hohes Maß an vernetztem Denken und fachlicher Kompetenz. Trotz verbessertem Bedienkomfort und leichteren Eingabemöglichkeiten interpretieren Computer nach wie vor nur das, was die Nutzer digital kommunizieren und nicht was sie sich dabei analog gedacht haben.

Die in den Ingenieurwissenschaften in den Anfangssemestern meist getrennt erfolgende Ausbildung in Mathematik, Informatik und den fachlichen Grundlagen ist zur Überwindung der genannten Defizite nicht förderlich. Wünschenswert ist eine Bündelung der erworbenen Einzelkompetenzen in einer übergreifenden Veranstaltung, die Modellierung, Numerik und Algorithmik sowie Programmierung gleichermaßen Rechnung trägt.

Das vorliegende Buch basiert auf meinen Lehrveranstaltungen "Computernumerik" und "Ingenieuranalyse und Modellierung" an der Technischen Hochschule Deggendorf. Das eingesetzte freie Softwarepaket Scilab/Xcos http://www.scilab.org ist weitgehend zu MATLAB[®]/Simulink[®] kompatibel. Behandelt und programmiert werden die wichtigsten Algorithmen der Numerischen Mathematik, unabhängig davon, ob Scilab hierzu interne Funktionen zur Verfügung stellt. Die analysierten praktischen Fragestellungen stammen aus der Mathematik, der Statik, der Dynamik, der Strömungsmechanik, der Thermodynamik, der Vermessung, der Bauphysik, der Elektrotechnik, der Wärmeübertragung und der Regelungstechnik. Die getroffene Auswahl erhebt dabei in keinster Weise Anspruch auf Vollständigkeit.

Mein Dank gilt Frau Dipl-Ing. Natalia Silakova-Herzberg, ihrer Assistentin Christina Kubiak und Frau Anne Kurth vom Carl Hanser Verlag für die gute und angenehme Zusammenarbeit sowie den Studenten der Technischen Hochschule Deggendorf für ihre Programmcodes und ihr Feedback. Den Leserinnen und Lesern wünsche ich viele Erkenntnisgewinne auf dem teilweise dornigen Weg der Programmierung. Für Fehlermeldungen, konstruktive Anregungen sowie Verbesserungsvorschläge bin ich dankbar.

Deggendorf, Januar 2021

»The purpose of computing is insight, not numbers.« (Richard Wesley Hamming [1])

Rudi Marek

Inhalt

1	Einf	ührung		12
	1.1	Das Knödelproblem		
		1.1.1	Problemstellung	13
		1.1.2	Lösung durch Modellierung	13
		1.1.3	Gewonnene Erkenntnisse	15
	1.2	Grund	begriffe der Systemsimulation	16
		1.2.1	Simulation	16
		1.2.2	Modelle und Modellbildung	17
		1.2.3	Validierung	18
		1.2.4	Systeme	18
		1.2.5	Zustandsgrößen und Bilanzgrößen	19
	1.3	Bilanz	zierung	21
		1.3.1	Allgemeine Aspekte	21
		1.3.2	Energiebilanzen und Wärmetransport	22
		1.3.3	Statisches Gleichgewicht	24
		1.3.4	Bewegung und dynamisches Gleichgewicht	25
		1.3.5	Fluidtechnische Bilanzen	28
	1.4	Norm	ierte Systeme	31
	1.5	Aufga	aben zum Selbststudium	33
		5		
2	Gru	ndlage	n von Scilab	37
	2.1	Progra	ammpaket Scilab	38
		2.1.1	Historie	38
		2.1.2	Funktionalität	38
		2.1.3	Bezug und Dokumentation	38
		2.1.4	Bestandteile	39
		2.1.5	Hilfefunktion in Scilab	40
	2.2	Erste S	Schritte mit Scilab	41
		2.2.1	Scilab als einfacher Taschenrechner	41
		2.2.2	Zuweisungen und Variablen	41
		2.2.3	Konstanten	42
		2.2.4	Rechenoperationen	42
		2.2.5	Funktionen	43
		2.2.6	Vektoren und Matrizen	44
		2.2.7	Punkt-Operator	45
		2.2.8	Lineare Gleichungssysteme und Links-Division	45
		2.2.9	Bereichsvariablen	46
		2.2.10	Scriptdateien	46
		2.2.11	Kommentare	47
		2.2.12	Benutzerdefinierte Funktionen	47
		2.2.13	x,y-Diagramme	48
		2.2.14	Variablen-Browser und Variablen-Editor	48
		2.2.15	Abfangen von Fehlern	49
		2.2.16	Debugging	50
	2.3	Aufga	aben zum Selbststudium	52

Inhalt

3	Gru	ndlager	n der Programmierung	57
	3.1	Algori	thmen	58
		3.1.1	Definition und Eigenschaften	58
		3.1.2	Ein alltäglicher Algorithmus	59
		3.1.3	Ein sehr alter Algorithmus	60
		3.1.4	Erweiterte Backus-Naur-Form	61
		3.1.5	Darstellung von Algorithmen durch Pseudocode	61
	3.2	Grund	begriffe der Programmierung	64
		3.2.1	Top-Down-Methode	64
		3.2.2	Black-Box-Darstellung	64
		3.2.3	EVA-Prinzip	65
		3.2.4	Unterprogramm (Subroutine, Routine)	65
		3.2.5	Prozedur	65
		3.2.6	Funktion	65
		3.2.7	Methode	66
		3.2.8	Modul	66
		3.2.9	Iteration	66
		3.2.10	Rekursion	66
		3.2.11	Implementierung	66
		3.2.12	Compiler	67
		3.2.13	Interpreter	67
		3.2.14	Programmfehler	67
		3.2.15	Fehlersuche	68
		3.2.16	Folgen von Programmfehlern	69
	3.3	Strukt	urierte Programmierung	70
		3.3.1	Ziele und Grundsätze	70
		3.3.2	Kontrollstrukturen	70
		3.3.3	Struktogramme (Nassi-Shneiderman-Diagramme)	71
	3.4	Aufga	ben zum Selbststudium	74
4	Prog	Irammi	erung mit Scilab	79
	4.1	Bezeic	hner und Namenskonventionen	80
		4.1.1	Variablen und Konstanten	80
		4.1.2	Syntaxregeln und Programmierstil	80
		4.1.3	Variablenarten	81
		4.1.4	Datentypen	82
		4.1.5	Gleitkommazahlen	82
		4.1.6	Ganzzahlen	82
		4.1.7	Boole'sche Variablen	83
		4.1.8	Strings (Zeichenketten)	83
		4.1.9	Listen	83
		4.1.10	Strukturen	84
		4.1.11	Dynamische Variablen	85
		4.1.12	Abfrage der Variablenart	85
		4.1.13	Bereichsvariablen	85
		4.1.14	Voreingestellte Variablen (Systemvariablen)	86
		4.1.15	Übersicht über definierte Variablen	86
		4.1.16	Löschen von Variablen	87
	4.2	Opera	toren	87

	4.2.1	Arithmetische Operatoren		87
	4.2.2	Vergleichsoperatoren		88
	4.2.3	Logische Operatoren (Boole'sche Operatoren)		88
	4.2.4	Punkt-Operator und elementweise Operationen		88
4.3	Eleme	nte der Codegestaltung		89
	4.3.1	Kommentare		89
	4.3.2	Fortsetzungszeilen		89
	4.3.3	Automatische Formatierung des Codes		89
	4.3.4	Automatische Syntaxvervollständigung		89
	4.3.5	Abschalten des Konsolenechos		90
4.4	Matriz	en und Vektoren		90
	4.4.1	Eingabe von Matrizen		90
	4.4.2	Besondere Matrizen		91
	4.4.3	Abfrage und Modifikation von Matrizen		92
	4.4.4	Zugriff auf Matrizen und Matrixelemente		92
	4.4.5	Doppelpunkt-Operator		94
	4.4.6	Dollar-Operator		95
	4.4.7	Elementweise Operationen		95
	4.4.8	Funktionen der Linearen Algebra		96
4.5	Verzw	eigungen (flow control)		97
	4.5.1	If-Schleifen		97
	4.5.2	Select-Case-Verzweigung		97
4.6	Schleif	en (loops)		98
	4.6.1	While-Schleifen		98
	4.6.2	Ersatz für Repeat-Schleifen		98
	4.6.3	For-Schleifen		99
	4.6.4	Break-Anweisung		99
	4.6.5	Continue-Anweisung		99
	4.6.6	Return-Anweisung		99
4.7	Benutz	zerdefinierte Funktionen		99
	4.7.1	Allgemeine Aspekte		99
	4.7.2	Functions		100
	4.7.3	On-line-Funktionen		102
4.8	Vordet	finierte Funktionen (Systemfunktionen)		103
4.9	Spezie	lle Befehle für Funktionen		104
	4.9.1	Anzahl der Ein- und Ausgabeparameter		104
	4.9.2	Ausgabe einer Fehlermeldung		105
	4.9.3	Ausgabe einer Warnmeldung	•••	105
	4.9.4	Abbruch einer Schleife		105
	4.9.5	Rücksprung zu übergeordneter Programmeinheit		105
	4.9.6	Anhalten der Programmausführung		105
	4.9.7	Haltepunkte		105
4.10	Funkti	onen für Strings	•••	106
	4.10.1	Konkatenation von Strings		106
	4.10.2	Länge von Strings		106
	4.10.3	Teile von Strings		106
	4.10.4	Position von Teilstrings		106
	4.10.5	Ersetzen von Teilstrings		106
	4.10.6	Umwandlung numerischer Werte in Strings		106

Inhalt

		4.10.7	' Umwandlung von Strings in Zahlenwerte	6
		4.10.8	Ausführen von Befehlen in Stringform	7
	4.11	Ein- u	nd Ausgabe	7
		4.11.1	Formatierte Ausgabe 10	7
		4.11.2	2 Datenausgabe in Dateien	8
		4.11.3	Einlesen von Daten 110	0
	4.12	Darste	ellung von Funktionen und Daten 11	1
		4.12.1	Raster- und Vektorgrafikformate	1
		4.12.2	Grafikfenster in Scilab	2
		4.12.3	Grafikobjekte (graphics entities)	2
		4.12.4	x,y-Diagramme	4
		4.12.5	3D-Diagramme	6
	4.13	Aufga	aben zum Selbststudium	8
5	Num	horisch	e Grundlagen 125	5
5	5 1	Allaer	meines 12	6
	5.1	5 1 1	Unterschiede Numerik – Analysis	6
		512	Rundungsfehler (round-off error rounding error) 12	7
		513	Auslöschung (cancelation) 12	, 7
		514	Überlauf (overflow) und Unterlauf (underflow) 12	7
	5.2	Zahlei	ndarstellungen und Gleitpunktzahlen	8
		5.2.1	Zahlensvsteme	8
		5.2.2	Festpunktdarstellung reeller Zahlen (fixed point) 12	9
		5.2.3	Normierte Gleitpunktdarstellung reeller Zahlen	-
			(floating point)	9
		5.2.4	Rundung von Gleitpunktzahlen	9
		5.2.5	IEEE-Standard 754	0
	5.3	Kondi	ition von Algorithmen 130	0
		5.3.1	Allgemeine Überlegungen	0
		5.3.2	Konditionszahl eines Algorithmus	1
	5.4	Norm	en	2
		5.4.1	Vektorräume, Metriken und Normen 132	2
		5.4.2	Vektornormen	2
		5.4.3	Matrixnormen	3
		5.4.4	Verträglichkeit von Vektor- und Matrizennormen 134	4
	5.5	Kondi	tionszahlen von Matrizen	4
	5.6	Aufga	aben zum Selbststudium	6
6	Lösı	ına nic	htlinearer Gleichungen 140)
	6.1	Nichtl	ineare Gleichungen	1
	6.2	Fixpu	nktiteration	1
	6.3	Newto	on-Raphson-Verfahren	3
	6.4	Nichtl	ineare Gleichungssysteme	4
	6.5	Scilab	-Funktion fsolve	4
	6.6	Aufga	aben zum Selbststudium	5

7	Line	eare Gleichungssysteme		152	
	7.1	Matrixnotation	•	153	
	7.2	Lösungsverfahren	• •	153	
	7.3	Gauß'scher Algorithmus	•	153	
	7.4	LU-Zerlegung	•	155	
	7.5	Cholesky-Zerlegung		156	
	7.6	Jacobi-Iteration (JI)		158	
	7.7 Gauß-Seidel-Iteration (GS)				
	7.8	Sukzessive Überrelaxation (SOR)		159	
	7.9	Verfahren der konjugierten Gradienten (CG)		160	
	7.10) Nachiteration (Iterative Verbesserung)		161	
	7.11	Aufgaben zum Selbststudium		162	
8	Approximation			165	
	8.1	Numerische Integration (Quadratur)	• •	166	
		8.1.1 Allgemeines	•	166	
		8.1.2 Trapezregel	•	166	
		8.1.3 Simpson-Regel	•	166	
		8.1.4 Monte-Carlo-Methode		167	
		8.1.5 Scilab-Funktion inttrap		167	
		8.1.6 Scilab-Funktion intsplin		168	
		8.1.7 Scilab-Funktion intg		168	
		8.1.8 Scilab-Funktion integrate		168	
	8.2	Regression und Ausgleichsrechnung		168	
		8.2.1 Allgemeines		168	
		8.2.2 Lineare Regression		169	
		8.2.3 Scilab-Funktion reglin		169	
		8.2.4 Ouadratische Regression		169	
		8.2.5 Polynom-Regression (Ausgleichspolynome)		169	
		8.2.6 Nichtlineare Ausgleichsprobleme		170	
		8 2 7 Gauß-Newton-Verfahren		171	
		8.2.8 Scilab-Funktion leasts	•	172	
		8.2.9 Multivariate lineare Regression	•	172	
	83		•	172	
	0.5		•	175	
9	Inte	rpolation		177	
	9.1	Allgemeines	•	178	
	9.2	Lineare Interpolation		178	
	9.3	Interpolation mit Polynomen		178	
		9.3.1 Festlegung des Interpolationspolynoms		178	
		9.3.2 Interpolationsformeln von Lagrange		178	
		9.3.3 Interpolationsschema von Aitken und Neville		179	
		9.3.4 Interpolationsformeln nach Newton		180	
	9.4	Stückweise Interpolation mit Splines		181	
		9.4.1 Allgemeines		181	
		9.4.2 Kubische Splines		181	
		9.4.3 Scilab-Funktion splin		182	
	95	Aufgaben zum Selbststudium		184	
	5.5				

mmarc

10	Differenzialgleichungen	186
	10.1 Anfangswertprobleme	187
	10.1.1 Richtungsfeld und Isoklinen	187
	10.1.2 Euler-Cauchy-Verfahren	187
	10.1.3 Verfahren von Heun	189
	10.1.4 Runge-Kutta-Verfahren 4. Ordnung	189
	10.1.5 Mehrschrittverfahren von Adams-Moulton	190
	10.1.6 Scilab-Funktion ode	190
	10.1.7 Differenzialgleichungen höherer Ordnung	191
	10.2 Wachstum und Populationsdynamik	192
	10.2.1 Unbegrenztes Wachstum einer Population	192
	10.2.2 Begrenztes Wachstum einer Population	192
	10.2.3 Räuber-Beute-Systeme (Predator-Prey)	193
	10.3 Randwertprobleme	194
	10.3.1 Diskretisierung	195
	10.3.2 Finite Differenzen	195
	10.4 Aufgaben zum Selbststudium	201
11	Simulationen mit Xcos	214
	11.1 Grundlegende Aspekte	215
	11.1.1 Programmkonzept und Programmstart	215
	11.1.2 Elemente von Xcos	215
	11.1.3 Arbeitsoberfläche	215
	11.1.4 Paletten-Browser	217
	11.1.5 Simulator	219
	11.1.6 Format-Menü	220
	11.2 Erste Schritte in Xcos	221
	11.2.1 Einfaches Sinusdiagramm	221
	11.2.2 Erweiterungen des Diagramms	222
	11.2.3 Modell des ideal gerührten Behälters	223
	11.2.4 Sprungantwort von Hoch- und Tiefpass	224
	11.2.5 Schwingung mit Gleitreibung	225
	11.2.6 Bernoulli-Balken mit Streckenlast	227
	11.3 Aufgaben zum Selbststudium	228
12	Aufgaben zu verschiedenen Themengebieten	231
Lite	eratur	278
Bile	dquellen	282
Ind	lex	284

Als Zusatzmaterial zu diesem Buch erhalten Sie unter der Webadresse plus.hanser-fachbuch.de ausführliche Lösungen der Aufgaben sowie Downloadlinks rund um Scilab/Xcos.

1 Einführung

»The most dangerous phrase in the language is, 'We've always done it this way.'« (Grace B. Murray Hopper)

Lernziele

Anhand eines Beispiels lernen wir praktische naturwissenschaftliche und ingenieurtechnische Fragestellungen zu abstrahieren und geeignet zu modellieren, um sie einer späteren mathematischen Lösung zugänglich zu machen.

Wir verschaffen uns einen Überblick über wichtige Begriffe der Systemsimulation und lernen exemplarisch deren interdisziplinäre Anwendung in den Bilanzen der Thermodynamik, Wärmeübertragung, Mechanik und Strömungsmechanik kennen.

Betrachtungen zur Normierung von Systemen in Bezug auf die Verallgemeinerung der Simulationsergebnisse schließen das Kapitel ab.

1.1 Das Knödelproblem

1.1.1 Problemstellung

Wir wollen uns der Systemsimulation anschaulich anhand der (scheinbar) einfachen Fragestellung aus Beispiel 1.1 nähern und daran die typische Vorgehensweise bei der Ingenieuranalyse und Modellierung kennenlernen.

1.1.2 Lösung durch Modellierung

Die Beantwortung dieser Frage erfordert eine physikalische Modellierung, wodurch das reale System "Topf mit Knödel" (Bild 1.1) in ein idealisiertes Ersatzsystem übergeführt wird. Wir beschränken uns dabei auf das System "Einzelknödel", da wir vereinfacht davon ausgehen, dass eine gegenseitige Beeinflussung der Knödel wegen der Topfgröße ausscheidet. Ferner idealisieren wir die Geometrie, indem wir exakt kugelförmige Knödel mit Radius *R* betrachten.

Erfahrungsgemäß schwimmen Körper im Wasser oder sie gehen unter. Kramen wir in unseren (eventuell verstaubten) Physik-Erinnerungen, verbinden wir "Schwimmen" mit Hydrostatik, Auftrieb und Archimedes. In einem Nachschlagewerk der Physik [2] finden wir unter dem Stichwort "Auftrieb" das Prinzip von Archimedes:

»Beim Eintauchen in eine Flüssigkeit erfährt jeder Körper eine nach oben gerichtete Auftriebskraft. Diese ist dem Betrag nach gleich der Gewichtskraft der vom Körper verdrängten Flüssigkeit.«

 $F_{\rm A} = V \cdot \rho \cdot g = V_{\rm F} \cdot \rho_{\rm F} \cdot g \tag{1.1}$

Zur Vermeidung von Verwechslungen fügen wir in Gl. (1.1) den Index "F" zur Kennzeichnung der Flüssigkeit an.

Weiterhin gilt für einen in der Flüssigkeit schwimmenden (schwebenden) Körper die **Schwimmbedingung**:

$$G_{\rm K} = F_{\rm A} \tag{1.2}$$

In Gl. (1.2) kennzeichnen wir den Knödel mit dem Index "K". Durch Gleichsetzen von Gl. (1.1) und Gl. (1.2) können wir die Auftriebskraft F_A eliminieren:

 $G_{\rm K} = V_{\rm F} \cdot \rho_{\rm F} \cdot g \tag{1.3}$

Anschaulich hängt die gesuchte Eintauchtiefe, für die wir das Symbol h einführen, vom Volumen $V_{\rm F}$ ab und muss zwischen den Grenzfällen () und () liegen (Bild 1.2). Fall () $h_{\rm I}$ =0 entspricht einer auf der Flüssigkeitsoberfläche aufsitzenden gewichtslosen Kugel (z. B. Seifenblase), während Fall () $h_{\rm II}$ =2R eine gerade vollständig eingetauchte Kugel beschreibt. Eintauchtiefen $h > h_{\rm II}$ sind (im Gleichgewicht) nicht möglich, da der Knödel dann absinken und untergehen würde. Insofern muss h im Intervall [0; 2R] liegen.

Eine Vereinfachung von Gl. (1.3) ist möglich, wenn wir für die Gewichtskraft $G_{\rm K}$ des Knödels das Produkt aus Knödelmasse $m_{\rm K} = V_{\rm K} \cdot \rho_{\rm K}$ und Schwerebeschleunigung g einführen:

$$V_{\rm K} \cdot \boldsymbol{\rho}_{\rm K} \cdot \boldsymbol{g} = V_{\rm F} \cdot \boldsymbol{\rho}_{\rm F} \cdot \boldsymbol{g} \tag{1.4}$$

Beispiel 1.1:

Susi Sorglos erhitzt aus frischem Kloßteig geformte Knödel in einem großen Topf mit Wasser. Wie tief tauchen die Knödel in das Wasser ein?

Bild 1.1: Wie tief tauchen die im Wasser schwimmenden Knödel ein?

In Gl. (1.1) bezeichnet $V_{\rm F}$ das Volumen der vom schwimmenden Knödel verdrängten Flüssigkeit, $\rho_{\rm F}$ die Dichte der Flüssigkeit und g die Schwerebeschleunigung.

In GI. (1.2) bezeichnet G_K die Gewichtskraft des schwimmenden Körpers.

Bild 1.2: Grenzfälle der Eintauchtiefe h im idealisierten Ersatzsystem "sphärischer Einzelknödel".

Bild 1.3: Geometrische Zusammenhänge zur Ermittlung der Eintauchtiefe *h*.

Es wäre unvorteilhaft, in Gl. (1.9) die Quadratwurzel zu ziehen, da wir in Gl. (1.7) nicht x(z), sondern das Quadrat $x^2(z)$ benötigen. Mit dem bekannten Kugelvolumen $V_{\rm K} = \frac{4}{3} \cdot \pi \cdot R^3$ und Kürzen von g erhalten wir aus Gl. (1.4):

$$\frac{4}{3} \cdot \pi \cdot R^3 \cdot \rho_{\rm K} = V_{\rm F} \cdot \rho_{\rm F} \tag{1.5}$$

Zur Weiterverwertung von Gl. (1.5) wird die Abhängigkeit von V_F von der Eintauchtiefe *h* (Bild 1.3) benötigt. V_F ist ein Kugelabschnitt, dessen Volumen durch Integration bestimmbar ist. Dazu führen wir von der Flüssigkeitsoberfläche nach unten weisend die Koordinate *z* und als infinitesimales Volumenelement dV_F in der Tiefe *z* eine Kreisscheibe der Dicke d*z* mit Radius x = x(z) ein. Gemäß Infinitesimalrechnung können wir das Scheibenvolumen dV_F als geraden Kreiszylinder mit Grundkreisfläche A(x) und Höhe d*z* interpretieren:

$$dV_{\rm F} = A(x) \cdot dz = x(z)^2 \cdot \pi \cdot dz \tag{1.6}$$

Das gesuchte Volumen V_F folgt durch Integration des differenziellen Volumens d V_F von der Flüssigkeitsoberfläche z=0 bis zur Eintauchtiefe z=h:

$$V_{\rm F} = \int_{z=0}^{z=h} {\rm d}V_{\rm F} = \int_{z=0}^{z=h} A(x) \,{\rm d}z = \int_{z=0}^{z=h} x^2(z) \cdot \pi \,{\rm d}z \tag{1.7}$$

Zur Lösung des bestimmten Integrals in Gl. (1.7) benötigen wir die Kenntnis der funktionalen Abhängigkeit x = x(z). Hier hilft uns der Satz des Pythagoras weiter:

$$R^{2} = x^{2}(z) + (R - h + z)^{2} \implies x^{2}(z) = R^{2} - (R - h + z)^{2}$$
(1.8)

Mit der zweiten binomischen Formel erhalten wir nach kurzer algebraischer Umformung aus Gl. (1.8):

$$x^{2}(z) = R^{2} - \left[(R-h)^{2} + 2(R-h) \cdot z + z^{2} \right] = 2Rh - h^{2} - 2(R-h) \cdot z - z^{2}$$
 (1.9)

Durch direktes Einsetzen von Gl. (1.9) in Gl. (1.7) erhalten wir ein leicht lösbares bestimmtes Integral:

$$V_{\rm F} = \int_{z=0}^{z=h} \left[2Rh - h^2 - 2(R-h) \cdot z - z^2 \right] \cdot \pi \cdot dz$$

$$= \pi \cdot \int_{z=0}^{z=h} \left[2Rh - h^2 - 2(R-h) \cdot z - z^2 \right] dz$$

$$= \pi \cdot \left[\left(2Rh - h^2 \right) \cdot z - 2(R-h) \cdot \frac{z^2}{2} - \frac{z^3}{3} \right]_{z=0}^{z=h}$$

$$= \pi \cdot \left[\left(2Rh - h^2 \right) \cdot h - 2(R-h) \cdot \frac{h^2}{2} - \frac{h^3}{3} \right]$$

$$= \pi \cdot \left[2Rh^2 - h^3 - Rh^2 + h^3 - \frac{h^3}{3} \right] = \frac{1}{3} \cdot \pi \cdot h^2 \cdot (3R-h)$$

(1.10)

Alternativ kann $V_{\rm F}$ auch direkt aus einer mathematischen Formelsammlung entnommen werden (z. B. [3]).

Mit Gl. (1.10) folgt aus Gl. (1.5) eine Beziehung, in der neben bekannten Größen nur noch die gesuchte Eintauchtiefe h vorkommt:

$$\frac{4}{3} \cdot \pi \cdot R^3 \cdot \rho_{\rm K} = \frac{1}{3} \cdot \pi \cdot h^2 \cdot (3R - h) \cdot \rho_{\rm F}$$
(1.11)

Die Vereinfachung von Gl. (1.11) liefert folgende Beziehung für die Eintauchtiefe *h*:

$$h^{3} - 3Rh^{2} + 4\frac{\varrho_{\rm K}}{\varrho_{\rm F}}R^{3} = 0$$
(1.12)

Aus Gl. (1.12) ziehen wir die Erkenntnis, dass die Eintauchtiefe h nur vom Knödelradius R sowie den Dichten der Flüssigkeit $\rho_{\rm F}$ und des Knödels $\rho_{\rm K}$ abhängt.

Allerdings gelingt es uns nicht ohne weiteres, diese **kubische** (d. h. nichtlineare) Gleichung nach der gesuchten Variable h aufzulösen. Hierzu werden wir in Abschnitt 4.12 weitere Überlegungen anstellen. Insofern freuen wir uns momentan nur über einen Teilerfolg.

 \mathfrak{H}

1.1.3 Gewonnene Erkenntnisse

Fassen wir die aus der Lösung des Knödelproblems gewonnenen Erkenntnisse in allgemeiner Form zusammen:

- Als Basis unseres Modells haben wir ein reales System geeignet idealisiert, was in der Praxis zugegebenermaßen etwas Erfahrung erfordert.
- Das idealisierte System haben wir mit bekannten physikalischen Prinzipien beschrieben und die dabei auftretenden Größen gezielt nach der gesuchten Variable entwickelt.
- Zur Ermittlung der geometrischen Kenngröße Flüssigkeitsvolumen unseres Systems haben wir uns der Integration bedient, die uns die Mathematik in der Infinitesimalrechnung zur Verfügung stellt.
- 4. Durch geschicktes Verknüpfen der einzelnen Beziehungen haben wir schließlich mit Gl. (1.12) eine mathematische Beziehung erhalten, die das Verhalten des untersuchten Systems im Rahmen unserer Modellbildung geeignet beschreibt. Dabei konnten wir verschiedene Systemparameter identifizieren, von denen die gesuchte Größe abhängt.
- 5. Zur Problemlösung waren mehrere Schritte erforderlich, die uns Kenntnisse aus verschiedenen Disziplinen abverlangten.
- 6. Insgesamt haben wir ein reales System simuliert.

Im nächsten Abschnitt wollen wir die Erkenntnisse aus dem Knödelproblem gewonnenen Erkenntnisse auf eine breitere Basis stellen.

Bild 1.4: Etablierte Säulen der Wissenschaft.

(F

"simulare" (1) vortäuschen, vorgeben

- \sim Simulant
- (2) nachahmen, nachbilden
- → Simulierer

Die lateinische Sprache kennt diesbezüglich zwei grundsätzlich unterschiedliche Bedeutungen, wobei wir uns natürlich den "Simulierern" und nicht den "Simulanten" anschließen wollen.

Bild 1.5: Eisenbahnbrücke aus Stahl als Beispiel für das komplexe reale System eines Fachwerks.

Bild 1.6: Prinzip einer Simulation.

1.2 Grundbegriffe der Systemsimulation

1.2.1 Simulation

Neben den klassischen Säulen "Theorie" und "Experiment" hat sich nicht nur in den Ingenieurwissenschaften in den letzten Jahrzehnten auch die "**Simulation**" als tragendes Element etabliert. Es sind mehrere Begriffsdefinitionen gebräuchlich:

Simulation ist die Darstellung oder Nachbildung physikalischer, technischer, biologischer, psychologischer oder ökonomischer Prozesse oder Systeme durch mathematische und/oder physikalische **Modelle**. Die Untersuchung des Modells ist häufig einfacher, kostengünstiger oder ungefährlicher als die des Originals. Die gewonnenen Erkenntnisse erlauben Rückschlüsse auf die Eigenschaften des Originals.

Simulation bedeutet vielfach Experimentieren an einem Modell durch Nachbildung eines technischen oder nichttechnischen **Systems** auf einem Computer mit dem Ziel des Erkenntnisgewinns und der Übertragung der Ergebnisse auf das in Frage stehende reale System.

- Shannon: »Simulation is the process of designing a model of a real system and conducting experiments with this model for the purpose either of understanding the behavior of the system and its underlying causes or of evaluating various designs of an artificial system or strategies for the operation of the system.« [4]
- VDI 3633: »Simulation

Nachbilden eines Systems mit seinen dynamischen Prozessen in einem experimentierbaren Modell, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit übertragbar sind; insbesondere werden die Prozesse über die Zeit entwickelt.« [5]

Als Vorteile der Simulation sind beispielsweise zu nennen:

- schneller als Experiment
- Verkürzung der Projektdauer
- Reduktion der Kosten
- Anschaulichkeit des jeweiligen Prozesses durch Computeranimation
- ungefährlicher als Experiment
- Test des realen Systems in unbekannten Parameterbereichen
- Zeitkonstanten oft sehr klein/groß und daher schwierig messbar
- keine Störung des realen Systems
- Unterdrückung von am realen System unvermeidbaren Störungen ("Schmutzeffekte") am Modell

Beispiele: Flugsimulator, Fahrsimulator

Wettervorhersage

Wachstum von Populationen

Anlagensimulation (z. B. Energiebedarf einer Klimaanlage)

Bei dem in Bild 1.5 dargestellten System "Brücke" ist sofort anschaulich klar, dass die Auslegung nicht experimentell über gebaute Prototypen erfolgen kann, sondern durch Systemsimulation am Computer.

1.2.2 Modelle und Modellbildung

Jede Simulation erfordert eine **Modellierung** bzw. **Modellbildung**. Ein Modell ist dabei ein mehr oder weniger genaues Abbild der Realität. Modellierung ist das zielgerichtete Überführen der komplexen Realität (reales System) in eine einfachere Virtualität (virtuelles Modell) durch Abstraktion, wobei wichtige Effekte möglichst naturgetreu nachgebildet und unwichtige Effekte vernachlässigt werden. Jedes Modell hat Defekte (Modelldefekte) und setzt entsprechende Erfahrung und Verständnis der beteiligten Mechanismen voraus. Daher kommt der sicheren Beherrschung der physikalischen und mathematischen Grundlagen bei der Modellierung eine zentrale Bedeutung zu. Als Ergebnis von Modellen erhalten wir Kennlinien, Kennfelder, lineare Gleichungen, nichtlineare Gleichungen, gewöhnliche oder partielle Differenzialgleichungen (Dgln.), die das System hinreichend genau beschreiben.

Zur theoretischen Modellbildung nutzen wir bekannte physikalische Gesetze, wie z.B.:

- Erhaltungssätze für Masse, Impuls und Energie
- Ohm'sches Gesetz sowie Kirchhoff'sche Knoten- und Maschenregel
- universelle Bilanzgleichung (Badewannen-/Kontogleichung [8])
- zweites Newton'sches Axiom (Kraft = Masse × Beschleunigung)
- dynamisches Gleichgewicht nach d'Alembert

Der Aufwand der Modellierung muss dabei in Grenzen gehalten werden, wozu man Vereinfachungen und im Rahmen der jeweiligen Fragestellung sinnvolle Modellannahmen trifft:

- Systeme mit konzentrierten statt mit verteilten Parametern: freie Schwingung Einzelmasse $\ddot{x} + \frac{k}{m}\dot{x} + \frac{c}{m} = 0$ (gewöhnliche Dgl.)

freie Balkenschwingung
$$\frac{\partial^4 w}{\partial x^4} + \frac{\varrho A}{E I} \frac{\partial^2 w}{\partial t^2} = 0$$
 (partielle Dgl.)

- starre statt elastische Körper:
 - starr gelagerter Balken $\frac{d^4w}{dx^4} = \frac{q(x)}{EI}$ (integrierbare Dgl.) elastisch gelagerter Balken $\frac{d^4w}{dx^4} + \frac{K}{EI}w = \frac{q(x)}{EI}$ (Exponentialansatz)

- statische und dynamische Modelle: stationäre 1D-Wärmeleitung $\frac{d^2\vartheta}{dx^2} = 0$ (gewöhnliche Dgl.)

instationäre 1D-Wärmeleitung $\frac{\partial \vartheta}{\partial t} = a \frac{\partial^2 \vartheta}{\partial x^2}$ (partielle Dgl.)

- eindimensionale statt mehrdimensionale Systeme:
 1D-Wärmeleitung \$\frac{\partial \theta}{\partial t} = a \frac{\partial^2 \theta}{\partial x^2}\$ (Funktion von 2 Variablen)
 3D-Wärmeleitung \$\frac{\partial \theta}{\partial t} = a \begin{bmatrix} \frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2}\$ (Funktion von 4 Variablen)
- masselose anstelle massebehafteter Teilsysteme
- adiabate statt diabate Teilsysteme

Bild 1.7: Überführen eines realen Systems in ein simulierbares Modell.

Five Don'ts of Mathematical Modeling (S.W. Golomb, 1968 [6], [7]):

- Don't believe that the model is the reality.
- Don't extrapolate beyond the region of fit.
- Don't distort reality to fit the model.
- 4. Don't retain a discredited model.
- 5. Don't fall in love with your model.

Wir behandeln nichtlineare Gleichungen in Abschnitt 6, lineare Gleichungssysteme in Abschnitt 7 und Differenzialgleichungen in Abschnitt 10.

Bild 1.8: Schwierigkeitsgrade bei der Modellierung.

»Eine korrekte, wahrheitsgemäße Berechnung ist aufgrund der existierenden Praxis kaum möglich.«

(Studentische Antwort in einer Prüfung)

»Man sollte alles so einfach wie möglich sehen, aber auch nicht einfacher.«

(Albert Einstein)

Bild 1.9: Typischer Ablauf einer Simulation.

Bild 1.10: Prinzipieller Aufbau eines Systems (nach [11]).

1.2.3 Validierung

Nach erfolgter Modellierung werden die **Systemparameter** durch Systemidentifikation bestimmt. Im nächsten Schritt ist eine Überprüfung der Modells (Modellvalidierung) notwendig, um die Übereinstimmung des Modells mit der Realität zu gewährleisten. Ggf. ist eine Nachbesserung des Modells (Vernachlässigungen zu umfangreich, Anpassung der Systemparameter etc.) erforderlich (Bild 1.9). Je nach vorhandener Modellgüte und gestellten Genauigkeitsanforderungen sind ggf. mehrere Iterationen innerhalb des Simulationskreislaufs nötig.

1.2.4 Systeme

Systeme sind wie in der Thermodynamik ein zentraler Begriff der Modellierung. Das existierende breite Spektrum der Begriffsdefinitionen ist meist von der fachlichen Ausrichtung der jeweiligen Wissensgebiete geprägt. Wir wollen später Algorithmen auch als Systeme (black box, vgl. Bild 1.8) auffassen, weshalb wir den Begriff präzisieren.

Hsu:

"A system is a mathematical model of a physical process that relates the input (or excitation) signal to the output (or response) signal." [9]

DIN IEC 60050-351: Ein **System** ist eine "Menge miteinander in Beziehung stehender Elemente, die in einem bestimmten Zusammenhang als Ganzes gesehen und als von ihrer Umgebung abgegrenzt betrachtet werden. … Elemente eines Systems können natürliche oder künstliche Gegenstände ebenso wie Arten von Denkvorgängen und deren Ergebnisse (zum Beispiel Organisationsformen, mathematische Verfahren, Programmiersprachen) sein. … Das System wird als von der Umgebung und von den anderen äußeren Systemen durch eine gedachte Hüllfläche abgegrenzt betrachtet, durch welche die Verbindungen zwischen diesen Systemen und dem betrachteten System hindurchgehen." [10]

DIN IEC 60050-351: Die **Eingangsgröße** (input variable) eines Systems ist eine "variable Größe, die von außen auf ein System wirkt und die von den anderen variablen Größen des Systems unabhängig ist."

> Dagegen ist die **Ausgangsgröße** (output variable) eine "erfassbare von einem System erzeugte variable Größe, die nur von dem System und über das System von dessen Eingangsgrößen beeinflusst wird." [10]

Wir können ein **System** daher als einen durch die Systemgrenze geeignet von der Umgebung abgegrenzten Bereich mit Elementen (Komponenten, Bauteilen, Bausteinen, Subsystemen) mit diskreten Eigenschaften (Funktionen, Merkmalen, Attributen) auffassen (Bild 1.10), der über Ein- und Ausgänge mit der Umgebung gekoppelt ist [12]. Dabei ergibt sich die Systemgrenze häufig aus der jeweiligen Fragestellung und weniger aus der physikalischen Grenze [13]. Zwischen den Komponenten des Systems tritt ein Energie-, Masse- oder Informationsfluss auf. Die Methode der **Bondgraphen** nach Paynter [14] zielt auf eine **einheitliche** Beschreibung physikalischer Systeme aus unterschiedlichen Disziplinen ab und wird vor allem in der Mechatronik eingesetzt [13]–[17].

1.2.5 Zustandsgrößen und Bilanzgrößen

Systeme werden durch Zustandsgrößen (ZG) beschrieben [11]:

- flow (Fluss, Durchfluss, Strom, Symbol f)
- effort (Aufwand, Potentialdifferenz, Symbol e)

In Systemen können Bilanzgrößen (BG) gespeichert (akkumulierte Größen, Quantitätsgrößen, Index a) und durch Quellen erzeugt werden. Mit der zeitlichen Änderung $\frac{d}{dt}$ gilt:

$$\frac{d}{dt} (Bilanzgröße) = \sum_{j} Zustandsgrößen + Quellen$$
(1.13)

Eine Darstellung von Bilanz- und Zustandsgrößen ist im Paynter'schen Viereck möglich (Bild 1.12) [11], [14]:

Tabelle 1.1: Beispiele von Bilanz- und Zustandsgrößen verschiedener Systeme.							
System	elektrisch	me translatorisch	chanisch rotatorisch	hydraulisch	thermisch		
6.76	C1			N (1	14/7		
f-ZG	Strom	Kraft	Drehmoment	Volumenstrom	Warmestrom		
<i>f</i> -Speicher	Kapazität	Masse	Trägheitsmoment	Behälter	Wärmekapazität		
<i>f</i> _a -BG	Ladung	Impuls	Drehimpuls	Volumen	Wärme		
Verbraucher	Ohm'scher Widerstand	Dämpfer	Reibungskupplung	Blende	thermischer Widerstand		
e _a -BG	magnetischer	lineare	Winkel-	Druckimpuls	-		
	Fluss	Auslenkung	auslenkung		-		
e-Speicher	Induktivität	Feder	Torsionsfeder	lange Leitung	_		
e-ZG	Spannung	Geschwin- digkeit	Winkelgeschwin- digkeit	Druck	Temperatur		

Bondgraphen dienen der Beschreibung des Energieflusses in miteinander verbundenen (Sub-)Systemen mithilfe gerichteter Halbpfeile (bond = Verbindung). Tab. 1.2 zeigt in der Kopfzeile das Symbol für ein **R-Element** (Resistor), für das der universelle Zusammenhang gilt:

$$e = R \cdot f$$

Im elektrischen System erhält man mit e = u und f = i aus Gl. (1.14) das bekannte Ohm'sche Gesetz, im mechanischen System das für niedrige Geschwindigkeiten gültige Modell des viskosen Dämpfers mit Dämpfungskonstante k und im hydraulischen Fall das Gesetz für die laminare Rohrströmung (Tab. 1.2). Die dargestellten Modelle besitzen Anwendungsgrenzen, so ist bei hohen Geschwindigkeiten die Dämpfungskraft $F \sim v^2$ und bei turbulenter Rohrströmung gilt $\Delta p \sim \dot{V}^2$.

Tabelle 1.2: Beispiele für R-Elemente [13].

Bild 1.11: flow- und effort-Größen an einem elektrischen Widerstand.

Bild 1.12: Paynter'sches Viereck zur Darstellung von Bilanz- und Zustandsgrößen [11].

(1.14)

Während R-Elemente die dissipierte Leistung

$$p = e \cdot f \tag{1.15}$$

in Wärmeenergie umwandeln und somit nicht verlustlos sind, verkörpert das C-Element (Nachgiebigkeit, Compliance, Capacity, Capacitor) einen verlustlosen Energiespeicher (Tab. 1.3). Mit der Verschiebung q gelten die elementaren Zusammenhänge:

$$e = \frac{q}{C}$$
 und $f = C \cdot \frac{de}{dt}$ (1.16)

Tabelle 1.3: Beispiele für C-Elemente [13].

C-Element (Nachgiebigkeit, Compliance, Capacity)

Im elektrischen System erhalten wir die bekannte Beziehung zwischen Spannung *u* und Strom *i* an einer Kapazität *C* [18]. Das Federsystem wird mithilfe des Hooke'schen Gesetzes $F = c \cdot x$ beschrieben.

Mit dem Impuls p gelten für das I-Element (Trägheit, Inertia, Inertance, Inductance), das ebenfalls einen verlustlosen Energiespeicher darstellt, die Beziehungen (Tab. 1.4):

$$p = I \cdot f$$
 und $e = I \cdot \frac{\mathrm{d}f}{\mathrm{d}t}$ (1.17)

Tabelle 1.4: Beispiele für I-Elemente [13].

I-Element (Trägheit, Inertia, Inertance, Inductance)

Im elektrischen System erhalten wir die bekannte Beziehung zwischen Spannung *u* und zeitlicher Stromänderung $\frac{di}{dt}$ an einer Induktivität L [18]. Die Bewegung der Masse m wird mithilfe des 2. Newton'schen Axioms beschrieben. Die hydraulische Trägheit I ergibt sich aus dem Produkt von Dichte ρ und Länge ℓ des durchströmten Rohres dividiert durch die Querschnittsfläche A.

1.3 Bilanzierung

Als **Quellen** (source) stehen in Bondgraphen in elektrischen Systemen Spannungs- und Stromquellen für effort und flow zur Verfügung. In mechanischen Systemen stellt die Schwerkraft beispielsweise eine Quelle dar, in hydraulischen Systemen sind dies Pumpen und Ventilatoren.

Neben diesen 1-Port-Elementen existieren auch 2-Port-Bauelemente (z.B. Transformer, Gyrator) und 3-Port-Bauelemente (z.B. Junctions). Details findet man in [13]–[17].

1.3 Bilanzierung

1.3.1 Allgemeine Aspekte

Das Verhalten vieler technischer, wirtschaftlicher und biologischer Systeme lässt sich durch Zustands- und Bilanzgrößen mithilfe von **Bilan**zen beschreiben. **Grundlagen** dafür sind u.a.:

- Erhaltungssätze für Masse (Kontinuitätsgleichung), Impuls (Impulssatz, Drallsatz, Navier-Stokes-Gleichungen), Energie (1. Hauptsatz der Thermodynamik, Bernoulli-Gleichung der Strömungsmechanik)
- Kräftegleichgewichte
- Momentengleichgewichte
- Minimierung der potentiellen und kinetischen Energie (Finite Elemente-Methode)
- in Kombination mit den physikalischen Prinzipien von
- Archimedes (Auftrieb, Hebelgesetze)
- Newton (Trägheitsprinzip, Kraft=Impulsänderung; actio=reactio)
- d'Alembert (\sum äußere Kräfte+ \sum Zwangskräfte+Trägheitskraft = 0)
- Euler (Freischneiden von Systemen)
- Lagrange (virtuelle Arbeiten)

und den empirischen

- Wärmetransportgesetzen (Leitung, Konvektion, Strahlung)
- Zustandsgleichungen (ideales Gas, reales Fluid, Hooke'sches Gesetz)

Die universelle Bilanzgleichung lässt sich wie folgt verbalisieren:

Im Ergebnis führen Bilanzen meist auf **nichtlineare Gleichungen** oder **Differenzialgleichungen**, so dass deren Lösung zur Beschreibung des Systemverhaltens erforderlich ist. Hierbei kommen häufig numerische Methoden zur Anwendung, wie wir in den Kapiteln 6 und 10 noch im Detail sehen werden.

Bild 1.13: Hebelgesetz von Archimedes (Titelbild [19]): "Gib mir einen Punkt, wo ich hintreten kann, und ich bewege die Erde (δοζ μοι που στω και κινω την γην)". [20]

Bild 1.14: Sir Isaac Newton (1643–1727).

Bild 1.15: Jean-Baptiste le Rond d'Alembert (1717–1783).

Bild 1.16: Zeitveränderliche Zustandsgrößen in einem offenen System bei a) V = const.und b) p = const..

Bild 1.17: Jean Baptiste Joseph Fourier (1768–1830).

Bild 1.18: Josef Stefan (1835–1893, links) und Ludwig Eduard Boltzmann (1844–1906, rechts).

1.3.2 Energiebilanzen und Wärmetransport

Zur Veranschaulichung von Gl. (1.13) und der konkreten Form von Bilanzen wollen wir zunächst den **Transport von Wärme** in technischen Systemen betrachten. Als Bilanzgröße im System (akkumulierte Grö-Be) tritt die innere Energie *U* oder die Enthalpie *H* auf, je nachdem ob das Systemvolumen *V* oder der Systemdruck *p* konstant ist. Als Ströme (flow-Größen) sind Enthalpieströme \dot{H}_j und Wärmeströme \dot{Q}_j über die Systemgrenze von Bedeutung. Als Quellterme (source-Größen) können im System die technische Leistung *P*_t von Strömungsmaschinen (z. B. Turbinen, Verdichter) sowie die Leistung von inneren Wärmequellen \dot{E}_q auftreten. Als Potentialunterschiede (effort-Größen), die die jeweiligen Wärmetransportvorgänge antreiben, sind Temperaturdifferenzen zu nennen, die in den Formulierungen der betreffenden Ströme formelmäßig in Erscheinung treten.

Energie kann weder erzeugt noch vernichtet, sondern lediglich in eine andere Form umgewandelt werden. Die Energieerhaltung lässt sich durch den **1. Hauptsatz** beschreiben [8]:

$$\frac{\partial U}{\partial t} = \dot{H}_{zu} - \dot{H}_{ab} + \dot{Q}_{zu} - \dot{Q}_{ab} + P_t + \dot{E}_q \quad (V = \text{ const.}, p \text{ variabel})$$
(1.19)

$$\frac{\partial H}{\partial t} = \dot{H}_{zu} - \dot{H}_{ab} + \dot{Q}_{zu} - \dot{Q}_{ab} + P_t + \dot{E}_q \quad (p = \text{const.}, V \text{ variabel})$$
(1.20)

Im stationären Fall verschwinden die Zeitableitungen d/dt auf den linken Seiten der Gln. (1.19) und (1.20), da dann keine zeitlichen Änderungen vorliegen.

Je nach Wärmetransportmechanismus erhalten wir auch verschiedene Beziehungen für die Flüsse über die Systemgrenze [8].

Massebedingte Energieströme infolge von Konvektion werden über den Enthalpiestrom \dot{H} beschrieben, der vom Massenstrom \dot{m} , der spezifischen isobaren Wärmekapazität c_p und der Temperatur ϑ abhängt:

$$\dot{H} = \dot{m} \cdot h = \dot{m} \cdot c_{\rm p} \cdot \vartheta = \varrho \cdot \dot{V} \cdot c_{\rm p} \cdot \vartheta \tag{1.21}$$

Ein Wärmestrom infolge von Wärmeleitung ergibt sich aus dem Fourier'schen Wärmeleitungsansatz mit der Wärmeleitfähigkeit λ , dem durchflossenen Querschnitt A und dem Temperaturgradienten $\frac{d\vartheta}{dx}$:

 $\dot{Q}_{\lambda} = \dot{q}_{\lambda} \cdot A = -\lambda \cdot A \cdot \frac{\mathrm{d}\vartheta}{\mathrm{d}x}$ (1.22)

Im Falle eines Wärmeübergangs zwischen einer Festkörperoberfläche (Index W) und einem Fluid (Index ∞) gilt das **Newton'sche Abkühlungsgesetz** mit dem Wärmeübergangskoeffizienten α :

$$\dot{Q}_{\alpha} = \dot{q}_{\alpha} \cdot A = \alpha \cdot A \cdot (\vartheta_{W} - \vartheta_{\infty}) \tag{1.23}$$

Die Wärmeübertragung durch Strahlung zwischen zwei Oberflächen (1) und (2) lässt sich durch das **Stefan-Boltzmann'sche Strahlungsgesetz** mit der Strahlungskonstante der Anordnung σ_{12} beschreiben:

$$\dot{Q}_{\epsilon 12} = \dot{q}_{\epsilon 12} \cdot A = \sigma_{12} \cdot A_1 \cdot (T_1^4 - T_2^4)$$
(1.24)

Während in den Gln. (1.21)–(1.23) die Celsius-Temperatur ϑ (in °C) auftritt, ist in Gl. (1.24) die absolute Temperatur *T* (in K) einzusetzen.

Zur Vereinfachung stationärer Wärmetransportvorgänge verwendet man gemäß Bild 1.11 die **Elektrische Analogie** mit thermischen Widerständen R_{th} bzw. spezifischen thermischen Widerständen R_{th}^* [8] (Bilder 1.19 und 1.20):

$$R_{\rm th} = \frac{\vartheta_1 - \vartheta_2}{\dot{O}}$$
 bzw. $R_{\rm th}^* = \frac{\vartheta_1 - \vartheta_2}{\dot{q}}$ (1.25)

H Wir schneiden dazu gemäß Bild 1.21 ein in Wärmestromrichtung (*x*-Richtung) differenzielles Kontrollvolumen an der Stelle *x* aus der Wand heraus. In den anderen Koordinatenrichtungen behalten wir die Abmessungen *B* und *H* bei, da in diese Richtungen kein Wärmefluss erfolgt. An der Stelle *x* tritt der Wärmestrom $\dot{Q}_x(x)$ in das Kontrollvolumen ein, der mit der Querschnittsfläche $A = B \cdot H$ aus Gl. (1.22) folgt:

$$\dot{Q}_{x}(x) = -\lambda \cdot A \cdot \frac{d\vartheta}{dx}\Big|_{x} = -\lambda \cdot B \cdot H \cdot \frac{d\vartheta}{dx}\Big|_{x}$$
(1.26)

Bei differenziellen Bilanzen werden die austretenden Quantitätsströme als Taylor-Reihe der eintretenden dargestellt, die nach dem ersten Term abgebrochen wird [8]:

$$\dot{Q}_{x}(x + \Delta x) \approx \dot{Q}_{x}(x) + \frac{d\dot{Q}_{x}(x)}{dx} \cdot \Delta x = -\lambda \cdot A \cdot \frac{d\vartheta}{dx}\Big|_{x} + \frac{d\left(-\lambda \cdot A \cdot \frac{d\vartheta}{dx}\Big|_{x}\right)}{dx} \cdot \Delta x$$
$$= -\lambda \cdot A \cdot \frac{d\vartheta}{dx}\Big|_{x} - \lambda \cdot A \cdot \frac{d^{2}\vartheta}{dx^{2}}\Big|_{x} \cdot \Delta x$$
(1.27)

Für die zeitliche Änderung der inneren Energie U gilt wegen des betrachteten stationären Falls:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \frac{\mathrm{d}\left(\varrho \cdot \Delta V \cdot c_{\mathrm{p}} \cdot \vartheta\right)}{\mathrm{d}t} = 0$$
(1.28)

Da keine Wärmequellen in der Wand vorhanden sind, gilt weiter:

$$\dot{E}_{q} = \dot{e}_{q} \cdot \Delta V = 0 \tag{1.29}$$

Aus der universellen Bilanzgleichung (1.18) erhalten wir konkret:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \dot{Q}_{\mathrm{x}}(x) - \dot{Q}_{\mathrm{x}}(x + \Delta x) + \dot{E}_{\mathrm{q}}$$
(1.30)

Einsetzen der Gleichungen (1.26)-(1.29) in Gl. (1.30) ergibt:

$$0 = -\lambda \cdot A \cdot \frac{d\vartheta}{dx} \bigg|_{x} + \lambda \cdot A \cdot \frac{d\vartheta}{dx} \bigg|_{x} + \lambda \cdot A \cdot \frac{d^{2}\vartheta}{dx^{2}} \bigg|_{x} \cdot \Delta x + 0$$
(1.31)

Nach Kürzen des Produkts $\lambda \cdot A$ und der differenziellen Länge Δx folgt:

$$0 = \frac{d^2 \vartheta}{dx^2} \Big|_{x}$$
(1.32)

Die zweimalige unbestimmte Integration der Differenzialgleichung (1.32) liefert als Ergebnis ein **lineares Temperaturprofil** in der Wand:

$$\vartheta(x) = C_1 \cdot x + C_2 \tag{1.33}$$

Bild 1.19: Definition des thermischen Widerstands R_{th} in der Elektrischen Analogie.

Bild 1.20: Definition des spezifischen thermischen Widerstands R_{th}^* in der Elektrischen Analogie.

Beispiel 1.2:

Wir wollen das eindimensionale Temperaturprofil $\vartheta(x)$ in einer ebenen Wand der Dicke L, Breite B, Höhe H und der Wärmeleitfähigkeit λ im stationären Fall ermitteln.

Bild 1.21: Energiebilanz am infinitesimalen Kontrollvolumen der Wand.

Gl. (1.32) kann geometrisch so interpretiert werden, dass die Krümmung des Temperaturfelds null ist, wie es bei einer Geraden der Fall ist.

Zur Berechnung der Integrationskonstanten C₁ und C₂ wären zwei Randbedingungen notwendig, die allerdings nicht vorliegen. Daher können wir das Temperaturprofil in Gl. (1.33) nur als allgemeine konstantenbehaftete Lösung angeben.

Ħ

Bild 1.22: Mehrkörpersystem im statischen Gleichgewicht.

Bild 1.23: Kraftarten in der Statik.

Statisch bestimmtes System Freigeschnittenes System

Bild 1.24: Bestimmen von Auflagerreaktionen durch Freischneiden des Systems.

Bild 1.25: Veranschaulichung des Wechselwirkungsgesetzes beim Ziehen an einem an einem Pfosten verankerten Seil.

System mit Dreieckslast Äquivalente Einzellast **Bild 1.26:** Ersetzen einer Streckenlast durch

eine statisch äquivalente Einzelkraft.

1.3.3 Statisches Gleichgewicht

Das 1. Newton'sche Axiom ist für die Statik von zentraler Bedeutung: Ein Körper verharrt in Ruhe (oder in gleichförmiger geradliniger Bewegung), wenn keine Kräfte auf ihn einwirken (vgl. Bild 1.22).

Ein Starrkörper ist beim Wirken ebener Kräfte (Koordinaten x, y) im (statischen) **Gleichgewicht** (GG), wenn gilt [21]:

$$\sum_{j} F_{x,j} = 0$$
 horizontales Kräftegleichgewicht (1.34)
$$\sum_{j} F_{y,j} = 0$$
 vertikales Kräftegleichgewicht (1.35)

$$\sum M_j^B = 0$$
 Momentengleichgewicht (1.36)

Zweckmäßigerweise führen wir zur Aufstellung der Gleichgewichtsbedingungen (1.34)–(1.36) ein Koordinatensystem ein und zählen in Koordinatenrichtung weisende Kräfte positiv und entgegengesetzt gerichtete negativ. Kräfte, die in einem Winkel α zu einer Koordinatenachse wirken, zerlegen wir durch Projektion in entsprechende achsenparallele Komponenten. Das Momentengleichgewicht (1.36) können wir um einen beliebigen Bezugspunkt B formulieren. Vorteilhaft ist allerdings ein Punkt, durch den die Wirkungslinie möglichst vieler (unbekannter) Kräfte verläuft, da sich das Moment als Produkt von Kraft und zugehörigem Hebelarm ergibt, und die betreffenden Kräfte dann entfallen.

Als Kraftarten unterscheiden wir [21]:

- Linienkräfte (Streckenlasten, z. B. Schneidkraft einer Schere, Schlittschuhkufen; Bild 1.23 links)
- Flächenkräfte (z. B. Schneelast, Windlast, Wasserdruck, Erddruck; Bild 1.23 Mitte)
- Volumenkräfte (z. B. Gewichtskraft, elektrische und magnetische Kräfte; Bild 1.23 rechts)

Schnittkräfte (Reaktionskräfte) treten als innere Kräfte nur nach dem "Freischneiden" eines Systems auf, wenn man es von seinen geometrischen Bindungen gelöst hat (Bild 1.24). Da sich die Schnittkräfte nach dem Zusammenfügen der Teilsysteme wieder aufheben, treten sie an den jeweiligen Schnittufern mit umgekehrten Vorzeichen auf. Ziehen wir an einem an einem Pfosten befestigten Seil, spürt der Pfosten die Zugkraft des Seils und wir spüren den Gegenzug des Pfostens (Bild 1.25). Beide Kräfte sind nicht im Gesamtsystem, sondern erst in den freigeschnittenen Teilsystemen sichtbar (Bild 1.25 rechts). Sie sind nach dem 3. Newton'schen Axiom gleich groß ($F_1 = F_2$), aber entgegengesetzt gerichtet ("actio = reactio").

In der statischen Analyse werden **Streckenlasten** häufig in resultierende Einzellasten umgewandelt, die in der Schwerpunktskoordinate des jeweiligen Belastungsverlaufs angreifen. In Bild 1.26 ist dies bei $x_{\rm S} = \frac{2}{3} \cdot \ell$ der Fall, da der Schwerpunkt eines Dreiecks auf $2/_3$ der Höhe

liegt. Die Größe der Resultierenden $R = \frac{1}{2} \cdot q_0 \cdot \ell$ ergibt sich dabei als Fläche des skizzierten Belastungsverlaufs (Dreiecksfläche = 1/2 Grundlinie × Höhe). **H** Im Freischnittbild 1.24 rechts sind nur vertikale Kräfte zu erkennen. Horizontale Kräfte treten nicht auf, so dass die Gleichgewichtsbedingung (1.34) eine triviale Gleichung liefert. Führen wir die nach oben gerichteten Kräfte F_A und F_B mit positiver Zählrichtung ein, folgt aus (1.35):

$$F_{\rm A} + F_{\rm B} - F = 0 \tag{1.37}$$

(1.37) stellt eine Gleichung für 2 Unbekannte dar, die erst durch Hinzunahme des Momentengleichgewichts (1.36) lösbar ist. Als Bezugspunkt für die Momente wählen wir vorteilhaft ein Auflager, da dann die betreffende Auflagerreaktion aufgrund des fehlenden Hebelarms verschwindet. Zählen wir die um A linksdrehenden Momente positiv, erhalten wir aus Gl. (1.36):

$$\sum_{j} M_{j}^{A} = F_{B} \cdot \ell - F \cdot a = 0$$
(1.38)

Auflösen nach F_B liefert:

$$F_{\rm B} = F \cdot \frac{a}{\ell} \tag{1.39}$$

Durch Einsetzen von $F_{\rm B}$ in Gl. (1.37) finden wir für die Reaktionskraft am linken Auflager:

$$F_{\rm A} + F \cdot \frac{a}{\ell} - F = 0 \qquad \Rightarrow \qquad F_{\rm A} = F \cdot \left(1 - \frac{a}{\ell}\right) = F \cdot \frac{\ell - a}{\ell}$$
(1.40)

1.3.4 Bewegung und dynamisches Gleichgewicht

Bewegungsgleichungen (Bgln.) beschreiben in der Mechanik insbesondere die Bewegung von Massenpunkten, Starrkörpern und Mehrkörpersystemen. Sie führen auf Zusammenhänge von Beschleunigungen a(t), Geschwindigkeiten¹ v(t) und Wegen (Strecken) s(t). Dabei gilt **allgemein**:

$$a(t) = \frac{\mathrm{d}v(t)}{\mathrm{d}t}$$
 und $v(t) = \int a(t)\,\mathrm{d}t$ (1.41)

$$v(t) = \frac{\mathrm{d}s(t)}{\mathrm{d}t}$$
 und $s(t) = \int v(t)\,\mathrm{d}t$ (1.42)

Damit können wir die Beschleunigung als die zeitliche Änderung der Geschwindigkeit interpretieren und die Geschwindigkeit als die zeitliche Änderung des Weges.

Das Newton'sche Bewegungsgesetz (2. Newton'sches Axiom) lautet mit dem Impuls² (Bewegungsgröße) \vec{p} :

$$\sum_{j} \vec{F}_{j} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m \cdot \vec{v})}{\mathrm{d}t}$$
(1.46)

Bei konstanter Masse *m* folgt:

$$\sum_{j} \vec{F}_{j} = m \cdot \frac{d\vec{v}}{dt} = m \cdot \vec{a}$$
(1.47)

Beispiel 1.3:

Wir wollen die in Bild 1.24 eingetragenen Lagerreaktionen bestimmen, welche die im Abstand a vom Lager A angreifende Einzellast F beim Lagerabstand ℓ hervorruft.

Die aus der Physik bekannten einfachen Zusammenhänge [2] gelten nur unter besonderen Voraussetzungen:

$v = a \cdot t + v_0$	a=const.	(1.43)
$s = v \cdot t + s_0$	v = const., a = 0	(1.44)
$s = a \cdot \frac{t^2}{2} + v_0 \cdot t + s_0$	<i>a</i> =const.	(1.45)

Je nach Art der Bewegung können Geschwindigkeit v und Beschleunigung a gleichsinnig oder gegensinnig gerichtet sein:

- beschleunigte Bewegung: $a \upharpoonright v$
- verzögerte Bewegung: a 1 | v

Bild 1.27: Möglicher Verlauf der Geschwindigkeit bei konstanter Beschleunigung.

¹Zur Vermeidung von Verwechslungen mit dem spezifischen Volumen v wird die Geschwindigkeit teilweise auch mit w oder c notiert.

²Der Impuls p ist hier nicht zu verwechseln mit dem Druck p.

Im physikalischen Sinn treten Trägheits- und Scheinkräfte nur in beschleunigten Bezugssystemen auf, während sie in Inertialsystemen, wo kräftefreie Körper in Ruhe sind oder sich geradlinig gleichförmig bewegen, fehlen. Hier gilt das Newton'sche Trägheitsgesetz.

Bild 1.28: Zur Beschleunigung entgegengesetzt wirkende Trägheitskraft.

Alternativ zur Berücksichtigung der Trägheitskraft können wir auch das Newton'sche Bewegungsgesetz verwenden.

Das dynamische Gleichgewicht von ebenen Starrkörpern kann in unterschiedlicher Weise notiert werden:

- vektoriell gemäß Gl. (1.49)
- skalar gemäß Gln. (1.56)-(1.58)

Die Summe der äußeren Kräfte ergibt sich als Produkt von Masse und Beschleunigung ("Kraft = Masse \times Beschleunigung").

$$F_{\rm T} = -m \cdot \vec{a} \tag{1.48}$$

kann das Newton'sche Bewegungsgesetz auf eine Gleichgewichtsbedingung zurückgeführt werden [22]. Da diese für bewegte Systeme gilt, spricht man in Analogie zur Statik vom **dynamischen Gleichgewicht**:

$$\sum_{j} \vec{F}_{j} - m \cdot \vec{a} = \vec{0} \implies \sum_{j} \vec{F}_{j} + \vec{F}_{T} = \vec{0}$$
(1.49)

Für das dynamische Gleichgewicht eines Massenpunkts gilt somit, dass die angreifenden Kräfte und die Trägheitskraft im Gleichgewicht sind. Im Newton'schen Sinne ist die d'Alembert'sche Trägheitskraft keine Kraft, da für sie keine Gegenkraft existiert ("actio = reactio"). Man bezeichnet sie daher als Scheinkraft. Sie ist der Beschleunigung entgegengerichtet (Bild 1.28), wie am Minuszeichen in Gl. (1.48) zu erkennen ist.

Wir können also die Bewegungsgleichung(en) eines dynamischen Systems leicht dadurch finden, dass wir es nach den Prinzipien der Mechanik freischneiden, die einwirkenden Kräfte einzeichnen, die Trägheitskraft einführen und die Summe aller Kräfte null setzen.

Bei **ebener Starrkörperbewegung** (Index S = Schwerpunkt) gilt das Newton'sche Bewegungsgesetz in skalarer Form:

$$m \cdot \ddot{x}_{\rm S} = \sum_{\rm i} F_{\rm x,j} \tag{1.50}$$

$$m \cdot \ddot{y}_{\rm S} = \sum_{\rm i} F_{\rm y,j} \tag{1.51}$$

$$\Theta_{\rm S} \cdot \ddot{\varphi} = \sum_{\rm j} M_{\rm S,j} \tag{1.52}$$

Dabei ist Θ_S das (Massen-)Trägheitsmonent³ und $\ddot{\varphi}$ die Winkelbeschleunigung (zweite Ableitung des Winkels φ nach der Zeit), wie sie bei Bewegungen mit Rotation auftritt.

Für die entsprechenden Trägheitskräfte bzw. das Trägheitsmoment (Scheinmoment) gilt [22]:

$$F_{\mathrm{T,x}} = -m \cdot \ddot{x}_{\mathrm{S}} \tag{1.53}$$

$$F_{\mathrm{T},\mathrm{y}} = -m \cdot \ddot{\mathrm{y}}_{\mathrm{S}} \tag{1.54}$$

$$M_{\rm T,S} = -\Theta_{\rm S} \cdot \ddot{\varphi} \tag{1.55}$$

Die dynamischen Gleichgewichtsbedingungen lauten damit komponentenweise:

$$\sum F_{x,j} + F_{T,x} = 0$$
 (1.56)

$$\sum_{i} F_{y,j} + F_{T,y} = 0$$
(1.57)

$$\sum_{j} M_{S,j} + M_{T,S} = 0$$
(1.58)

³Gelegentlich wird das (Massen-)Trägheitsmoment auch mit *J* notiert.

$$0 + F_{\mathrm{T,x}} = 0 \qquad \Rightarrow \qquad \ddot{x} = 0 \tag{1.59}$$

Aus Gl. (1.57) folgt unter Berücksichtigung der Kraftrichtungen und der Vorzeichenkonvention, dass Kräfte in Koordinatenrichtung positiv und entgegengesetzt negativ gezählt werden:

$$-G + F_{\mathrm{T,y}} = 0$$

Einsetzen der Beträge der Kräfte $G = m \cdot g$ und $F_{T,y} = -m \cdot \ddot{y}$ (wegen $\ddot{y} < 0 \Rightarrow -m \cdot \ddot{y} > 0$) liefert das plausible Ergebnis, dass die Schwerebeschleunigung den Ball in negative *y*-Richtung beschleunigt:

$$-m \cdot g - m \cdot \ddot{y} = 0 \qquad \Rightarrow \qquad \ddot{y} = -g \tag{1.61}$$

Zweimalige unbestimmte Integration von (1.59) nach der Zeit *t* liefert:

$$\dot{x}(t) = C_1 \qquad \Rightarrow \qquad x(t) = C_1 \cdot t + C_2 \tag{1.62}$$

Mit den Anfangsbedingungen

$$x(t=0) = 0$$
 und $\dot{x}(t=0) = 0$ (1.63)

ergeben sich die Integrationskonstanten C_1 und C_2 in Gl. (1.62) zu null. Der resultierenden trivialen Lösung zufolge findet in *x*-Richtung daher keine Bewegung statt:

$$x(t) = 0 \tag{1.64}$$

Analog ergibt die zweimalige unbestimmte Integration von Gl. (1.61) nach der Zeit *t*:

$$\dot{y}(t) = -g \cdot t + C_3 \qquad \Rightarrow \qquad y(t) = -\frac{1}{2} \cdot g \cdot t^2 + C_3 \cdot t + C_4 \tag{1.65}$$

Mit den Anfangsbedingungen

$$y(t=0) = s_0$$
 und $\dot{y}(t=0) = v_0$ (1.66)

erhalten wir $C_3 = v_0$ und $C_4 = s_0$ und damit die gesuchten Verläufe der Geschwindigkeit und des Weges:

$$v(t) = \dot{y}(t) = -g \cdot t + v_0 \tag{1.67}$$

$$s(t) = y(t) = -\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot t + s_0$$
(1.68)

Aus Gl. (1.67) erkennen wir, dass die Steiggeschwindigkeit des Balls mit der Zeit linear abnimmt. Sie erreicht am Umkehrpunkt den Wert null, so dass wir die **Steigzeit** t_S gemäß Gl. (1.69) berechnen können:

$$v(t_{\rm S}) \stackrel{!}{=} 0 = -g \cdot t_{\rm S} + v_0 \qquad \Rightarrow \qquad t_{\rm S} = \frac{v_0}{g} \tag{1.69}$$

Einsetzen von $t_{\rm S}$ in Gl. (1.68) ergibt die maximale Steighöhe $h_{\rm max}$:

$$h_{\max} = s(t_{\rm S}) = -\frac{1}{2} \cdot g \cdot t_{\rm S}^2 + v_0 \cdot t_{\rm S} + s_0 = \frac{v_0^2}{2g} + s_0 \tag{1.70}$$

Beispiel 1.4:

Wir wollen die Bewegungsgleichung für einen mit der Anfangsgeschwindigkeit v_0 bei $y = s_0$ senkrecht nach oben geworfenen Ball (Masse m) im reibungsfreien Fall aufstellen und daraus seine Geschwindigkeit v(t) und seinen Weg s(t) bestimmen.

Bild 1.29: Ball im x,y-Koordinatensystem.

In Gl. (1.60) benutzen wir den vorzeichenrichtigen Ansatz der Kräfte, d.h. wir setzen diese mit den Beträgen (positiv) an und berücksichtigen die Richtung im Vorzeichen ("+" in, "–" entgegen Koordinatenrichtung).

Alternativ führt der **definitionsgemäße** Ansatz der d'Alembert'schen Trägheitskraft gemäß Gl. (1.54) $F_{T,y} = -m \cdot \ddot{y}$ in Gl. (1.57) zum selben Ergebnis:

$$-G + (-m \cdot \ddot{y}) = 0 \implies \ddot{y} = -g \tag{1.71}$$

Auf weitere Alternativen, die Trägheitskräfte stets entgegen der Koordinatenrichtung [23] oder entgegen der Bewegungsrichtung anzutragen [24], wird an dieser Stelle nicht eingegangen.

Bild 1.30: x, y*-Koordinatensystem.

Die Verwendung der y^* -Koordinate gemäß Bild 1.30 entspricht der Multiplikation der Bgl. in y-Richtung mit –1:

$$\ddot{y}^* > 0 \implies m \cdot \ddot{y}^* > 0$$

$$G - F_{\mathrm{T}, y^*} = 0 \implies m \cdot g - (+m \cdot \ddot{y}^*) = 0$$

$$\ddot{y}^* = -\ddot{y} = +g$$
(1.72)

Nach Erreichen des Umkehrpunkts bewegt sich der Ball im freien Fall nach unten. Die entsprechenden Bewegungsgleichungen (vgl. z. B. [2]) erhalten wir aus den Gln. (1.67) und (1.68), indem wir g durch -g ersetzen:

$$v(t) = \dot{y}(t) = g \cdot t + v_0$$
 (1.73)

$$s(t) = y(t) = \frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot t + s_0$$
 (1.74)

Bild 1.31: Stromröhre mit Stromlinien und Stromfaden (nach [25]).

Bild 1.32: Verzweigung von Massen- und Volumenströmen an einem Knotenpunkt.

Bild 1.33: Daniel Bernoulli (1700–1782).

 p_{ge}

Bild 1.34: Energieanteile bei der Rohrströmung als Höhen (nach [25]).

1.3.5 Fluidtechnische Bilanzen

Die Geschwindigkeit ist im Gegensatz zur Temperatur eine vektorielle Größe, sie besitzt also Betrag und Richtung. Stromlinien zeigen in einem Strömungsfeld durch an einzelne Feldpunkte angelegte Tangenten die Strömungsrichtung an. Umfassen wir mehrere Stromlinien mit einer geschlossenen Kurve, erhalten wir die in Bild 1.31 dargestellte Stromröhre bzw. bei sehr kurzer Berandung den Stromfaden. Der Durchfluss⁴ Q bzw. der Volumenstrom \dot{V} ergibt sich aus der mit der (mittleren) Geschwindigkeit v durchströmten Querschnittsfläche A:

$$Q = \dot{V} = v \cdot A \tag{1.75}$$

Tritt in einer Stromröhre kein Zufluss von außen oder infolge innerer Quellen auf, bleibt der Durchfluss bei inkompressibler Strömung (dichtebeständiges Fluid mit $\rho = \text{const.}$) aus Gründen der Massenerhaltung konstant. Zwischen zwei Querschnitten ① und ② gilt dann wegen Zufluss = Abfluss die **Kontinuitätsgleichung** (Kontigleichung):

$$Q = v_1 \cdot A_1 = v_2 \cdot A_2 = \text{const.}$$
 (1.76)

An einem Verzweigungspunkt (Knoten), an dem sich der Massenstrom \dot{m}_1 in die Massenströme \dot{m}_2 und \dot{m}_3 aufteilt, gilt bei dichtebeständigen Fluiden (ρ = const.) entsprechend der Kirchhoff'schen Knotenregel der Elektrotechnik durch die Gleichheit der Summe der Zu- und Abflüsse die **Knotenpunktsgleichung**:

$$\dot{m}_1 = \dot{m}_2 + \dot{m}_3 \tag{1.77}$$

$$Q_1 = Q_2 + Q_3$$
 bzw. $\dot{V}_1 = \dot{V}_2 + \dot{V}_3$ (1.78)

Formuliert man entlang eines Stromfadens die **Energiegleichung**, erhält man die **Bernoulli'sche Gleichung**. Sie lautet im stationären und reibungsfreien (verlustfreien) Fall:

$$H_1 = H_2$$
 (1.79)

$$\frac{v_1^2}{2g} + \frac{p_1}{\rho \cdot g} + z_1 = \frac{v_2^2}{2g} + \frac{p_2}{\rho \cdot g} + z_2$$
(1.80)

Dabei bezeichnet *H* die **Energiehöhe**, $\frac{v^2}{2g}$ die **Geschwindigkeitshöhe**,

 $\frac{p}{\rho \cdot g}$ die **Druckhöhe** und *z* die **geodätische Höhe** (zu einem festen Bezugshorizont gemessen, z. B. NN = Normalnull). (1.80) stellt deswegen die **Höhenform** der Bernoulli'schen Gleichung dar, in der die Energieanteile als Höhen erscheinen (Bild 1.34).

Eine alternative Notation (**Druckform**) von Gl. (1.80) folgt durch Multiplikation mit dem Produkt Dichte ρ mal Schwerebeschleunigung g:

$$_{s,1} = p_{ges,2}$$
 (1.81)

$$\frac{\varrho \cdot v_1^2}{2} + p_1 + \varrho \cdot g \cdot z_1 = \frac{\varrho \cdot v_2^2}{2} + p_2 + \varrho \cdot g \cdot z_2$$
(1.82)

 $p_{\rm ges}$ ist dabei der Gesamtdruck (Totaldruck) in der Strömung. Division von Gl. (1.82) durch die Dichte ϱ liefert mit der spezifischen Gesamt-

⁴In der Hydraulik ist das Symbol Q zur Kennzeichnung des Durchflusses üblich, während in der Thermodynamik, Verfahrenstechnik und Wärmeübertragung das Symbol \dot{V} Verwendung findet, da Q dort für die Wärme reserviert ist.