REMOTE SENSING BASED STUDY ON VEGETATION DYNAMICS IN DRYLANDS OF KAZAKHSTAN

Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

vorgelegt von

Pavel Propastin

aus Ust-Kamenogorsk/Kazakhstan

Göttingen, 2006

D 7

Referent: Prof. Dr. M. Kappas

Korreferent: Prof. Dr. G. Gerold

Tag der mündlichen Prüfung: 18.01.2007

Pavel Propastin

REMOTE SENSING BASED STUDY ON VEGETATION DYNAMICS IN DRYLANDS OF KAZAKHSTAN

ibidem-Verlag Stuttgart

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Dieser Titel ist als Printversion im Buchhandel oder direkt bei *ibidem* (<u>www.ibidem-verlag.de</u>) zu beziehen unter der

ISBN 978-3-89821-823-8.

 ∞

ISSN: 1614-4716

ISBN-13: 978-3-8382-5823-2

© *ibidem*-Verlag Stuttgart 2012

Alle Rechte vorbehalten

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und elektronische Speicherformen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

All rights reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronical, mechanical, photocopying, recording or otherwise) without the prior written permission of the publisher. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Vorwort des Herausgebers

Die Reihe "Erdsicht – Einblicke in geographische und geoinformationstechnische Arbeitsweisen" soll Forschungsergebnisse und Arbeiten im Bereich der Erdsystemforschung vorstellen. Die Betrachtung der Erde als System ist als Inhalt heutiger und zukünftiger Geowissenschaftlicher Gemeinschaftsforschung dringend gefordert. Die Herausforderungen liegen zum einen in der Erforschung der vielfältigen Interaktionen zwischen den verschiedenen Teilbereichen des Systems Erde. Hierzu zählen Wechselwirkungen zwischen fester Erde und Atmosphäre, zwischen der Landoberfläche und der Hydrosphäre oder zwischen Biosphäre, Hydrosphäre und Atmosphäre. Der Mensch steht dabei mit seinen zentralen Nutzungsansprüchen (Ernährung landwirtschaftliche Nutzung - Ressourcennutzung) im Mittelpunkt eines vielfach vernetzten Erdsystems. Der Mensch verändert Landschaften und Atmosphäre und greift somit in alle Skalenbereiche des Erdsystems ein. Insofern müssen diese Veränderungen beobachtet und bewertet werden, damit Konzepte für ein nachhaltiges Erdsystemmanagement auf den unterschiedlichen Raum- und Zeitskalen entwickelt werden können. Die neuen Geoinformationstechniken (Geostatistik; Geographische Informationssysteme - GIS; luft- und Satellitengestützte Fernerkundungssysteme -Remote Sensing) helfen dabei, das System Erde zu beobachten und zu begreifen. Ohne diese Technik ist eine ganzheitliche Betrachtung der Erde und eine flächenhafte Bereitstellung von Informationen über das Erdsystem nicht möglich.

Die vorliegende Studie von Dr. Pavel Propastin beschäftigt sich mit der Landschaftsdegradation in Kasachstan unter besonderer Berücksichtigung der veränderten politischen Bedingungen, die seit den 90er Jahren eine abnehmende Beeinflussung der Ökosysteme zur Folge hatten. Dr. Propastin benutzt zur Bewertung der Landschaftsveränderung insbesondere NDVI-Zeitreihen des Sensors NOAA-AVHRR, die bis 1984 zurückreichen und eine hohe zeitliche Auflösung bis in unseren aktuellen Betrachtungsraum liefern. Diese Arbeit ist ein gutes Beispiel für die Anwendung der Fernerkundung zur Bewertung von Desertifikation und Weidepotenzial in semiariden Gebieten. Inhaltlicher Schwerpunkt ist die Trennung von klimatisch bedingter Veränderung und anthropogen bedingter Veränderung in den Landschaftsräumen Kasachstans. Diese Fragestellung ist im Rahmen der "Global-Change-Forschung" von großer Bedeutung, um die zukünftige Belastung der Naturräume in Relation zu potenziellen globalen Veränderungen (Niederschlags-, Temperaturveränderung) und zusätzlichen menschlichen Einfluss zu bewerten.

Dr. Propastin stellt geeignete Methoden zur langfristigen Bewertung von Landschaftsräumen vor und bildet einen flächendeckenden Datensatz. Seine Ergebnisse belegen eine grundsätzliche Trennung des menschlichen Einflusses von klimatisch bedingten Einflüssen. Die von Dr. Propastin erarbeitete Methode ist zudem auf die weiteren Regionen Zentralasiens übertragbar und somit von überregionaler Bedeutung.

Seine Studie erscheint zudem im so genannten "Internationalen Jahr der Wüsten und der Desertifikation" (United Nations Convention to Combat Desertification CCD) und stellt einen wichtigen Beitrag zur Trockengebietsforschung in Zentralasien da.

Göttingen, Juni 2007 Martin Kappas

Contents

Introduction	1
Problem description	1
Objectives and aims of the study	3
1. Theoretical background to dry ecosystems	7
1.1. Dynamics of dry ecosystems: ephemeral versus permanent changes	7
1.1.1. Brief characterization of ecosystems in dry regions	7
1.1.2. Dynamics of ecosystems in drylands	8
1.2. Remote sensing based investigations of vegetation changes and the	ir
explanatory factors	11
2. Study area	15
2.1. Geographical location and mean characteristics	15
2.2. Climate conditions	15
2.3. Soils	17
2.4. Vegetation	20
2.5. Land use	24
2.6. Change in land use practices	25
2.7. Problem of land degradation in Central Asia	29
3. Data used in the study and their preprocessing	31
3.1. Climate data and their preparation	31
3.1.1. Climate records	31
3.1.2. Preparation of gridded climate maps	31
3.2. Satellite data	33
3.2.1. Data of coarse spatial resolution	33
3.2.2. Data of fine spatial resolution	35
3.3. Digital terrain model	36
3.5. Agrarian and population statistics	37
3.6. Field data	37
4. Methodology of data analysis	39
4.1. Analysis of vegetation distribution, variability and change in space	
and time	39
4.1.1. Simple methods of descriptive statistic	39
4.1.2. Calculation of time-trends	39
4.2. Methods of geostatistical analysis	40
4.2.1. Autocorrelation	40
4.2.2. Spatial autocorrelation	40
4.2.3. Kriging with an external drift	41
4.3. Analysis of the relationship between vegetation change and its	
explanatory factors	42
4.3.1. Correlation coefficient	42
4.3.2. Multiple correlation coefficient	43
4.3.3. Partial correlation coefficient	43

	4.4. Modelling relationship between vegetation patterns and explanatory	7
	factors	44
	4.4.1. Simple linear regression model	44
	4.4.2. Multiple linear regression model	44
	4.4.3 Problem of non-stationarity by analysing spatial relationship	45
	4.4.4 Moving window regression	46
	4.4.5 Geographically weighted regression	46
	4.5 Assessment of modelling accuracy	50
	4.5.1 Root Mean Square Error (RMSE)	50
	4.5.2 Standard error	51
	4.5.2. Standard Crist	51
	4.5.5. Spatial autocorrelation for accuracy assessment	52
	4.0. Evaluation of failu cover change and its unving forces	52
	4.0.1. Dackground for discrimination between chinate-induced and	50
	A 6.2. Identification of climate and anthronogenic signals in the	32
	4.6.2. Identification of climate and anthropogenic signals in the	52
	Vegetation time-series	33
	4.6.3. Analysis of regression residuals for identification of areas	5 1
_	experiencing anthropogenic impact	54
5.	Analysis of climatic conditions	57
	5.1. Network of climate stations in the study region	57
	5.2. Modelling spatial patterns in climate parameters	59
	5.3. Statistical analysis of climate data.	61
	5.3.1. The inter-annual variability of precipitation and temperature.	61
	5.3.2. Trends in climatic parameters	63
	5.4. Discussion and conclusion	65
6	Within-season dynamics of vegetation activity and their relationship to	
cl	imate factors	71
	6.1. Spatial distribution of Normalized Difference Vegetation Index	
	(NDVI) and climatic factors in the study area	71
	6.2. Average characteristics of NDVI	71
	6.3. Temporal behaviour of climatic factors and vegetation within the	
	growing season	72
	6.4.1. Stratification of NDVI-precipitation relationship by land cover	
	type	77
	6.4.2. Stratification of NDVI-precipitation relationship by vegetation	
	communities	79
	6.5. Within-season relationship between NDVI and temperature	80
	6.6. Spatial patterns in NDVI-climate relationship	82
	6.7. Inter-annual variations in within-season NDVI-climate relationship	84
	6.8. Discussion and conclusion	86
7	Inter-annual change in vegetation activity and its relation to climate	87
	7.1. Patterns in monthly time-series 1982-2001	88
	7.2. Inter-annual relationship between NDVI and climatic parameters	89
	7.2.1. Analysis of spatially averaged NDVI versus precipitation	89

7.2.2. Relationship between spatially averaged NDVI and temperature.

	92
7.2.3. Spatial patterns in inter-annual NDVI-climate relationship	95
7.3. Quantifying temporal variability in vegetation conditions	97
7.3.1. Standard deviation of NDVI	97
7.3.2. Variance of NDVI values over the study period	99
7.3.3. Dependence of $NDVI_{cv}$ on the relief	101
7.4. Discussion and conclusion	106
8. Spatial response of vegetation cover to climatic factors	109
8.1. Growing season relationship between NDVI and precipitation	109
8.1.1. NDVI-rainfall correlation coefficients	109
8.1.2. NDVI-rainfall relationships by vegetation type	110
8.1.3. Influence of growing season rainfall on NDV1-rainfall correlat	10n
8.1.4 Spatial patterns in NDVI anomalies and their relationship to	115
rainfall	113
8.2 Within-season relations between NDVI and rainfall	116
8.2.1. Spatial patterns in intra-annual dynamic of NDVI and climate	110
parameters	116
8.2.2. Within-season NDVI-rainfall correlation coefficients	119
8.2.3. Influence of vegetation type on within-season relations betwee	n
NDVI and rainfall	123
8.2.4. Influence of precipitation amount on NDVI-rainfall relations	127
8.3. Growing season relationship between temperature and NDVI	131
8.3.1. NDVI-temperature correlation coefficients	131
8.3.2. NDVI-temperature correlation coefficients by vegetation type	131
8.3.3. Influence of annual rainfall on NDVI-temperature correlation	132
8.4. Within-season relationship between NDVI and temperature	135
8.4.1. General patterns in the NDVI-temperature correlation	135
NDVI and temporature	125
8 5 Discussion and conclusion	135
9 Application of the geographically weighted regression to modelling	150
relationship between vegetation patterns and climate factors	139
9.1. Problem of non-stationarity in modelling spatial relationship and	197
approaches to overcome it	139
9.2. Reducing uncertainty in modelling NDVI-precipitation relationship	p: a
comparison between OLS and GWR regression techniques	141
9.2.1. Global OLS regression model and its deficiencies	141
9.2.2. Stratification of NDVI-precipitation relationship by land cover	•
type	143
9.2.3. Local variability in relationship between vegetation and	
precipitation	145
9.2.4. Analysis of regression residuals	148

9.3. Analysis of temporal variations in NDVI-precipitation relationship)
using GWR	150
9.3.1. Variations in the relationship strength	151
9.3.2. Trends in NDVI-rainfall relationship and their linkages to land	l
use/land cover change	152
9.4. Discussion and conclusion	155
10. Detection of climate-induced and human-induced vegetation change	159
10.1. Trends in spatially averaged NDVI	160
10.1.1. Trends in growing season NDVI	160
10.1.2. Trends in seasonal NDVI	161
10.2. Spatial patterns of NDVI trends	162
10.3. Effects of precipitation and temperature on NDVI trends	164
10.3.1. Effects of climate on changes in spatially averaged NDVI	164
10.3.2. Spatial patterns in climate effects on NDVI trends	166
10.4. Vegetation changes which are not explained by climate	169
10.4.1. Spatial patterns in NDVI trends not explained by rainfall and	
temperature	169
10.4.2. Verification of results and explanation of trends induced by n	on-
climatic factors	170
10.5. Human-induced change in vegetation cover in areas without	
significant NDVI trends	175
10.5.1. General approach	175
10.5.2. Implementation of the suitable regression models for	
identification of the climatic signal	176
10.5.3. Modelling the climatic signal in the inter-annual NDVI time	
series	182
10.5.4. Identification of areas experiencing human-induced vegetatio	n
change	184
10.6. Discussion and conclusion	187
11. Summary	191
12. References	195

List of Figures

Figure 1.1. Distribution of drylands throughout the world	7
Figure 2.1. (a) The location of the study area (white square) on the map ofKazakhstan(b) The study area: its relief (altitude, m), climatestations, and borders of the districts	14
Figure 2.2. Total rainfall amount (mm) during the growing season (April- October) for the region of the Balkhash lake catchment	16
Figure 2.3. Mean air temperature (°C) over the growing season (April-October) for the region of the Balkhash Lake drainage basin	16
Figure 2.4. Map of the land cover in the study area	19
Figure 2.5. Typical landscape impressions from the study area	20
Figure 2.6. Change in stock heads, arable area and crop production in Kazakhstan during the period 1981-2000	24
Figure 2.7. Traces of the economical crisis 1992-1998 in the study area	24
Figure 4.1. Framework explaining how the GWR works in the practice with an example of a 7*7 kernel size	46
Figure 4.2. Scenarios illustrating the combine use of NDVI and precipitation time-series for discrimination between climate- and human-induced vegetation changes	50
Figure 4.3. Difficult cases of trends interpretation	51
Figure 5.1. Map showing the distribution of the climate stations used in the study	54
Figure 5.2. Maps showing the spatial distribution of mean temperature	55

Figure 5.3. Kriging average growing season temperature (a) and total precipitation (b) without external drift	56
Figure 5.4. The time series of mean temperature and total precipitation for growing season during 1985-2002	60
Figure 5.5. Coefficient of variation in precipitation versus elevation (m) as computed for the weather stations in the study area	65
Figure 6.1. (a) Mean growing season NDVI calculated from the average of 8-km NOAA AVHRR for the period 1982-2003. (b) Regionalized total precipitation amount throughout the growing season	67
Figure 6.2. NDVI, precipitation and temperature for each 10-day period of the growing season (spatially averaged over the entire region)	70
Figure 6.3. Within-season dynamic of climatic parameters and NDVI	71
Figure 6.4. Relationship between 10-day NDVI and 10-day precipitation	73
Figure 6.5. Dependence of correlation coefficient between 10-day NDVI and precipitation on time lag imposed to the NDVI data. Stratification by land cover type	74
Figure 6.6. Dependence of correlation coefficient between 10-day NDVI and precipitation on time lag imposed to the NDVI data. Stratification by vegetation community	76
Figure 6.7. Comparison between the values of correlation coefficient obtained for NDVI-precipitation and NDVI-temperature relationship	76
Figure 6.8. Complete amount of pixels, amount of pixels that exhibited significant NDVI-precipitation, and amount of pixels with significant NDVI-temperature correlation for every vegetation type	77

Figure 6.9. Spatial distribution of correlation coefficient for NDVI-precipitation and NDVI-temperature	78
Figure 6.10. Spatial distribution of time lag (10-day units) imposed for calculation of correlation coefficient between NDVI and precipitation	78
Figure 6.11. Time-latitude section of within-season correlation coefficient between 10-day NDVI and 10-day precipitation from 1982 to 1998	79
Figure 7.1. Hovmoller diagram of maximum monthly NDVI, corresponding NDVI anomalies and monthly precipitation amounts throughout 1982-2001	85
Figure 7.2. Spatially averaged time series of growing season NDVI and growing season precipitation over the period 1985-2001	86
Figure 7.3. Average growing season NDVI as a function of precipitation.	86
Figure 7.4. Correlation coefficients between NDVI and precipitation as a function of time duration over which precipitation was totalled, with separate curves for desert, semi-desert, short grassland, steppe and the area average	88
Figure 7.5. Spatially averaged time series of spring NDVI and spring temperature over the period 1985-2001	89
Figure 7.6. Spring NDVI as a function of spring temperature over 1985-2003	90
Figure 7.7. Spatial patterns in inter-annual NDVI-climate relationship	92
Figure 7.8. Spatial patterns of standard deviation of growing season NDVI throughout the study period 1985-2000	93
Figure 7.9. Coefficient of variation in seasonal NDVI during the period 1982- 2001 calculated for spring, summer, autumn and for the growing season	95

Figure 7.10. Influence of altitude on coefficient of variation of NDVI in the study area	97
Figure 7.11. Relationships between $NDVI_{cv}$ and P_{cv} , $NDVI_{cv}$ and T_{cv} for the whole growing season, spring, and summer	98- 99
Figure 7.12. Regression between coefficients of variation of growing season NDVI and that of growing season rainfall	101
Figure 8.1. Dynamics of correlation coefficient between NDVI and precipitation versus NDVI value	104
Figure 8.2. Correlation coefficients as a function of number of years over which precipitation is summed	105
Figure 8.3 Linear regression between long-time averages of growing season rainfall and growing season NDVI for the main vegetation types	106
Figure 8.4 Scatter plot of NDVI-rainfall correlation coefficients and growing season rainfall amounts averaged over the whole study area	108
Figure 8.5. Evolution of vegetation conditions in the study region during the period 1982-2003	109
Figure 8.6. Standardised anomalies in precipitation amount for the Shetsky district during the period 1982-1999	110
Figure 8.7. Maps of mean monthly composite NDVI for the territory of the Shetsky district	112
Figure 8.8. Maps of averaged monthly precipitation amount (mm) for the territory of the Shetsky district	113
Figure 8.9. NDVI values, correlation coefficients between spatial distribution of 10-day NDVI and precipitation and 10-day rainfall	115

Figure 8.10. The same as in Figure 8.7 but for the wet year 1988	116
Figure 8.11. The same as in Figure 8.7 but for the dry year 1995	117
Figure 8.12. Correlation coefficient, 10-day NDVI values and 10-day rainfall for desert	119
Figure 8.13. Correlation coefficient, 10-day NDVI values and 10-day rainfall for semi-desert	120
Figure 8.14. Correlation coefficients, 10-day NDVI values and 10-day rainfall for steppe grassland	121
Figure 8.15. Regression graph between 10-day NDVI-rainfall correlation coefficients and 10-day precipitation averaged over the study period	123
Figure 8.16. Regression graph between 10-day NDVI-rainfall correlation coefficients and 10-day precipitation for the wet year 1988	124
Figure 8.17. Regression graph between 10-day NDVI-rainfall correlation coefficients and 10-day precipitation for a dry year 1995	124
Figure 8.18. Correlation coefficients between spatial pattern of NDVI and temperature obtained for the data averaged over the period 1985-2001	127
Figure 8.19. Total growing season rainfall versus NDVI-temperature correlation coefficient	128
Figure 8.20. Time-profile of 10-day NDVI-temperature correlation coefficient and 10-day temperature averaged over the study period 1985-2000	128
Figure 8.21. Time-profiles of 10-day correlation coefficient between spatial patterns of NDVI and temperature for desert, semi-desert and steppe vegetation cover. Relationship between 10-day NDVI-temperature correlation and mean 10-day temperature for different vegetation types	130

Figure 9.1. Accumulated growing season NDVI calculated from a combination of 1-km NOAA AVHRR and SPOT-VEGETATION for the period 1992-133 95/1998-2004. Regionalized total precipitation amount throughout the growing season Figure 9.2. Scatter diagram between measured and predicted NDVI_{accum} 135 Figure 9.3. Spatial autocorrelogramms for NDVI_{accum} and precipitation 136 Figure 9.4. Scatter diagram between measured NDVI_{accum} and NDVI_{accum} predicted 137 by the stratified OLS regression model Figure 9.5. Spatial variations in regression outputs from the GWR analysis of 139 growing season accumulated NDVI against precipitation Figure 9.6. Scatter plot between measured NDVI_{accum} and computed from the 141 **GWR** model Figure 9.7. Spatial patterns of regression residuals and corresponding residuals

histograms for the global OLS model, the stratified OLS model, and the GWR 144 model

Figure 9.8. Spatial autocorrelograms for OLS residuals and residuals from the GWR model 145

Figure 9.9. Maps demonstrating variability in NDVI-precipitation relationship during 1985-2001

Figure 9.10. Inter-annual variations in R² averaged for vegetation types 147

Figure 9.11. Time-series of R² for four individual sites demonstrating typical linkages between the NDVI-rainfall relationship and LULC change

Figure 10.1. Areas of statistically significant linear trends of NDVI in the study region from 1982 to 2003

Figure 10.2. Distribution of trends in NDVI which are driven by trends in climate parameters	160
Figure 10.3. Distribution of trends in NDVI which are not explained by climate factors	161
Figure 10.4. Landsat TM image of the test site 1	162
Figure 10.5. Test site 2 on the Landsat TM image	163
Figure 10.6. Test site 3 on the Landsat images	164
Figure 10.7. Time-series of growing season NDVI during 1982-2003 averaged over the third test site	165
Figure 10.8. Landsat TM and Landsat ETM+ images of test site 4	166
Figure 10.9. Linear regression between growing season precipitation and NDVI, and the temporal trend of associated residuals	169
Figure 10.10. Parameters of the GWR between NDVI and precipitation related to year 1988	172
Figure 10.11. Results of the temporal regression between growing season NDVI and precipitation for the period 1985-2003	173
Figure 10.12. Goodness-of-fit statistic, R ² , for the multiple regression incorporating NDVI and the both climatic parameters	174
Figure 10.13. Maps of growing season NDVI predicted by the temporal multiple regression modelling	175
Figure 10.14. Spatial autocorrelograms for residuals from the spatial OLS model, the multiple temporal model and the GWR model	176

Figure 10.16. Comparison of two subsets from Landsat TM and Landsat ETM+showing the expansion of wheat cultivation into the steppe grassland between178the years 1992 and 2001178

List of Tables

Table 3.1. Geographical characteristics and principal vegetation classes for the meteorological stations used in the study	29
Table 3.2. Satellite data used in the study and their characteristics	32
Table 5.1. Coefficient of variations of precipitation and temperature during the period 1985-2004 as computed for the individual climate stations from the study area	58
Table 5.2. Mean spring, summer, autumn and growing season amount of precipitation (mm) and their change (mm) over the period 1985-2004 for 6 climate stations from the study area	62
Table 5.3. Mean spring, summer, autumn and growing season temperature (°C) and their change (°C) over the period 1985-2004 for 6 climate stations from the study area	63
Table 6.1. Averaged characteristics of NDVI values for various vegetation types	68
Table 6.2. Within-season correlation coefficients between climatic parameters and NDVI for vegetation communities in desert, semi-desert and steppe as computed for dry and wet years	80
Table 7.1. Inter-annual correlation coefficient between NDVI and precipitation for every land-cover type	88
Table 7.2. Number of pixels and percentage (%) of vegetated pixels exhibiting positive correlation with inter-annual climate change over 1985-2003	91
Table 7.3. Standard deviation of spatially averaged NDVI values for different vegetation types through 1985-2001	94

Table 7.4 Variation coefficient of spatially averaged NDVI values over the period 1985-2001	96
Table 8.1. Strength of relationship between 10-day NDVI-rainfall correlation and 10-day rainfall amounts, and the "limit of saturation" (turning-point) for the three land cover categories	123
Table 8.2. Correlation between spatial patterns of growing season NDVI, growing season rainfall and growing season temperature for different vegetation types	127
Table 10.1. Trends of spatially averaged time-series of growing season, spring, summer and autumn NDVI over 1982-2003	154
Table 10.2. Number of pixels with significant upward trends in growing season, spring, summer, and autumn NDVI for individual vegetation types and for the area average	156
Table 10.3. Number of pixels with significant downward trends in growing season, spring, and summer NDVI for individual vegetation types and for the area average	157
Table 10.4. Total number of pixels with significant upward or downward trend and number of pixels which trends are explained by climate change for growing season, spring and summer	160
Table 10.5. Simple, partial and multiple correlation coefficients between NDVI and explanatory variables for period 1985-2001	171

Introduction

Problem description

From currently published studies it is known that the vegetation on the surface of the Earth is rapidly changing. Change is occurring to the phenology, the distribution of vegetation on the earth surface and to the annual dynamics of photosynthetic activity (Kowabata et al., 2001; Reed et al., 1994). The change of vegetation cover is both naturally and anthropogenically influenced. This change has direct implications for human society as well as for the earth system, since the processes occurring in the vegetation cover are tightly coupled to the processes occurring in other components of this system such as meteorological, hydrological and biogeochemical. Thus, understanding the causes of vegetation variability and measurement of vegetation responses to natural and anthropogenic influences are of great scientific importance.

Great magnitude changes in vegetation activity result from the contemporary global warming of the earth climate leading to redistribution of precipitation and temperatures on the earth surface (IPCC, 2001). Most of these changes are observed in the high latitudes of North America and Eurasia and associated with an increase in vegetation activity due to prolongation of the growing season caused by temperature rise, particularly throughout the spring months. Rapid increase of CO_2 content in the atmosphere is reported to be a driving force of this phenomenon. Changes in vegetation activity can also result from a variety of other environmental factors, such as desiccation and droughts, El Nino-Southern Oscillation (ENSO) (Anyamba et al, 2001; Gutmann et al, 2000) or human activities (e. g. land-use). Inter-annual changes associated with a decrease of vegetation activity are observed in wide areas of Australia, South and Central Africa, South America and in some regions of Asia. Causes of diminishing vegetation activity are the increasing dryness of the climate in these regions and inadequate human influence.

The consequences of the contemporary climate change have been observed in all regions of the Earth but the most devastated consequences are to be expected in the ecosystems of low stability to internal forces. Such ecosystems are presented in drylands and cover more than 30 % of the terrestial surface. On the one hand, the natural environment of the drylands is highly vulnerable and fragile, variations of climate conditions here are the highest among all terrestrial ecosystems and that is

why any unwise action of people in resources development can lead to a disturbance of equilibrium in nature, and accelerates processes of land degradation and desertification. On the other hand, drylands are densely populated and extensive used for agricultural production.

There is a great demand for a better understanding of nature of climate impacts on the drylands as a whole system and on the vegetation cover as an important component of this ecosystem at all scales from global to regional and local. This understanding requires detailed investigations on the vegetation response to climate factors. On the one hand, knowledge of this response holds the potential for discrimination of threatened areas and forecasting of damage grade by drought events. On the other hand, this knowledge subsequently improves planning of protection arrangements. Another benefit is associated with forecasting of regional agricultural yields for drought years which improves planning for food supply for times of food scarcity.

The hot debate about the concept of dryland dynamic has its roots in the specific features of dry lands, namely high variability of climatic conditions and high dependence of ecosystem dynamics in dry lands on this variability. According to this, it is not surprising, that this debate is accompanied by the debate about equilibrium or non-equilibrium of the dry land ecosystems. Detection of vegetation cover change in drylands and understanding of its causes and consequences depend on the point of view in the equilibrium concept (Sillivan & Rohde, 2002; Herrmann & Hutchinson, 2005; Vetter, 2005; Robinson et al., 2002).

According to the equilibrium concept, the dry lands are believed to have only a weak mechanism of internal regulation which, consequently, enables a weak resistance to external factors such as climatic perturbations including drought and desiccation hazards, fire and human activities. Therefore, it seems likely that any trend in ecosystem conditions may be highly dependent on the trends in various climatic factors, mainly, precipitation and temperature. In order to identify changes that are attributed alone to human influence, this climatic component must be identified and removed from the evident ecosystem changes (Evans & Geerken, 2004; Li et al., 2004). Thus, an evaluation and monitoring of land performance may begin with an investigation of climatic factors dynamics and their changes over monitoring time and resilience and resistance of the ecosystem to these changes. After that, when this task is solved, one can look at ecosystem changes that are caused by anthropogenic impact.

In the last two decades, capabilities for monitoring global and regional environmental phenomena were significantly improved. The dryland theory shifted to characterizing and understanding external forcing as possible explanations for ecosystem variability. Studies of relationships between satellite derived vegetation index, NDVI, and climatic data have shown that most ecosystem variability in dry regions is directly dependent on rainfall variability (Tucker & Nicholson, 1999; Anyamba & Tucker, 2005; Olsson et al., 2005; Xiao & Moody, 2004). It is primarily caused by changes in rainfall patterns, which leads to change in biomass production, that climate change will affect land degradation and desertification. Changes in rainfall can be controlled by regional or global processes such as global circulation changes related to patterns of sea-surface temperature or El Nino Southern Oscillation (Young & Harris, 2005; Gurgel & Ferreira, 2003; Verdin et al., 1999; Anyamba & Tucker, 2001). The dynamics of ecosystem in dry lands are essentially driven by climatic variability. Deficits in rainfall, especially during drought and desiccation events, seriously reduce biomass and vegetation cover. This can give a start to process of land degradation, if the ecosystem resources are used with the same intensity degree as during wet years. The developing degradation disrupts ecological and social patterns and can hinder an ecosystem recovery after the climatic hazards. However, it does not always follow that climatic hazards will give rise to desertification in every case. Much depends on the resource management (Herrmann & Hutchinson, 2005).

Objectives and aims of the study

This thesis was not only focused on a monitoring vegetation conditions and climate in a dry region of Kazakhstan but also on discrimination between climatic and anthropogenic forces in the complex of dryland dynamics. The work tried to find out what the proportion between them is and how they influence the dynamic and changes of ecosystems in the study region over the last two decades of the 20th century. On the one hand, the large size of the study region (approximately 3°*3° latitude/longitude) reveals problems caused by a significant heterogeneity of its surface features through a large quantity of landscape types. On the other hand, it achieved advantages for a discussion of the final results: a variety of ecosystems exhibited a broad spectrum of influence proportions between climatic factors and