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Vorwort des Herausgebers 
 

Die Reihe „Erdsicht – Einblicke in geographische und geoinformationstechnische 
Arbeitsweisen“ soll Forschungsergebnisse und Arbeiten im Bereich der Erdsystem-
forschung vorstellen. Die Betrachtung der Erde als System ist als Inhalt heutiger und 
zukünftiger Geowissenschaftlicher Gemeinschaftsforschung dringend gefordert. Die 
Herausforderungen liegen zum einen in der Erforschung der vielfältigen Interaktio-
nen zwischen den verschiedenen Teilbereichen des Systems Erde. Hierzu zählen 
Wechselwirkungen zwischen fester Erde und Atmosphäre, zwischen der Landober-
fläche und der Hydrosphäre oder zwischen Biosphäre, Hydrosphäre und Atmosphäre.  
Der Mensch steht dabei mit seinen zentralen Nutzungsansprüchen (Ernährung – 
landwirtschaftliche Nutzung – Ressourcennutzung) im Mittelpunkt eines vielfach 
vernetzten Erdsystems. Der Mensch verändert Landschaften und Atmosphäre und 
greift somit in alle Skalenbereiche des Erdsystems ein. Insofern müssen diese Verän-
derungen beobachtet und bewertet werden, damit Konzepte für ein nachhaltiges Erd-
systemmanagement auf den unterschiedlichen Raum- und Zeitskalen entwickelt wer-
den können. Die neuen Geoinformationstechniken (Geostatistik; Geographische In-
formationssysteme – GIS; luft- und Satellitengestützte Fernerkundungssysteme – 
Remote Sensing) helfen dabei, das System Erde zu beobachten und zu begreifen. Oh-
ne diese Technik ist eine ganzheitliche Betrachtung der Erde und eine flächenhafte 
Bereitstellung von Informationen über das Erdsystem nicht möglich. 
 
Die vorliegende Studie von Dr. Pavel Propastin beschäftigt sich mit der Landschafts-
degradation in Kasachstan unter besonderer Berücksichtigung der veränderten politi-
schen Bedingungen, die seit den 90er Jahren eine abnehmende Beeinflussung der 
Ökosysteme zur Folge hatten. Dr. Propastin benutzt zur Bewertung der Landschafts-
veränderung insbesondere NDVI-Zeitreihen des Sensors NOAA-AVHRR, die bis 
1984 zurückreichen und eine hohe zeitliche Auflösung bis in unseren aktuellen Be-
trachtungsraum liefern. Diese Arbeit ist ein gutes Beispiel für die Anwendung der 
Fernerkundung zur Bewertung von Desertifikation und Weidepotenzial in semi-
ariden Gebieten. Inhaltlicher Schwerpunkt ist die Trennung von klimatisch bedingter 
Veränderung und anthropogen bedingter Veränderung in den Landschaftsräumen Ka-
sachstans. Diese Fragestellung ist im Rahmen der „Global-Change-Forschung“ von 
großer Bedeutung, um die zukünftige Belastung der Naturräume in Relation zu po-
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tenziellen globalen Veränderungen (Niederschlags-, Temperaturveränderung) und zu-
sätzlichen menschlichen Einfluss zu bewerten.  
Dr. Propastin stellt geeignete Methoden zur langfristigen Bewertung von Land-
schaftsräumen vor und bildet einen flächendeckenden Datensatz. Seine Ergebnisse 
belegen eine grundsätzliche Trennung des menschlichen Einflusses von klimatisch 
bedingten Einflüssen. Die von Dr. Propastin erarbeitete Methode ist zudem auf die 
weiteren Regionen Zentralasiens übertragbar und somit von überregionaler Bedeu-
tung.  
Seine Studie erscheint zudem im so genannten „Internationalen Jahr der Wüsten und 
der Desertifikation“ (United Nations Convention to Combat Desertification CCD) 
und stellt einen wichtigen Beitrag zur Trockengebietsforschung  in Zentralasien da. 
 
 
 
Göttingen, Juni 2007  
Martin Kappas 
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 1 

Introduction

Problem description 

From currently published studies it is known that the vegetation on the surface of the 
Earth is rapidly changing. Change is occurring to the phenology, the distribution of 
vegetation on the earth surface and to the annual dynamics of photosynthetic activity 
(Kowabata et al., 2001; Reed et al., 1994).  The change of vegetation cover is both 
naturally and anthropogenically influenced. This change has direct implications for 
human society as well as for the earth system, since the processes occurring in the 
vegetation cover are tightly coupled to the processes occurring in other components 
of this system such as meteorological, hydrological and biogeochemical. Thus, 
understanding the causes of vegetation variability and measurement of vegetation 
responses to natural and anthropogenic influences are of great scientific importance.  

Great magnitude changes in vegetation activity result from the contemporary global 
warming of the earth climate leading to redistribution of precipitation and 
temperatures on the earth surface (IPCC, 2001). Most of these changes are observed 
in the high latitudes of North America and Eurasia and associated with an increase in 
vegetation activity due to prolongation of the growing season caused by temperature 
rise, particularly throughout the spring months. Rapid increase of 2CO content in the 
atmosphere is reported to be a driving force of this phenomenon. Changes in 
vegetation activity can also result from a variety of other environmental factors, such 
as desiccation and droughts, El Nino-Southern Oscillation (ENSO) (Anyamba et al, 
2001; Gutmann et al, 2000) or human activities (e. g. land-use). Inter-annual changes 
associated with a decrease of vegetation activity are observed in wide areas of 
Australia, South and Central Africa, South America and in some regions of Asia. 
Causes of diminishing vegetation activity are the increasing dryness of the climate in 
these regions and inadequate human influence.

 The consequences of the contemporary climate change have been observed in all 
regions of the Earth but the most devastated consequences are to be expected in the 
ecosystems of low stability to internal forces. Such ecosystems are presented in 
drylands and cover more than 30 % of the terrestial surface. On the one hand, the 
natural environment of the drylands is highly vulnerable and fragile, variations of 
climate conditions here are the highest among all terrestrial ecosystems and that is 
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why any unwise action of people in resources development can lead to a disturbance 
of equilibrium in nature, and accelerates processes of land degradation and 
desertification. On the other hand, drylands are densely populated and extensive used 
for agricultural production.  

There is a great demand for a better understanding of nature of climate impacts on the 
drylands as a whole system and on the vegetation cover as an important component 
of this ecosystem at all scales from global to regional and local. This understanding 
requires detailed investigations on the vegetation response to climate factors. On the 
one hand, knowledge of this response holds the potential for discrimination of 
threatened areas and forecasting of damage grade by drought events. On the other 
hand, this knowledge subsequently improves planning of protection arrangements. 
Another benefit is associated with forecasting of regional agricultural yields for 
drought years which improves planning for food supply for times of food scarcity.  

The hot debate about the concept of dryland dynamic has its roots in the specific 
features of dry lands, namely high variability of climatic conditions and high 
dependence of ecosystem dynamics in dry lands on this variability. According to this, 
it is not surprising, that this debate is accompanied by the debate about equilibrium or 
non-equilibrium of the dry land ecosystems. Detection of vegetation cover change in 
drylands and understanding of its causes and consequences depend on the point of 
view in the equilibrium concept (Sillivan & Rohde, 2002; Herrmann & Hutchinson, 
2005; Vetter, 2005; Robinson et al., 2002).

According to the equilibrium concept, the dry lands are believed to have only a weak 
mechanism of internal regulation which, consequently, enables a weak resistance to 
external factors such as climatic perturbations including drought and desiccation 
hazards, fire and human activities. Therefore, it seems likely that any trend in 
ecosystem conditions may be highly dependent on the trends in various climatic 
factors, mainly, precipitation and temperature. In order to identify changes that are 
attributed alone to human influence, this climatic component must be identified and 
removed from the evident ecosystem changes (Evans & Geerken, 2004; Li et al., 
2004). Thus, an evaluation and monitoring of land performance may begin with an 
investigation of climatic factors dynamics and their changes over monitoring time 
and resilience and resistance of the ecosystem to these changes. After that, when this 
task is solved, one can look at ecosystem changes that are caused by anthropogenic 
impact.  
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In the last two decades, capabilities for monitoring global and regional environmental 
phenomena were significantly improved. The dryland theory shifted to characterizing 
and understanding external forcing as possible explanations for ecosystem variability. 
Studies of relationships between satellite derived vegetation index, NDVI, and 
climatic data have shown that most ecosystem variability in dry regions is directly 
dependent on rainfall variability (Tucker & Nicholson, 1999; Anyamba & Tucker, 
2005; Olsson et al., 2005; Xiao & Moody, 2004). It is primarily caused by changes in 
rainfall patterns, which leads to change in biomass production, that climate change 
will affect land degradation and desertification. Changes in rainfall can be controlled 
by regional or global processes such as global circulation changes related to patterns 
of sea-surface temperature or El Nino Southern Oscillation (Young & Harris, 2005; 
Gurgel & Ferreira, 2003; Verdin et al., 1999; Anyamba & Tucker, 2001). The 
dynamics of ecosystem in dry lands are essentially driven by climatic variability. 
Deficits in rainfall, especially during drought and desiccation events, seriously reduce 
biomass and vegetation cover. This can give a start to process of land degradation, if 
the ecosystem resources are used with the same intensity degree as during wet years. 
The developing degradation disrupts ecological and social patterns and can hinder an 
ecosystem recovery after the climatic hazards. However, it does not always follow 
that climatic hazards will give rise to desertification in every case. Much depends on 
the resource management (Herrmann & Hutchinson, 2005). 

Objectives and aims of the study 

This thesis was not only focused on a monitoring vegetation conditions and climate in 
a dry region of Kazakhstan but also on discrimination between climatic and 
anthropogenic forces in the complex of dryland dynamics. The work tried to find out 
what the proportion between them is and how they influence the dynamic and 
changes of ecosystems in the study region over the last two decades of the 20th

century. On the one hand, the large size of the study region (approximately 3°*3° 
latitude/longitude) reveals problems caused by a significant heterogeneity of its 
surface features through a large quantity of landscape types. On the other hand, it 
achieved advantages for a discussion of the final results: a variety of ecosystems 
exhibited a broad spectrum of influence proportions between climatic factors and 


