Ortwin Kessels

Qualitätsanalyse verschiedener digitaler Geländemodelle und deren Eignung für die Prozessierung von Satellitenbilddaten in den Tropen

ERDSICHT - EINBLICKE IN GEOGRAPHISCHE UND GEOINFORMATIONSTECHNISCHE ARBEITSWEISEN

Schriftenreihe des Geographischen Instituts der Universität Göttingen, Abteilung Kartographie, GIS und Fernerkundung

Herausgegeben von Prof. Dr. Martin Kappas

ISSN 1614-4716

Ortwin Kessels

QUALITÄTSANALYSE VERSCHIEDENER DIGITALER GELÄNDEMODELLE UND DEREN EIGNUNG FÜR DIE PROZESSIERUNG VON SATELLITENBILDDATEN IN DEN TROPEN

ibidem-Verlag Stuttgart

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek

Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Dieser Titel ist als Printversion im Buchhandel oder direkt bei *ibidem* (<u>www.ibidem-verlag.de</u>) zu beziehen unter der

ISBN 978-3-89821-603-6.

 ∞

ISSN: 1614-4716

ISBN-13: 978-3-8382-5603-0

© *ibidem*-Verlag Stuttgart 2012

Alle Rechte vorbehalten

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und elektronische Speicherformen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

All rights reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronical, mechanical, photocopying, recording or otherwise) without the prior written permission of the publisher. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

VORWORT DES HERAUSGEBERS

Die Reihe "Erdsicht – Einblicke in geographische und geoinformationstechnische Arbeitsweisen" soll Forschungsergebnisse und Arbeiten im Bereich der Erdsystemforschung vorstellen. Die Betrachtung der Erde als System ist als Inhalt heutiger und zukünftiger Geowissenschaftlicher Gemeinschaftsforschung dringend gefordert. Die Herausforderungen liegen zum einen in der Erforschung der vielfältigen Interaktionen zwischen den verschiedenen Teilbereichen des Systems Erde. Hierzu zählen Wechselwirkungen zwischen fester Erde und Atmosphäre, zwischen der Landoberfläche und der Hydrosphäre oder zwischen Biosphäre, Hydrosphäre und Atmosphäre. De Mensch steht dabei mit seinen zentralen Nutzungsansprüchen (Ernährung – landwirtschaftliche Nutzung – Ressourcennutzung) im Mittelpunkt eines vielfach vernetzten Erdsystems. Der Mensch verändert Landschaften und Atmosphäre und greift somit in alle Skalenbereiche des Erdsystems ein. Insofern müssen diese Veränderungen beobachtet und bewertet werden, damit Konzepte für ein nachhaltiges Erdsystemmanagement auf den unterschiedlichen Raumund Zeitskalen entwickelt werden können. Die neuen Geoinformationstechniken (Geostatistik; Geographische Informationssysteme – GIS; luft- und Satellitengestützte Fernerkundungssysteme – Remote Sensing) helfen dabei das System Erde zu beobachten und zu begreifen. Ohne diese Technik ist eine ganzheitliche Betrachtung der Erde und eine flächenhafte Bereitstellung von Informationen über das Erdsystem nicht möglich.

Die vorliegende Arbeit von Ortwin Kessels zur Bewertung von Geländemodellen beschäftigt sich mit der Evaluierung von Geländemodellen aus unterschiedlichen Datenquellen (SRTM, Spot, Aster, etc.). Geländemodelle stellen heute für viele angewandte Fragestellungen der Landschaftsbewertung die Datenbasis dar. Deshalb stellt sich bei der Verwendung dieser Modelle sofort auch die Frage nach deren Qualität. Der Anspruch einer naturgetreuen Nachbildung des Reliefs und seiner Eigenschaften steht im Vordergrund. Für die Nachbildung des Reliefs ist insbesondere die Höhengenauigkeit sowie die horizontale Lagegenauigkeit und Auflösung des Modells entscheidend. Neben den terrestrischen Anwendungen von Geländemodellen (DGM oder

V

DTM) sind sie vor allem auch für die Korrektur von Satellitendaten unentbehrlich. Die vorliegende Studie widmet sich der Qualitätsüberprüfung unterschiedlich abgeleiteter Geländemodelle.

Martin Kappas

Abkürzungen

ASTER	Advanced Spaceborne Thermal Emission and Reflec- tion Radiometer
B/H	Base and Height
BRDF	Bidirectionale Reflectance Distrubution Function
c/a-Code	coarse acquisition-Code
DGM	digitales Geländemodell
(D)GPS	(differentielles) Global Positioning System
DLR	Deutsches Zentrum für Luft- und Raumfahrt
DOM	digitales Oberflächenmodell
EDC	Earth Data Center
EROS	The Earth Resources Observation Systems
ERS	Earth Remote Sensing
ESA	European Space Agency
GCP	Ground Control Point
GSM	Global System for Mobile Communications
HRSC-AX	High Resolution Stereo Scanner Airborne Extended
(In)SAR	(Interferometrisches) Synthetic Aperture Radar Sys- tem
JPL	Jet Propulsion Laboraty
LIDAR	Light Detection and Ranging
NASA	National Aeronautics and Space Administration
NAVSTAR	Navigation System Using Time And Ranging
Radar	radio detection and ranging
RAR	Real Aperture Systems
RMS	Root Mean Square
SA	Selective Availabitlity

SFB	Sonder Forschungsbereich
SPOT	Satellite pour l'observation de la terre
SRTM	Shuttle Radar Topographic Mission
STORMA	Stability of Rainforest Margins in Indonesia
TIN	triangular irregular network
тк	Topographische Karte
USGS	United States Geological Survey
UKW	Ultra Kurzwelle

Inhaltsverzeichnis

1.0	EINLEITUNG	1
1.1	Einführung und Ziele	2
1.2	Stand der Forschung	3
2.0	GRUNDLEGENDE BEGRIFFE DER DGM-ERSTELLUNG	7
2.1 2.1	DGM-Erstellung durch das Digitalisieren von topographischen Karten 1.1 Der Kriging-Algorithmus	. 8 9
2.1	1.2 Beschreibung des in den 1K50-Blattern enthaltenen Gelandemodel	is 10
2.1 Da	.3 Beispiel zur Erstellung eines Geländemodells aus digitalisierten ten	11
2.2	DOM-Erstellung durch stereoskopische Auswertung	13
2.2 DC	2.1 Prozessierungsmethoden zur stereoskopischen Erstellung eines DM	15
2.2	2.2 Vor- und Nachteile der Stereoskopie	16
2.2	2.3 Beispiel zur Berechnung eines Geländemodells aus SPOT4-Daten	16
2.2 AX	2.4 Photogrammetrische Systeme zur Geländemodellerstellung HRSC	19
2.3	DOM Erstellung durch Radar-Interferometrie	23
2.3	3.1 Das Prinzip der radargestützten Fernerkundung	24
2.3	3.2 Funktionsprinzip eines Real Aperture Systems	25
2.3	3.3 Funktionsprinzip eines Synthetic Aperture Radar	25
2.3	3.4 Das Prinzip der Radarinterferometrie	27
2.3	3.5 Faktoren, die Einfluss auf die Datenqualität von Radarbildern haber	ו. 28
2.3	3.6 Radargestützte Systeme	31
2.4 2.4	DOM Erstellung durch Laserscanning Systeme	35 37
2.5	DGPS Vermessung als Referenz	38
2.5	5.1 Einführung in das Global Positioning System (GPS)	38

2	.5.2 Funktionsweise des Global Positioning System	39
2.	.5.3 Die differentielle GPS Auswertung	40
2.	.5.4 GPS gestützte Systeme	42
2.6	Vergleichende Diskussionen der Systeme und Methoden	44
3.0 QU	VORSTELLEN DES TESTGEBIETES FÜR DIE IALITÄTSUNTERSUCHUNG	45
3.1	Beschreibung der Geländeoberfläche im Untersuchungsgebiet	47
3.2	Besondere Problematik der Tropen im Hinblick auf die Fernerkundung	g . 48
4.0 GE	QUALITÄTSANALYSEN DER VERSCHIEDENEN	51
4.1	Grundsätze der Qualitätskontrolle	51
4.2 bas	Statistische Auswertungen auf Grundlage der InSAR X-Band Daten-	52
4. D	.2.1 Berechnung der Standardabweichung anhand des X-Band InSAR OM	52
4	.2.2 Vergleich der Standardabweichung mit der Exposition des Gelände	s . 56
4. cl	.2.3 Zusammenhang zwischen Geländesteigung und Standardabwei- hung	59
4.3	Vergleich der InSAR X-Band Daten mit den SRTM Daten	63
4	.3.1 Cross Plott der InSAR X-Band Daten gegen die SRTM Daten	64
4	.3.2 Differenz zwischen InSAR x-Band DOM und den SRTM DOM	65
4. de	.3.3 Differenz InSAR X-Band DOM minus SRTM DOM gegen die Gelän esteigung	- 67
4.	.3.4 Vergleich der Landnutzungsformen mit den Differenzdaten	76
4. de	.3.5 Standardabweichung der InSAR X-Band DOM Werte in Abhängigke er Differenz	eit 83
4.4	Vergleich der DGM-Daten der TK-50 mit den InSAR X-Band-Daten	84
4	.4.1 Cross Plott InSAR X-Band DOM gegen das TK-50 DOM	85
4.	.4.2 Differenzbildung InSAR X-Band DOM minus TK50 DOM	86
4	.4.3 Vergleich der Differenzwerte in den einzelnen Höhenstufen	89

5.0 QUALITÄTSANALYSEN DER DIGITALEN GELÄNDEMODELLE AUF GRUNDLAGE DER ANWENDUNGEN FÜR DIE PROZESSIERUNG VON SATELLITENBILDDATEN95

5.1 send	Qualitätsbewertung auf Basis einer Orthobilderstellung aus hochauflö- en Satellitendaten
5.1	.1 Funktionsprinzip der Orthobilderstellung
5.1	.2 Beschreibung des Verfahrens zur Qualitätsbewertung
5.1	.3 Auswertung der Passpunkte auf Grundlage des InSAR X-Band DOM
5.1	.4 Auswertung der Passpunkte auf Grundlage des SRTM DOM 102
5.1	.5 Auswertung der Passpunkte auf Grundlage des TK50 DGM 104
5.1	.6 Bewertung der Qualitätsunterschiede 105
5.2 malis	Die Ableitung von Qualitätsmerkmalen aus der topographischen Nor- sierung
5.2	.1 Methoden zur topographischen Normalisierung
5.3 Testę	Durchführung einer C-Faktoren-Korrektur für eine Landsat 7 Szene des gebietes
6.0	ZUSAMMENFASSUNG UND ERGEBNISSE
7.0	LITERATUR-, QUELLEN- & SOFTWAREVERZEICHNIS 121
7.1	Literatur
7.2	Internetquellen
7.3	Verwendete GIS- & Fernerkundungs-Software
8.0	ANHANGI

Abbildungsverzeichnis

Abb.1: Flussplan der Ansatzpunkte zur Qualitätsanalyse	. 2
Abb.2: Mit ArcView abdigitalisierte Höhenlinien innerhalb des Testgebietes	11
Abb.3: Beleuchtungsmodell des aus den Höhenlinien (mittels Krigin-Ver- fahren) interpolierten DGM	12
Abb.4: Graphische Darstellung der stereoskopischen Parallaxe	14
Abb.5: Korrelationskanal nach der stereoskopischen Auswertung des SPOT Bildpaares	⊺4 18
Abb.6: Klassifikation der Landsat Szene vom 28.09.02	18
Abb.7: HRSC-A mit ApplAnix Gyro-System	20
Abb.8: SPOT5 System: HRS Sensor mit Vor- und Rückwärtsstereoper- formance	21
Abb.9: ASTER VNIR Sensor zur Erstellung von Stereobildpaaren	23
Abb.10: Geometrische Darstellung der maximal möglichen Länge der synthetischen Antenne	26
Abb.11: Geometrischer Ansatz der interferometrischen Höhendifferenz über den Winkel theta	r 28
Abb.12: AMI Image Mode Geometrie des ERS Satelliten	32
Abb.13: Einsatz des SIR-C/XSAR während der Mission	34
Abb.14: Beispiel für eine durch First Echo und Last Echo gewonnene Baum	- 36
Abb.15: Links ein Oberflächenmodell aus dem First Echo und rechts aus de Last Echo	em 36
Abb.16: Falcon LIDAR Sensor System der Firma TopoSys	38
Abb. 17: Schematische Darstellung zweier kreisförmiger GPS-Signal-Ausbretungswellen	ei- 40
Abb.18: Prinzip des DGPS- Aufbaus mit den Sendewegen des Korrektur- signals	41

Abb.19: Referenzstation mit Leica GS50 Sensor und verstärkter Sendeanlage für eine größere Über-tragungsweite des Referenzsignals
Abb.20: Karte von Sulawesi
Abb.21: Landsat7 Szene vom 28.09.02 verschnitten mit dem InSAR X-Band Geländemodell
Abb.22: Absorbtionsbande in der Atmosphäre 48
Abb.23: Mit Erdas Imagine 8.7 erstelltes Modell zur Berechnung der Stand- ardabweichung
Abb.24: Die Standardabweichung des InSAR X-Band DOM in Metern, darge- stellt in Farbe und als Schummerung
Abb.25: Scatterplott der Exposition auf der X-Achse gegen die Standardab- weichung im InSAR X-Band DOM auf der Y-Achse
Abb.26: Exposition mit den beiden Klassen aus dem Scatterplott 58
Abb.27: Die Höhe der Standardabweichung von blau nach schwarz darge- stellt
Abb.28: Cross Plot der Datenreihen für die Steigung gegen die Standardab- weichung bei 90 Meter Auflösung
Abb.29: Cross Plott der InSAR DOM Daten (reprojiziert auf 90 Meter mit dem Mittelwertverfahren) gegen die SRTM Daten
Abb.30: Differenz in Metern zwischen InSAR X-Band und SRTM farbig darge- stellt
Abb.31: Beleuchtete InSAR X-Band Geländemodell, überlagert mit den Dif- ferenzwerten von -5 bis +5
Abb.32: Cross Plott zwischen den Differenzdaten und der Geländesteigung 67
Abb.33: Cross Plott zwischen den Differenzdaten und der Geländesteigungs- klasse 0 bis 5 %
Abb.34: Häufigkeitsverteilung der Differenzwerte für die Geländesteigungs- klasse 0 bis 5%

Abb.36: Häufigkeitsverteilung der Differenzwerte für die Geländesteigungs-klasse 5 bis 15%70
Abb.37: Cross Plott zwischen den Differenzdaten und der Geländesteigungs- klasse 15 bis 30 %
Abb.38: Häufigkeitsverteilung der Differenzwerte für die Geländesteigungs- klasse 15 bis 30%
Abb.39: Cross Plott zwischen den Differenzdaten und der Geländesteigungs-klasse 30 bis 45 %72
Abb.40: Häufigkeitsverteilung der Differenzwerte für die Geländesteigungs- klasse 30 bis 45%
Abb.41: Cross Plott zwischen den Differenzdaten und der Geländesteigung45 bis 70 %74
Abb.42: Häufigkeitsverteilung der Differenzwerte für die Geländesteigungs- klasse 45 bis 69 %
Abb.43: Schattierungsmodell aus 90 m InSAR X-Band Daten mit eingezeich- netem Untersuchungsgebiet
Abb.44: Klassifikation des Testgebietes
Abb.45: Differenzen der Geländemodelle unter der Waldmaske gegen die Geländesteigung
Abb.46: Häufigkeitsverteilung der Differenzwerte zwischen dem InSAR X- Band DOM und dem SRTM DOM für die Klasse Primärwald
Abb.47: Häufigkeitsverteilung der Differenzwerte zwischen dem InSAR X- Band DOM und dem SRTM DOM für die Klasse Sekundärwald
Abb.48: Häufigkeitsverteilung der Differenzwerte zwischen dem InSAR X- Band DOM und dem SRTM DOM für die Klasse Plantagen
Abb.49: Häufigkeitsverteilung der Differenzwerte zwischen dem InSAR X- Band DOM und dem SRTM DOM für die Klasse Reisfelder
Abb.50: Cross Plott der Differenzen gegen die Standardabweichung der X- Band Daten (90m)
Abb.51: Cross Plott zwischen InSAR X-Band DOM und TK50 DGM

Abb.52: Differenzbild zwischen dem InSAR X-Band DOM minus TK-50 DOM
Abb.53: Fehler im TK50 Modell
Abb.54: Vergleich der Geländedarstellung der Talebene bei Toro im X-Band DOM und TK50 DOM mit zugehöriger Differenzdarstellung
Abb.55: Überblendung des TK50 Geländemodells mit der dazugehörigen topographischen Karte
Abb.56: Fotografie des Talbereiches in der Nähe von Toro
Abb.57: Verteilung der DGPS Passpunkte im Testgebiet
Abb.58: Cross Plott der DGPS Höhenpunkte gegen die entsprechenden Rasterzellen des SRTM DOM
Abb.59: Cross Plott der DGPS Höhenpunkte gegen die entsprechenden Rasterzellen des TK50 DOM
Abb.60: Cross Plott der DGPS Höhenpunkte gegen die entsprechenden Rasterzellen des InSAR X-Band DOM
Abb.61: Schematische Abbildung der Orthokorrektur
Abb.62: Markierte DGPS-Messstellen im Foto einer Brücke in Toro
Abb.63: Lageskizze der DGPS-Punkte an einer Brücke in Toro
Abb.64: Ausschnitt aus dem mit dem X-Band DOM orthokorrigierten Quick- bird Satellitenbild und den DGPS-Punkten des Leica GS50
Abb.65: Cross Plott der Vektorverschiebung in X-Richtung (Orthobildgrund- lage InSAR X-Band DOM) gegen die Höhe (m)
Abb.66: Cross Plott der Vektorverschiebung in Y-Richtung (Orthobildgrund- lage InSAR X-Band DOM) gegen die Höhe (m)
Abb.67: Cross Plott der Vektorverschiebung in X-Richtung (Orthobildgrund- lage SRTM DOM) gegen die Höhe (m)
Abb.68: Cross Plott der Vektorverschiebung in Y-Richtung (Orthobildgrund- lage SRTM DOM) gegen die Höhe (m)
Abb.69: Cross Plott der Vektorverschiebung in X-Richtung (Orthobildgrund- lage TK DGM) gegen die Höhe (m)