

 [image: cover.png]

 Systems Engineering Demystified

 Second Edition

 Apply modern, model-based systems engineering techniques to build complex systems

 Jon Holt

 [image:]

 BIRMINGHAM—MUMBAI

 Systems Engineering Demystified

 Second Edition

 Copyright © 2023 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Denim Pinto

 Acquisition Editor – Peer Reviews: Gaurav Gavas

 Project Editor: Namrata Katare

 Content Development Editor: Rebecca Robinson

 Copy Editor: Safis Editing

 Technical Editor: Karan Sonawane

 Proofreader: Safis Editing

 Indexer: Subalakshmi Govindhan

 Presentation Designer: Ganesh Bhadwalkar

 Developer Relations Marketing Executive: Meghal Patel

 First published: January 2021

 Second edition: July 2023

 Production reference: 1190723

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul's Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-80461-068-8

 www.packt.com

 Foreword

 Systems Engineering is an often-misunderstood discipline that integrates various aspects of engineering to successfully develop Systems. Lack of knowledge creates and feeds myths. In fact, it is not so easy to understand what Systems Engineering is. A Mechanical Engineer can show mechanical parts, an Electrical Engineer can show electrical components, and a Software Engineer can show source code and running software to demonstrate their discipline. If Systems Engineers show the System to demonstrate their discipline, the other engineers would complain that all the System parts were developed by them. Often, the discipline of Systems Engineering is noticed primarily when it is not present. So, there are a lot of good breeding grounds for myths.

 Fortunately, Jon Holt is a brilliant writer who explains Systems Engineering in a vivid, concise, and clear way. In this book, he dispels these myths and clarifies the concepts and principles of Systems Engineering in a simple and engaging way. He covers the essential topics of Systems Engineering and emphasizes the importance of model-based Systems Engineering, which is the most effective and efficient way to realize Systems Engineering. However, this book is not a SysML textbook; it focuses on the underlying ideas and methods of Systems Engineering rather than the notation and syntax of a specific modeling language. A modeling language is only a small building block of an MBSE environment. Besides other topics, Jon covers life cycles, Systems Engineering techniques, and Systems Engineering processes, especially the management and deployment of Systems Engineering into the organization.

 This book is suitable for anyone who wants to learn more about Systems Engineering, whether they are beginners or experts. Even experienced Systems Engineers can benefit from revisiting the basic concepts and refreshing their knowledge. By reading this book, you will gain a deeper understanding of Systems Engineering and how it can help you create better Systems.

 Tim Weilkiens

 MBSE Consultant, Trainer, and Executive Board Member at oose.

 Founder of MBSE4U

 Contributors

 About the author

 Professor Jon Holt is an internationally-recognised expert in the field of Model-based Systems Engineering (MBSE). He is an international award-winning author and public speaker and has authored 18 books on MBSE and its applications.

 Since 2014, he has been a Director and Consultant for Scarecrow Consultants, who are “outstanding in the field of MBSE.” Jon is also a Professor of Systems Engineering at Cranfield University, where he is involved with the teaching of and research into MBSE. He is a Fellow of both the IET and the BCS and is a Chartered Engineer and Chartered IT Professional. He is currently the Technical Director of INCOSE UK where he is responsible for all technical activities and, in 2015, was identified as one of the 25 most-influential Systems Engineers in the last 25 years by INCOSE. In 2022, he was elected as an INCOSE Fellow, one of only 85 in the world.

 Jon is also actively involved in the promotion of Science, Technology, Engineering, and Mathematics (STEM) where he uses magic, mind-reading, and occasional escapology to promote Systems Engineering at music festivals, science festivals, the IET Pythagorean Cabaret, radio shows, and other STEM events. He has also authored the children’s STEM book Think Engineer, which is published by INCOSE UK.

 I would like to thank all of my family, friends, and colleagues at Scarecrow. Also, Smeaton, who keeps me sane.

 About the reviewers

 Shelley Higgins (BSEE, MA, MBA), has worked in aerospace for seventeen years in Systems Engineering (SE), mission assurance, and electrical engineering, and in the last seven years, she has been an MBSE champion playing a supportive role in building teams’ SE, MBSE, and digital engineering proficiency. She resides in Colorado, USA, and has two children, and in her spare time, she enjoys learning and teaching the Feldenkrais® Method. She holds numerous memberships, including INCOSE, INCOSE Defense Systems Working Group (Los Angeles, Front Range (Denver, CO), and Southern Maryland chapter affiliation), and Project Management International (PMI). She is a Certified System Engineering Professional (CSEP), Object Management Group (OMG), Certified SysML Modeling Professional (OCSMP), and Project Management Professional (PMP).

 I would like to express my deepest gratitude to my son, daughter, and friends for their patience and support.

 Simon Perry holds bachelor of science degrees from both the University of Leeds and the Open University. Since gaining his mathematics degree in 1986, he has spent over 36 years working in all aspects of software and Systems Engineering. Since 2014, he has been Director and Principal Consultant for Scarecrow Consultants. He often speaks at Systems Engineering conferences and is the author of 11 books on Systems Engineering and related topics. Such public-speaking events, book-writing, and the delivery and facilitation of courses and workshops have given Simon great experience in communicating technical concepts to non-domain experts and non-technical audiences.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/xjBEI

 [image:]

 Preface

 Systems Engineering allows us to develop successful systems whilst managing complexity and brings together all aspect of Systems Engineering in a concise, clear and consistent way.

 This book is a comprehensive introduction for those who are new to Systems Engineering, as well as experienced practitioners. Complete with examples and self-assessment questions, this easy-to-follow guide will teach you all the concepts and techniques for modern Systems Engineering.

 We provide an overview of Systems Engineering and describe why we may need such an approach in our complex world. We will then cover the essential aspects of Model-Based Systems Engineering, systems, life cycles, and processes, along with techniques, to render Systems Engineering successfully.

 By the end of this book, you will be in a position to start applying a Systems Engineering approach in your organization.

 Who this book is for

 This book is aimed at Systems Engineers, Systems Managers, Systems Modelers, and anyone with an interest in Systems Engineering or modeling.

 The book is suitable for anyone, from newcomers to more experienced Systems Engineers.

 What this book covers

 Chapter 1, Introduction to Systems Engineering, this chapter provides a brief history of Systems Engineering and what differentiates it from other disciplines of engineering. The real-world need for Systems Engineering is explored by considering the increased complexity of today’s systems, the need for effective and efficient communication, and the need for a clear context-based understanding of different stakeholders’ views of our systems.

 Chapter 2, Model-Based Systems Engineering, this chapter introduces the most effective and efficient way to realise Systems Engineering in the form of Model-based Systems Engineering (MBSE). The System and its model are discussed, along with the importance of a framework that provides the blueprint for the model and the various visualisation techniques, such as SysML. This is then expanded to include tools and best practice to ensure that the model is as effective as possible.

 Chapter 3, Systems and Interfaces, this chapter describes exactly what we mean by a System and the different types of System that exist, including Systems of Systems. We also look into the structure of Systems and their System elements: subsystems, assemblies, and components are discussed along with how they are arranged in hierarchies. The importance of understanding the relationships between these System elements is explained as well as how this impacts on the System behaviour. Behavioural concepts such as states, modes and interactions are then defined. The key concept of the interfaces that connect a System together and to other Systems is explained and the requirements for such interfaces are defined.

 Chapter 4, Life Cycles, this chapter introduces the concept of life cycles and the evolution of a System. Different types of life cycle are introduced along with the importance of the potentially complex relationships between them. The basic construct of a life cycle, the stage, is introduced and an example System life cycle based on best practice is defined. The behaviour of life cycles is then described by considering life cycle models and some of the different types of execution of models. The international best practice model of ISO 15288 and its processes are used as a reference for these life cycle stages.

 Chapter 5, Systems Engineering Processes, this chapter introduces the concepts of processes and their related elements, such as activities, artefacts, stakeholders, and resources, and the four different categorisations of processes. We also describe each of these four categories and their associated processes. We emphasise the importance of effective processes that define the overall approach to Systems Engineering. The international best practice model of ISO 15288 and its processes are used as a reference for these processes.

 Chapter 6, Needs and Requirements, the importance of needs is introduced along with different types, specifically requirements. The whole are a of stakeholder needs identification and analysis is described along with the views necessary to understand the different aspects of needs. Describing needs using text is introduced and then how to define contexts that may be used for the basis of use cases, followed by how these use cases may be validated by describing scenarios. There is then a discussion of how needs fit into the Systems life cycle and which processes are relevant and how to comply with them.

 Chapter 7, Modeling the Design, this chapter discusses how solutions may be defined by developing effective designs. Various levels of abstraction of design are discussed, such as architectural design and detailed design. Also, different aspects of design, such as logical, functional, and physical designs, are introduced and the relationships between them are defined. There is then a discussion of how design fits into the Systems life cycle and which processes are relevant and how to comply with them.

 Chapter 8, Modeling Verification and Validation, this chapter introduces how the system may be demonstrated to be fit for purpose by introducing the concepts of verification (the system works) and validation (the system does what it is supposed to do). We describe a number of techniques that show how verification and validation may be applied at different levels of abstraction of the system. There is then a discussion of how verification and validation fit into the systems life cycle and which processes are relevant and how to comply with them.

 Chapter 9, Methodologies, this chapter describes some of the most widely-used methodologies for Systems Engineering that are used in modern industry. Some of these use specific techniques whilst others are variations on standard life-cycle model. Each is described at a high level and examples given, along with a summary of the methodology’s effective use. There is then a discussion of how methodologies fit into the systems life cycle and which processes are relevant and how to comply with them.

 Chapter 10, Systems Engineering Management, this chapter provides an overview of some of the key management processes and associated techniques that need to be considered and how they can be implemented, as well as the relationship between the management techniques and the technical techniques.

 Chapter 11, Deploying MBSE, this chapter discusses the all-important issue of how to deploy MBSE in a real organization. It introduces the Trinity approach to MBSE deployment, which covers three main areas: the reason why MBSE is needed, the current and target MBSE capability, and the current target MBSE evolution.

 Chapter 12, The Art of Modeling, this chapter takes a departure from the previous structure of the book by providing some insights, hints, and tips on how to apply MBSE effectively. The contents of this chapter is based solely on the author’s personal experiences of working in the field of MBSE for the last 30+ years. As such, the information presented here is often anecdotal and based on empirical evidence and should be taken in the form of general advice, rather than being carved in stone.

 Chapter 13, Best Practices, this short chapter provides a set of information that can be used by readers to continue their Systems Engineering in their own organizations. This includes modern standards and other best-practice sources such as guidelines and also a list of organizations who actively promote Systems Engineering and provide valuable resources.

 To get the most out of this book

 This book assumes no prior knowledge of Systems Engineering or Modeling and, therefore, is suitable for beginners in the field.

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/ScG9b.

 Conventions used

 There are a number of text conventions used throughout this book.

 Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “A block is represented graphically by a rectangle with the word «block» in it.”

 Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: “Chassis, Body, Drivetrain, and Interior are all instances of Subsystem from the Ontology”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you’ve read Systems Engineering Demystified, Second Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below

 [image:]
 https://packt.link/free-ebook/9781804610688

 	Submit your proof of purchase

 	That’s it! We’ll send your free PDF and other benefits to your email directly

 Section I

 Introduction to Systems Engineering

 In this section, we will understand what Systems Engineering is and why there is a growing need for such an approach with today’s increasingly complex systems.

 This section has the following chapters:

 	Chapter 1, Introduction to Systems Engineering

 	Chapter 2, Model-Based Systems Engineering

 1

 Introduction to Systems Engineering

 This chapter focuses on the background of Systems Engineering, considering the history of the subject and why it is needed. This chapter will also provide an understanding of the main concepts associated with Systems Engineering and the terminology that will be adopted throughout this book, thus aiding our understanding of the topic as we progress. To do this, we will look at the following topics:

 	A brief history of Systems Engineering

 	Defining systems engineering

 	The need for systems engineering

 A brief history of Systems Engineering

 It may be argued that Systems Engineering has been employed ever since mankind started building and developing complex systems. It could also be said that the pyramids in ancient Egypt are examples of complex systems, along with simple stone structures, such as henges, which may actually form part of a larger astrological system. Furthermore, mankind has observed complex systems such as the Solar System since the ancient Greeks first observed the motion of the planets and created the model of the geocentric universe.

 In more recent times, the term Systems Engineering may be traced back to the early part of the 20th century in Bell Laboratories in the USA (Fagen, 1978). Examples of Systems Engineering may be observed in the Second World War, and the first attempt to teach Systems Engineering is claimed to have been in 1950 at MIT (Hall, 1962).

 The 1960s saw the formulation of the field of study known as systems theory, which was first postulated by Ludwig von Bertalanffy (Bertalanffy, 1968) as “general systems theory.”

 The main tenet of systems theory is that it is a conceptual framework based on the principle that the component parts of a system can best be understood in the context of the relationships with each other and with other systems, rather than in isolation (Wilkinson, 2011). This is essential for all Systems Engineering as it means that elements in a System, or the systems themselves, are never considered by themselves but in relation to other elements or systems.

 As systems became more complex, the need for a new approach to developing systems became more prevalent. Throughout the latter part of the 20th century, this need grew until it reached the point, in 1990, at which the National Council on Systems Engineering (NCOSE) was founded in the USA. Since then, this organization has evolved into the International Council on Systems Engineering (INCOSE), founded in 1995, which is the world’s foremost authority on Systems Engineering and has over 70 chapters throughout the world.

 Today, as the Complexity of the world that we live in and the systems that are being developed are increasing at an ever-expanding rate, there is an increased need for approaches that are rigorous and robust and can cope with these high levels of Complexity. Systems Engineering is such an approach.

 Defining systems engineering

 When considering Systems Engineering as a topic, it is important to understand exactly what is meant by the key terms that are being used. One aspect of all engineering (and all other professions, for that matter) that will emerge from this book very quickly is that there is seldom a single, definitive definition for any term. This creates a potential problem as communication, as will be discussed later in this chapter, is key to successful Systems Engineering.

 In order to address this potential problem, this chapter will introduce, discuss, and define specific concepts and their associated terminology that will be used throughout the book. This will enable a Domain-Specific Language to be built up, which will then be used consistently throughout this book. Wherever possible and appropriate, the terminology adopted will be based on international best practices, including standards such as ISO 15288 (ISO, 2015), to ensure the provenance of the information presented here.

 Defining a System

 The first concept that will be discussed is that of a System. A System will be defined in different ways by different people, depending on the nature of the System. So, first of all, some types of Systems will be identified to illustrate some of the typical types of Systems that may be encountered in Systems Engineering.

 There are many different classifications, or taxonomies, of Systems and one of the more widely accepted classifications is the one defined by Peter Checkland (Checkland, 1999), which is illustrated in the following diagram:

 [image: Figure 1.1 – Checkland's five types of system]
 Figure 1.1: Checkland’s five types of System

 The diagram in Figure 1.1 shows Checkland’s five types of generic Systems, which are as follows:

 	Natural Systems, which represent open Systems whose characteristics are beyond the control of humans. Such Systems include weather systems, nature, the environment, time, and so on.

 	Designed Physical Systems, which represent what most people would immediately think of when considering a System, such as smartphones, tablets, helicopters, cars, trains, planes, spaceships, boats, TVs, cameras, bridges, computer games, satellites, and even domestic appliances. The list is almost endless. The Systems will typically consist of physical artifacts that represent the real-world manifestation of the System.

 	Designed Abstract Systems, which represent Systems that have no physical artifacts but that are used by people to understand or explain an idea or concept. Examples of such Systems include models, equations, thought experiments, and so on.

 	Human Activity Systems, which are people-based Systems that can be seen or observed in the real world. These Systems will typically consist of different sets of people interacting to achieve a common goal or purpose. Examples of such Systems include a political system, social groups, people-based services, and so on.

 	Transcendental Systems, which are Systems that go beyond our current understanding. Examples of such systems include deities, unknown problems, and Numberwang.

 This is a good set of classifications, which we will use as a reference in this book. These classifications are a good way to think about different types of Systems, but the important point to understand here is that we can apply Systems Engineering to all five of these different categories of Systems.

 Also, it should be kept in mind that it is possible to have systems that actually fit into more than one of these categories. Imagine, for example, a transport system that would have to take into account vehicles (Designed Physical Systems), operating models (Designed Abstract Systems), the environment (a Natural System), and a governing political system (a Human Activity System). In real life, the Complexity of Systems is such that it is typical, rather than unusual, to encounter examples of these Systems that can fit into multiple categories.

 Characteristics of a System

 The five different broad types of Systems have been introduced, but there is also a common set of characteristics that may be associated with all of these types of systems. These characteristics allow the Systems to be understood and developed. Let’s explore these in the following sections.

 System elements – characterizing System structure

 Any system will have its own natural structure and may be thought of as a set of interacting System Elements, as shown in the following diagram:

 [image: Figure 1.2 – Basic structure of a system – system elements]
 Figure 1.2: Basic structure of a System – System Elements

 The diagram in Figure 1.2 shows that a System is made up of a set of system elements and that there are two types of Systems: a System of Interest and an Enabling System. A System of Interest refers to a System that is under development, whereas an Enabling System refers to any System that has an interest in, or interacts with, a System of Interest.

 One point to note here is that the structure of the System is actually more complex than this, as a System Element itself may be broken down into lower-level System Elements, which will lead to a System hierarchy of several levels being identified for a specific System. For the purposes of this initial discussion, the number of levels will be kept low in order to keep the explanations simple. Later in this book, when Systems are discussed in more detail, examples of hierarchies that span multiple levels will be considered.

 The next key point for discussion here is that System Elements interact with other System Elements. This is a key concept in understanding true Systems and applying Systems Engineering. When considering any System, or System Element, it is important to understand that they will interact with other System Elements, rather than existing in isolation. In Systems Engineering, everything is connected to something else and so understanding the relationships between System Elements, which form the basis of the interactions between them, is just as important as understanding the System Elements themselves.

 The interactions between System Elements also allow interfaces to be identified and defined between them. Understanding interfaces between System Elements is crucial to be able to specify and define all types of Systems. As part of understanding interfaces, it is also necessary to understand the information or the material (anything that is not information) that flows across the interfaces.

 System structures and interfaces will be discussed in far more detail in Chapter 3, Systems and Interfaces.

 Stakeholders – characterizing who or what has an interest in the system

 One of the key aspects of a System that it is essential to understand as part of any Systems Engineering endeavor is the Stakeholders that are associated with the System, as shown in the following diagram:

 [image: Figure 1.3 – Defining who or what has an interest in the system – stakeholders]
 Figure 1.3: Defining who or what has an interest in the System – Stakeholders

 The diagram in Figure 1.3 shows that a Stakeholder has an interest in the System. Understanding Stakeholders is key to successful Systems Engineering, and the definition of a Stakeholder is the role of any person, organization, or thing that has an interest in the System.

 There are a number of subtleties associated with understanding Stakeholders:

 	When considering Stakeholders, it is the role of the Stakeholder that is of interest, not the name of the person, organization, or thing that is associated with it. For example, consider a person, named Jon, who owns a car.

 The person, Jon, is not a Stakeholder associated with the car; rather, the Stakeholder is the role that Jon plays when interacting with the car. So, in this example, Jon will play a number of Stakeholder roles, such as owner, driver, passenger, sponsor, maintainer, and so on. Each of these Stakeholder roles will view the System of the car in different ways. It is important, therefore, that rather than thinking about Jon, the person, we should consider the Stakeholder roles that Jon plays.

 	Stakeholders are not necessarily people and can be many other things, such as organizations or just about anything. For example, when considering the System of the car, the Stakeholder role of the owner could be taken on by the person, Jon, but it may be a company car that is owned by a business, in which case it is the organization that takes on the Stakeholder role, rather than the person. Equally, the law has an interest in the car, which means that the law is also a Stakeholder.

 	There is not a one-to-one correlation between Stakeholders and the person, organization, or thing that takes on the role. For example, it has already been shown that a single person, Jon, may take on multiple Stakeholder roles but, equally, it is possible for many people to take on the same Stakeholder role. Consider the passengers that travel in the vehicle along with the driver. In this situation, we may have several people all taking on the same Stakeholder role of passenger.

 	Stakeholders lie outside the Boundary of the system, as do Enabling Systems. With the definition of a Stakeholder being anything that has an interest in the System, then it follows that an Enabling System is actually just a special type of Stakeholder, as the basic definition is the same.

 Identifying Stakeholders is an essential part of Systems Engineering as Stakeholders will each look at the same system in different ways, depending on the Stakeholder role that they play. This leads to the important concept of Context, which will be discussed in more detail later in this chapter.

 Attributes – characterizing system properties

 It is possible to describe the high-level properties of any given system by identifying a set of Attributes, as shown in the following diagram:

 [image: Figure 1.4 – Describing properties of a system – attributes]
 Figure 1.4: Describing properties of a System – Attributes

 The diagram in Figure 1.4 shows that Attributes describe a System. Attributes are shown here as relating to the concept of the System but, bearing in mind that a System comprises a number of System Elements, these Attributes may also apply to the System Elements.

 These Attributes will typically be represented as nouns that may take on a number of different values and be of a specific, pre-defined type, and may also have specific units. Examples of simple types of Attributes could be as follows:

 	Dimensions, such as length, width, and height, which would be typed as real numbers and may have units of millimeters associated with them.

 	Weight, which would be typed as a real number and have the unit of kilograms associated with it.

 	Element number, which may be an integer and may not have a unit associated with it.

 	Name, which may be a character/text and may not have a unit associated with it.

 Attributes may also take on more complex types, for example:

 	Timestamp, which may be a set of simple types brought together to provide a more complex type. In this case, the timestamp may be a combination of the day (an integer between 1 and 31), month (an integer between 1 and 12), year (an integer ranging from 0,000 upward), hour (an integer between 1 and 24), minute (an integer between 0 and 59), and second (an integer between 0 and 59).

 	Data structures, which may represent an entire audio or video file that complies with a specific protocol, such as MP3, MP4, and so on.

 The full set of possible Attributes is almost limitless, so the list provided here is intended to provide food for thought rather than be any sort of comprehensive list.

 Boundaries – defining the scope of a System

 Each System will have at least one Boundary associated with it, which helps to explain the scope of the System, as shown in the following diagram:

 [image: Figure 1.5 – Defining the scope of a system – boundary]
 Figure 1.5: Defining the scope of a System – Boundary

 The diagram in Figure 1.5 shows that the Boundary defines the scope of the System.

 There are many types of Boundary that may exist, including the following:

 	Physical Boundary: This may be some sort of enclosure that surrounds the System and separates it from the outside world. This could be a cabinet that houses a number of System Elements, such as the body of a car, a barrier that surrounds a piece of land, a wall and doors that define a room, and so on.

 	Conceptual Boundary: This is a non-Physical Boundary that can be imagined but not necessarily observed. An example of this is the Boundary between a car and the GPS satellite that it interacts with. In this case, where is the Boundary of the System considered to be? Is it the transmitter and receiver in the car, the transmitter and receiver on the satellite, the waves that are transmitted, or the protocols that are used as part of the transmission?

 	Stakeholder Boundary: Different Stakeholders may look at the same System in different ways and, therefore, where they perceive the Boundary of the system to be may change depending on the Stakeholder. Consider again two different Stakeholders for a car. A passenger may consider the Boundary of the car as being the physical body, or the shell of the car, whereas the maintainer of the car may also consider the Conceptual Boundary of the link between the car and the satellite as the Boundary.

 The Boundary of a System allows a number of key aspects of the System to be understood:

 	What is inside the Boundary: It is important to understand which System Elements are considered to be inside the Boundary of the System and which are considered to be outside the Boundary of the System. System Elements that are considered inside the Boundary of the System will help to define exactly what the scope of the System is.

 	What is outside the Boundary: In the same way that understanding what is inside the Boundary is important, in terms of System Elements, it is also important to understand what lies outside the Boundary of the System. Things that exist outside the Boundary of the System are considered to be either Stakeholders or Enabling Systems, or as was discussed previously, both.

 	Where key interfaces exist: Every time an interaction occurs across the Boundary of a System, it identifies an interface to that System. Identifying interfaces is an important part of Systems Engineering, and a Boundary can be used to identify all interfaces between a System and the outside world.

 Bearing in mind these discussion points, defining the Boundary of a given System may not be as simple as it first appears, as different Stakeholders may identify different Boundaries. This is not necessarily a problem, but it is important to bear this in mind and ensure that no conflicts occur because of these differences.

 Needs – the purpose of the System

 Each System must have a purpose, and this purpose is expressed by defining a set of Needs, as shown in the following diagram:

 [image: Figure 1.6 – Defining the purpose of the system – needs]
 Figure 1.6: Defining the purpose of the System – Needs

 The diagram in Figure 1.6 shows that Needs describe the purpose of the System. A Need describes the concept of something that shows the purpose of the System. The diagram also shows that there are different types of Needs, three of which are listed here:

 	Requirement: A Requirement represents a statement of something that is desirable for the System to do. These are often related to the desired specific functionality of the System. For example, a Requirement for a car may be that the driver must be able to slow the car down using the brake pedal, the car must have seat belts, or the car must travel at a top speed of at least 100 miles per hour.

 	Feature: A Feature represents a higher-level Need of the System that does not necessarily relate to a specific function, but may relate to a collection of functions. An example of a Feature may be that the car must have adaptive cruise control, the car must self-park, or the car must have crash prevention capabilities.

 	Goal: A Goal is a very high-level Need that represents a Need of the overall System. An example of this may be to transport a driver and three passengers over a distance of 300 miles on a single charge.

 It should be stressed here that there are many different terms used for all aspects of Needs, which differ vastly from organization to organization and from industry to industry. For example, the term “capability” is often used in the aerospace and defense industries, whereas the term “Feature” is more typically used in transport industries, such as automotive and rail. In a way, it does not matter which terminology is adopted, provided that it is adopted consistently.

 Constraints – limiting the realization of the System

 All Systems will be limited in some way in terms of how they can be realized, and these limitations are referred to as Constraints, as shown in the following diagram:

 [image: Figure 1.7 – Defining limitations on the realization of the system – constraints]
 Figure 1.7: Defining limitations on the realization of the System – Constraints

 The diagram in Figure 1.7 shows that Constraints limit the realization of the System. All Systems will have Constraints associated with them that will limit how the System may be realized, and these are often grouped into a number of categories, examples of which are as follows:

 	Quality Constraints: In almost all Systems, there will be Constraints that relate to best practice sources, such as standards. It is typical for a number of standards to be identified that the development approach used to deliver the System must comply with. These standards will typically relate to the development processes used to describe the overall Systems Engineering approach. For example, a standard that is often used for cars in the automotive industry is ISO 26262.

 	Implementation Constraints: These Constraints will limit the way that the System can be built. This may limit the materials that are used; for example, a car may be limited to being made out of aluminum rather than steel.

 	Environmental Constraints: All Systems must be deployed somewhere and many Systems will be defined in a natural environment, which may lead to certain Constraints coming into play. For example, a car may be limited in its emissions in order to minimize the impact on the environment.

 	Safety Constraints: Almost all Systems will have Constraints placed on them that ensure that the System can operate in a safe manner, particularly if things go wrong. For example, a car may be required to have functions in place that will protect the driver and passengers in the event of a crash.

 The preceding list provides a broad set of categories for different types of Constraints, but it is by no means exhaustive.

 It should also be kept in mind that these Constraints can be complex themselves and actually belong to more than one of these categories. For example, a car may have a limitation that all of the materials used must be recyclable, which could place it in both the Environmental Constraints and Implementation Constraints categories.

 It should also be pointed out that some of these Constraints lend themselves to different stages of the system life cycle. The system life cycle is an important concept that will be discussed in more detail later in this book.

 Constraints are also often described as special types of Needs as they are often represented as being related to specific Needs rather than directly to the System itself. This will be discussed in more detail in Chapter 6, Needs and Requirements, which focuses specifically on Needs.

 Summary of System concepts

 All of the concepts that have been introduced and discussed in this section may now be brought together to provide an overview of how they relate to the concept of a System:

 [image: Figure 1.8 – Summary of the key concepts associated with a system]
 Figure 1.8: Summary of the key concepts associated with a System

 The diagram here shows a summary of the key concepts associated with Systems that will be used throughout this book. It is important that these are all well understood as they will all be used from this point forward.

 Defining Systems Engineering

 There are many definitions of the term Systems Engineering, and there are various publications that discuss many of these and compare and contrast them (Holt and Perry, 2019, and INCOSE, 2018). For the purposes of this book, the main definition that will be used is taken from ISO 15288 (ISO, 2015), which, in turn, is used in the INCOSE Systems Engineering Handbook (INCOSE, 2016), which defines Systems Engineering as:

 “The realization of successful systems.”

 This is shown pictorially in the following diagram:

 [image: Figure 1.9 – Basic definition of systems engineering]
 Figure 1.9: Basic definition of Systems Engineering

 The diagram in Figure 1.9 shows the basic definition of Systems Engineering. This diagram may seem trivial, but it will enable the general term to be related to all of the other concepts that are discussed consequently in this chapter.

 This is a simple but effective definition of the term, but there are a few factors that must be kept in mind when reading this description:

 	Systems Engineering is a multidisciplinary approach that takes into account all areas of engineering, including mechanical, electrical, civil, software, and so on. Crucially, however, it should also be recognized that Systems Engineering is not just limited to engineering disciplines, but includes many other diverse areas, such as management, mathematics, physics, psychology, and just about any other area!

 	Systems Engineering is applied across the entire life cycle of a System and is not restricted to any single stage. This means that Systems Engineering is considered right from the point in time that the very first idea for the System is conceived until the System is ultimately retired. Even when working on a single stage, it is important that all stages of the life cycle are considered.

 	Systems Engineering does not remove the need for intelligence, as systems engineers must never blindly follow instructions, and requires a healthy dose of common sense in order to be effective.

 With these considerations in mind, the initial definition may be expanded upon to be redefined as (Holt and Perry, 2007):

 Systems Engineering is a multi-disciplinary, common-sense approach that enables the realization of successful systems.

 Now the definitions have been established, it is necessary to understand why Systems Engineering is needed in the first instance.

 The need for Systems Engineering

 The need for Systems Engineering is actually very simple. In real life, it is very easy for things to go wrong. Projects overrun, airplanes fall out of the sky, the environment is damaged, people are hurt or killed, software and IT bring organizations to their knees, and whole societies are crippled by non-joined-up government and management, all of which are the result of system failures at one level or another.

 Since it is so easy for things to go wrong, it is important to understand why. Fundamentally, there are three main causes for such System failures, which are as follows:

 	Complexity, where Complexity is not identified and, therefore, cannot be managed or controlled.

 	Communication, where communication fails or is ambiguous.

 	Understanding, where different points of view are not taken into account, and assumptions are made.

 The problem is actually worse than this as these three main causes feed into one another, so unmanaged Complexity will lead to communication failure and a lack of understanding, communication failure will lead to Complexity and a lack of understanding, and a lack of understanding will lead to increased Complexity and communication problems (Holt, 2001).

 These three causes are often referred to as the “Three Evils of Systems Engineering” and each will be discussed in more detail in the following sections.

 Complexity

 Complexity exists in every system and may be thought of as being one of two types, as shown in the following diagram:

 [image: Figure 1.10 – Types of complexity]
 Figure 1.10: Types of Complexity

 The diagram in Figure 1.10 shows that Systems manifest Complexity. There are two main types of Complexity:

 	Essential Complexity is the natural Complexity that is inherent in the system. The term “Essential” is used here as it refers to Complexity that manifests in the essence of the System. It is not possible to lower the Essential Complexity of a System, but it is possible to manage and control this Complexity, provided, of course, that it has been identified in the first instance.

 	Accidental Complexity is not natural and is introduced by inefficiencies in the people, processes, and tools that are employed to implement Systems Engineering, which will be discussed later in this chapter. Accidental Complexity can certainly be lowered, and this forms a natural part of Systems Engineering.

 Complexity manifests itself in the relationships between things, whether these are between the System Elements that make up the System or between Systems themselves. There are many subtleties to Complexity, which will be discussed in more detail in the following sections.

 An example…

 In order to illustrate and, therefore, understand how Complexity has changed and evolved over the last few decades, a simple example of a System will be introduced, which will be used throughout this book to explain the various concepts and techniques that will be used as part of the overall approach to Systems Engineering.

 For this example, the System that will be considered is a motor car, so now consider two such cars: one that was developed and built 50 years ago, around 1970, and one that was developed and built in the modern age, around 2020.

 Consider the basic Need for the System. The purpose of any car is to transport a number of people from point A to point B. The user interface of the car is, basically, a steering wheel, gear stick, and three pedals (accelerator, brake, and clutch pedals).

 This basic Need, or purpose, of a car has not really changed over the last 50 years, but the point of discussion here is that the complexity of the car has changed in four different ways, which will be discussed in turn in the following sections.

 The Complexity of the System Elements

 In order to illustrate how the Complexity of the System Elements has changed over the last 50 years, each of the cars will be discussed separately and then compared and contrasted:

 [image: Figure 1.11 – Basic breakdown of a car]
 Figure 1.11: Basic breakdown of a car

 The diagram in Figure 1.11 shows a simple example System of a car. There are four System Elements at the next level down that make up the car, which are as follows:

 	The Body, which includes lower-level System Elements such as wings, doors, mirrors, and so on.

 	The Chassis, which includes lower-level System Elements, such as brakes, wheels, suspension, and so on.

 	The Interior, which includes lower-level System Elements such as seats, dashboard, controls, and so on.

 	The Drive Train, which includes lower-level System Elements such as the motor and the gearing.

 The System Elements that make up the 50-year-old car are entirely mechanical and electrical in nature. On top of this, almost all of the System Elements will be mechanical; very few of them will be electrical.

 Electrical System Elements will be limited to the lights, indicators, fan, wipers, and starter motor, and that is really the extent of the electrical System Elements. The mechanical elements, however, will make up all of the other System Elements that relate to the Body, Chassis, Drive Train, and Interior. The vast majority of the System Elements, therefore, are mechanical with only a handful of them being electrical. This means that almost all of the interfaces between the System Elements will be mechanical in nature, with only a few being electrical or electro-mechanical.

 In order to build this car, it is largely a matter of integrating self-contained System Elements that have well-defined interfaces. Also, any electrical connections will require quite simple point-to-point wiring.

 Now consider the modern car. There are two new major types of System Elements that now exist that did not exist at all on the 50-year-old car, which are electronic and software-based System Elements. The vast majority of System Elements in a modern car will fall into one of these two categories. Electronic System Elements will include the following:

 	Controllers (such as light controllers, indicator controllers, and so on)

 	Sensors (such as temperature, pressure, rotation, and so on)

 	Actuators (such as levers, small gears, motors, and so on)

 	Display elements (such as dashboard lights, audio alerts, and so on)

 All modern cars contain a vast amount of software and, in every case, this software will be split across multiple nodes across the whole vehicle. On top of the software itself, the software must be connected to its associated electronic components, which will, in turn, lead to the need for communication buses, such as Controller Area Networks (CANs), which will themselves use communication protocols.

 In order to build the modern car, it is no longer a matter of simply integrating System Elements because the interfaces between the elements are now far more complex and will involve subtle changes in voltage and current levels, data transfer, communication protocols, and complex wiring.

 The complexity of the System Elements that make up the car has, therefore, greatly increased between the two vehicles. Indeed, not only has it increased in terms of the number of System Elements but also in their nature.

 The Complexity of Constraints

 It has already been stated that the basic Need for a car has not really changed at a high level in the last 50 years. The basic Need is to transport people from point A to point B. In the past, the emphasis of most cars was to make them go as quickly as possible with little regard for anything else. One of the major things that has changed over the last 50 years is not necessarily the basic needs, but the Constraints that are now imposed on those Needs:

 [image: Figure 1.12 – Simple constraints]
 Figure 1.12: Simple Constraints

 The diagram in Figure 1.12 shows a simple Need that is named Develop car, and there are two main Constraints associated with this, which are Be safe and Be fast. This diagram here represents, at a very high level, the basic Needs and Constraints associated with the 50-year-old car.

 The number of Constraints associated with the older car is very small compared to that of the modern car, which is shown in the following diagram:

 [image: Figure 1.13 – Complex constraints]
 Figure 1.13: Complex constraints

 The diagram in Figure 1.13 shows the Constraints associated with the modern car. The first thing to notice when comparing the two sets of Constraints is that the number of Constraints themselves has increased dramatically. There are new sets of Constraints that simply did not exist in the older car; for example, Be secure is now an issue that was not really a main consideration previously. Likewise, there is a whole set of new Constraints associated with Provide a positive driving experience. This increase in the number of Constraints will lead to an increased number of relationships between the basic Needs and Constraints, which will naturally lead to an increase in the Complexity of the Needs and Constraints.

 It is not just the increase in the number of Constraints that leads to an increase in Complexity but also the Complexity of individual Constraints has increased. There are a number of Constraints now that are related to best-practice models, such as Comply with standards and Comply with legislation. This is interesting from a Complexity point of view as these Constraints will also relate directly to other Constraints. Consider Be safe, which was previously seen as a standalone Constraint. In the modern vehicle, this Constraint will also have both of the compliance Constraints associated with it. Since there are far more legislation and standards in place now that apply to cars that did not exist 50 years ago, the Complexity of individual Constraints has increased, along with the increase in dependencies between Constraints.

 The Complexity of a System of Systems

 Another area where the car has increased in Complexity over the last 50 years occurs when a higher-level System of Systems is considered. A System of Systems is not just a collection of interacting Systems; it is a collection of interacting Systems exhibiting some behavior that is not exhibited by any of its Constituent Systems. Therefore, it can be argued that a fleet of vehicles is not a System of Systems, as it is simply a collection of Systems that does little more than make the overall System slightly more complicated. A true higher-level System of Systems may be the transport network that a car forms part of. The overall transport System of Systems exhibits a number of behaviors, such as ensuring an efficient journey from end to end, keeping traffic moving when accidents occur, and providing seamless links with smart cities and other transport systems, such as rail.

 A modern car is now truly part of a System of Systems as the vehicle itself interacts with other Systems, such as smart cities, smart roads, the cloud, satellites, and so on, which did not occur with an older vehicle. The modern car also takes over some of the skills that were previously the sole domain of the driver, such as parking, maintaining constant speeds, identifying potential dangers, and so on.

 The Complexity of the car System has therefore increased due to the fact that the car is now truly part of a wider System of Systems.

 Complexity shift

 The final aspect of increased Complexity that will be discussed does not necessarily manifest as an increase in the same type of Complexity but, rather, represents a shift in Complexity due to increases in other aspects of Complexity.

 Consider again the older car and its motor. The motor in the 50-year-old car is an internal combustion engine, which mainly comprises mechanical System Elements with a handful of electrical System Elements. The internal combustion engine may be considered to have quite a high level of mechanical Complexity, which is naturally exhibited.

 Now consider a modern electric car. The motor in the modern electric car is an electric motor that has a single moving part, that of the motor shaft. The mechanical Complexity of the modern car is practically non-existent when compared with the older car. The Complexity of the modern car lives mainly in the software that monitors the rest of the car and controls the electric motor. There is no software whatsoever in the older car.

 The older car, therefore, has high mechanical Complexity and zero software Complexity. The modern car has very low mechanical Complexity and very high software Complexity.

 The Complexity in the modern car has therefore shifted in nature – in this case, away from mechanical Complexity and toward software Complexity.

 Bringing it all together

 It can be seen that the Complexity of a typical System has increased dramatically over the last few decades. In the example we have used, the car increases in Complexity for four different reasons, which have been discussed.

 This increase in Complexity does not apply just to automotive systems but to any and all types of Systems. In reality, these four types of increased Complexity will actually have interdependencies, which, in turn, will also increase the overall Complexity. For example, the increase in the Complexity of the System Elements will also lead to a complexity shift and, potentially, an increase in the System of Systems Complexity, which, in turn, will lead to an increase in the number of Constraints.

 Identifying Complexity

 The key to managing Complexity is identifying where the Complexity lives in a System. This is a topic that will be followed up throughout the book, particularly when artifacts and models are discussed.

 The next section discusses the problems associated with communication, which, alongside Complexity and understanding, is one of the Three Evils of Systems Engineering.

 Communication

 Communication is key to successful Systems Engineering. It has already been discussed that Systems Engineering naturally brings together people from multiple and disparate backgrounds, which will lead to an increase in potential communication problems. Poorly-specified information, Language, and protocols lead to ambiguity, which will lead to poor or inefficient communication.

 Communication can exist at many levels, such as the following:

 	Between people: The obvious form of communication is between people. People interacting with other people is key to any successful project and is a matter that is more complex than it first appears, as will be discussed in this section.

 	Between and within organizations: A successful business relies on different organizations or organizational units within the same company being able to communicate effectively. The media for these communications may be through documents, agreements, contracts, and so on but the same communication problems will occur.

 	Between and within Systems and System Elements: It is essential that the Systems that are relied upon for our business and projects can also communicate effectively. This includes IT systems, other technical systems, and service-based systems, to name but a few.

 When thinking about communication, another way to think about it is that communication must be effective and efficient between all Stakeholders, whether they are represented by people, organizations, or things (such as Systems). When considering communication in the world of Systems Engineering, it is inter-Stakeholder communication that is being addressed.

 These communication problems are further compounded by the fact that communication can also exist between these different types, such as between people and Systems, people and organizations, and so on.

 Defining common Languages

 One of the main solutions that is vaunted for improving communication is to get all parties to “speak a common Language.” This is an obvious solution and an important one, but speaking a common Language is actually more complex than it may at first appear.

 When considering a common Language, there are actually two types of Language that must be defined, as shown in the following diagram:

 [image: Figure 1.14 – Aspects of the common language]
 Figure 1.14: Aspects of the common Language

 The diagram in Figure 1.14 shows that Stakeholders communicate using a Language, so it is essential that this Language is as clear and unambiguous as possible. This Language, however, has two aspects: Spoken Language and Domain-Specific Language.

 The first aspect that will be considered is that of the Spoken Language, which provides a basic mechanism for communication. An example of Spoken Language is the fact that this book is written in the English Language. In order to understand the information in this book, it is essential that the reader can speak English. Clearly, there are many more spoken Languages than the English Language, but the decision that has been made for this book (or System) was to select English as the chosen Spoken Language. This is clearly an obvious decision that needs to be made, but just because everyone reading this book speaks English does not mean that there will be no ambiguity or misunderstandings. This is because the second aspect of Language that needs to be considered is Domain-Specific Language.

 Domain-Specific Language defines the specific concepts and terminology that will be used for a given application or domain. For example, consider the word “function.” The word “function” is a common English Language word but a word that will actually take on different meanings, depending on which Stakeholder is reading it.

 It is essential that the Domain-Specific Language is defined, as it forms the cornerstone for successful Systems Engineering. This chapter actually defines the Domain-Specific Language for Systems Engineering that is used throughout this book. Each diagram in this chapter contributes toward defining the full set of concepts and the associated terminology that is used for Systems Engineering in this book.

 Languages for Systems Engineering

 When it comes to Languages that can be used for Systems Engineering, both the Spoken Language and the Domain-Specific Language must be defined:

 	In terms of the Spoken Language, there are several standard Languages that can be adopted that are used throughout the industry across the world, such as the Unified Modeling Language, Systems Modeling Language, and Business Process Modeling Notation, among others. For the purposes of this book, the Spoken Language that has been selected is the Systems Modeling Language (SysML), which will be discussed in more detail in Chapter 2, Model-Based Systems Engineering.

 	In terms of the Domain-Specific Language, this will be different for every organization. A generic Domain-Specific Language for Systems Engineering is defined in this chapter and used throughout this book, and may be used as a basis for readers to use in a Language that fits their specific business.

 Both types of Language must be defined for successful Systems Engineering.

 The next section discusses the problems associated with understanding, which, alongside complexity and communication, is one of the Three Evils of Systems Engineering.

 Understanding

 It is essential that all Stakeholders share an understanding of the System; however, different Stakeholders will perceive the System in different ways due to their different backgrounds and knowledge, which creates a potentially large problem. This problem may be addressed by considering the concept of “Context.” In order to understand the concept of Context, consider a set of generic Stakeholders, as shown in the following diagram:

 [image: Figure 1.15 – Generic set of stakeholders]
 Figure 1.15: Generic set of Stakeholders

 The diagram in Figure 1.15 shows a generic set of Stakeholders associated with the car System.

 There are three broad categories of Stakeholder, which are as follows:

 	Customer, which represents the set of roles that will ultimately benefit from the System that is being developed. The diagram here shows that Customer has two types, which are User, such as the Driver of the vehicle, and Operator, such as the Maintainer of the vehicle.

 	External, which represents the set of roles that have an interest in the System that will limit or restrict the system in some way. The diagram here shows that there is a single type of External Stakeholder, which is Standard.

 	Supplier, which represents the set of roles that are interested in developing and delivering the Systems, such as Engineer.

 The identification of Stakeholders is an essential part of Systems Engineering, as it is this complete set of Stakeholders whose expectations need to be understood and managed, rather than just the end user of the System.

 When considering the complete set of Stakeholders, it should be kept in mind that different Stakeholders may look at the same System and perceive different Needs or, as in almost all Systems, they may look at the same Need and interpret it in a different way, depending on their point of view. When something is interpreted in a different way from a different point of view, this is referred to as a “Context.”

 The concept of Context is one of the single most important aspects of representing a System that must be understood for successful Systems Engineering, yet is one that is often overlooked or ignored altogether.

 In order to illustrate this crucial concept of Context, imagine that there is a statement of Need associated with a System, which is the System must be safe. At first glance, this may seem like a straightforward statement with little or no room for ambiguity, but the actual meaning of this statement will be different for each of the different Stakeholders. For example, from the point of view of the Driver, this statement may be interpreted as the car must have seatbelts, airbags, driver-assist technology, and so on. From the point of view of the Maintainer, this statement may mean that the Drive Train must be developed in such a way that the battery can be turned off to ensure that no parts of the car are live when maintaining the vehicle. From the point of view of the Standard Stakeholder, there may be several safety aspects, such as meeting specific requirements for crash impact. Finally, from the point of view of the Engineer, the system may have to satisfy a number of scenarios relating to the safety case for the vehicle.

 The point here is that there are multiple interpretations for the same set of Needs. In order to manage the expectations of all Stakeholders, it is important that all of these different points of view, or Contexts, can be understood.

 Now that the Three Evils of Systems Engineering have been discussed, it is time to consider the implementation of Systems Engineering

 The implementation of Systems Engineering

 In order to implement Systems Engineering successfully, there are three aspects of implementation that must be considered, which are shown in the following diagram:

 [image: Figure 1.16 – The classic systems engineering mantra – people, process, and tools]
 Figure 1.16: The classic systems engineering mantra – People, Process, and Tools

 The diagram in Figure 1.16 shows three main concepts: People, Process, and Tools. These are referred to as the Systems Engineering Mantra (Holt and Perry, 2019).

 These three concepts are very important, but it is the relationships between them that provide a true understanding of what information is being conveyed. It is important that these People enable the overall Process, as the competencies associated with the People are worth nothing if they do not enable the overall approach. Also, the overall approach must drive the choice of Tools, rather than the Tools affecting the Process.

 These concepts are expanded upon in the following diagram:

 [image: Figure 1.17 – Expanded concepts of People, Process, and Tools]
 Figure 1.17: Expanded concepts of People, Process, and Tools

 The diagram in Figure 1.17 shows the expanded concepts that were first introduced in Figure 1.16. By considering each of the main concepts in turn, it is possible to enhance the original descriptions:

 	People: It is the Competence of the people that is of interest, rather than the presence of the people themselves. It is essential that people have the appropriate sets of knowledge and skills and the attitude that is required to do the task at hand effectively and efficiently. It is also important not to confuse the concept of People with that of Stakeholders. As was discussed previously, People may hold any number of Stakeholder roles and it is the Competence associated with these roles that may be thought of as the ability of the individual.

 	Process: It is the overall approach that is being followed, rather than just a set of individual processes. The term Process here may be thought of as the overall ability of the organization or organizational unit to carry out a specific task.

 	Tools: The set of software, resources, or, in fact, anything that is intended to allow People to carry out their Process in a more effective or efficient manner. Such Tools may include software design and modeling tools, management tools, pen and paper, standards, notation, and so on.

 Overall, it is important that there is a balance between People, Process, and Tools to enable successful Systems Engineering.

 Summary

 This chapter introduced the main concepts and terminology associated with Systems Engineering, which may be thought of as the Domain-Specific Language that will be used throughout this book. This domain-specific Language is captured in all of the diagrams in this chapter. It is important to understand this Domain-Specific Language, so these diagrams must be well understood and the following points considered:

 	Each diagram is made up of a series of boxes with words in them that are joined together by lines.

 	The main concepts for Systems Engineering are captured in the boxes and the lines between the boxes.

 	The terminology for Systems Engineering is what is written inside the boxes and on the lines.

 The relevance of these diagrams will be discussed further in the next chapter, in which models and modeling are introduced.

 Questions

 After reading the chapter, you should be able to answer the following questions:

 	Which definition of Systems Engineering works best for you?

 	How do Spoken Language and Domain-Specific Language match the concepts and terminology used in your organization?

 	Can you redefine the terms in each of the diagrams in this chapter to suit your own organization?

 	Can you identify any areas of ambiguity with these concepts in your organization?

 	Can you identify one key System that you work with and some of its characteristics?

 References

 	(Wilkinson, 2011) Wilkinson L.A. (2011) Systems Theory. In: Goldstein S., Naglieri J.A. (eds) Encyclopedia of Child Behavior and Development. Springer, Boston, MA.

 	(Bertalanffy, 1968) von Bertalanffy, L. 1968. General system theory: Foundations, development, applications. Revised ed. New York, NY: Braziller.

 	(Holt, 2001) Holt J., UML for Systems Engineering. 1st edition. Stevenage, UK: IEE; 2001.

 	(Holt and Perry, 2019) Holt J., Perry S. SysML for Systems Engineering – a model-based approach, Third edition. Stevenage, UK: IET; 2008.

 	(Checkland, 1999) Checkland, P. B. 1999. Systems Thinking, Systems Practice. Chichester, UK: John Wiley & Sons.

 	(ISO, 2015) ISO/IEC. ISO/IEC 15288:2015 Systems and Software Engineering – System Life Cycle Processes. 1st edn. International Organisation for Standardisation; 2015.

 	(Holt and Perry, 2008) Holt J., Perry S. SysML for Systems Engineering. Stevenage, UK: IET; 2008.

 	(INCOSE, 2016) INCOSE. Systems Engineering Handbook – A Guide for System Life Cycle Processes and Activities. Version 4. INCOSE; 2016.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/xjBEI

 [image:]

 2

 Model-Based Systems Engineering

 In this chapter, the main approach to Systems Engineering will be introduced and discussed, and its key properties described. This approach is known as Model-Based Systems Engineering, or MBSE, which is the common abbreviation. The information contained in this chapter concerning MBSE is essential learning for any modern-day Systems engineer. A good MBSE approach will provide a set of effective tools and techniques that will enable the realization of successful Systems while managing the complexity of today’s connected Systems, and allowing all relevant aspects of the System to be understood in as simple a manner as possible. This will also enable all information concerning the System to be communicated to the appropriate Stakeholders.

 This chapter covers the following topics:

 	An introduction to MBSE: Here, the key concepts associated with MBSE will be introduced, discussed, and collected together using “MBSE in a slide.”

 	The evolution of MBSE: Here, the transition from a document-based approach to a model-based approach to Systems Engineering will be discussed.

 	Modeling with MBSE: In this section, the fundamentals of modeling for MBSE will be described.

 	The spoken language – the Systems Modeling Language (SysML): Here, the chosen notation, the Systems Modeling Language, or SysML, is described and an example is given.

 	The domain-specific language – the Ontology: At this point, the Ontology that forms the cornerstone of any MBSE endeavor will be introduced in detail.

 This chapter will provide the basis for all of the techniques that are used throughout the rest of this book.

 An introduction to MBSE

 Before the main concepts of MBSE are discussed, it is important to understand a key philosophical point.

 Firstly, MBSE is not a subdivision, nor a subset, of Systems Engineering; MBSE is a complete approach to Systems Engineering and, therefore, is used for all aspects of Systems Engineering. One way to look at MBSE is that it is Systems Engineering achieved through a rigorous approach, illustrated in the following diagram:

 [image: Figure 2.1 – MBSE is a type of systems engineering]
 Figure 2.1: MBSE is a type of Systems Engineering

 The diagram in Figure 2.1 shows that MBSE is actually a type of Systems Engineering, rather than a subset or component part of Systems Engineering. This is essential to understand, and you must be very clear about this matter.

 The International Council on Systems Engineering (INCOSE) defines a worldwide vision of the future of Systems Engineering on a periodic basis. The INCOSE Vision 2035 (INCOSE 2022), predicts that by the year 2035, all Systems Engineering will be moving “towards a fully Model-Based Systems Engineering environment” and that it is key to all digital transformation.

 The question arises, therefore, of what exactly is meant by MBSE and how is it different from traditional Systems Engineering. The next few sections will discuss these questions in some detail.

 Abstracting the System

 When considering Systems Engineering, it is important to never lose sight of the goal of Systems Engineering, which is to develop a successful System. This seems like an obvious statement, but it is essential that every activity that is carried out as part of Systems Engineering contributes to this goal.

 When considering MBSE, compared to traditional Systems Engineering, the main thing that must be understood is where the knowledge, information, and data concerning the System resides. In the case of traditional Systems Engineering, all of the knowledge concerning a System resides in the set of documents that describes the System. In the case of MBSE, all of the knowledge concerning the System resides in the Model that abstracts the System:

 [image: Figure 2.2 – The concept of the model]
 Figure 2.2: The concept of the Model

 The diagram in Figure 2.2 shows the most fundamental concept of MBSE, which is that the Model abstracts the System. An abstraction may be thought of as a representation or simplification of the System. The Model must be a simplification of the System; otherwise, it would be the System. As the Model is a simplification of the System, it then follows, by its very nature, that the information contained in the Model is incomplete. This sometimes leads to the fatuous argument that all Models are wrong. The aim of a Model in MBSE is to provide an abstraction of the System to realize that System successfully. The aim of the Model in MBSE is not to contain as much information as possible, nor to attempt to capture all of the information concerning a System. The aim is to capture enough relevant information to realize the System successfully.

 It is important to always remember this, as it is very easy to generate more and more information as part of the Model that is of no use to anyone. It is essential that all information contained in the Model is useful.

 The information contained in the Model is grouped into specific collections known as Views, as shown in the next diagram:

 [image: Figure 2.3 – The model is made up of views]
 Figure 2.3: The Model is made up of Views

 The diagram in Figure 2.3 shows that the Model is made up of a number of Views. Each of these Views represents a collection of information; however, it is essential that this is relevant information that adds value to the overall Systems Engineering endeavor – otherwise, it is a waste of time. Therefore, to ascertain whether a collection of information is a View and, therefore, a valid part of the overall Model, there are a number of questions that must be answered:

 	Which Stakeholders would want to look at the View? To answer this question, it is essential that each View is related to a set of Stakeholders who are interested in the System. The concept of Stakeholders was discussed in Chapter 1, Introduction to Systems Engineering, and it was stated that identifying the correct set of Stakeholders is an essential part of Systems Engineering. Whenever any information is requested concerning the System, it is the Stakeholders who make these requests.

 	Why would these Stakeholders want to look at the View? It is essential to understand why each relevant Stakeholder wants to look at the View. Every View created as part of the Model must add value to the Systems Engineering endeavor. To do that, at least one Stakeholder must gain some sort of benefit from looking at the View.

 	What information must be contained in the View? It is important to know what information, out of the complete Model, must be made available for the relevant Stakeholders to look at.

 If it is not possible to answer these three questions for each of the Views, then the result is quite simple – it is not a valid View and, therefore, must not be considered as part of the Systems Engineering endeavor. It is very easy to generate information, in the form of Views, that is of no use to anyone. By asking these questions each time a View is considered, means that the validity of each View can be guaranteed.

 There is also a fourth question that should be considered once the first three have been answered successfully:

 	What language is the Stakeholder expecting to use when looking at the View? It is imperative when communicating with various Stakeholders that the communication is carried out in a language that the Stakeholder is fluent in. This applies to both the spoken and the domain-specific language, each of which will be discussed later in this chapter. The importance of communication was discussed in Chapter 1, Introduction to Systems Engineering, and this is one of the areas where effective communication comes into play. Stakeholders may speak different languages and, when considering MBSE, this translates into the fact that different Stakeholders may want to see a single View visualized in different ways.

 It is essential that these questions are asked for every View; otherwise, there will be information contained in the Model that adds no value, which is one of the biggest risks associated with MBSE.

 The other big risk associated with the Views that comprise the Model is associated with the fact that the Views must be consistent with each other. An essential and defining part of any Model is consistency. If there is a set of Views where each View is consistent with all other Views, then it is a Model. If there is a set of Views where each View is not consistent with all other Views, then it is data.

 Once the Model has been established (all Views add value and are consistent), then it is used as the main repository for all information that relates to the System. This means that whenever any Stakeholder wants to know anything concerning the System, then it is the Model that is interrogated to ascertain the answer.

 The Model is sometimes referred to as a single source of truth. This is an important definition and consists of two main points:

 	The Model is the only representation of the System – it is the single source.

 	All information in the Model is viewed as being the truth as far as can be determined, hence the single source of truth.

 This definition can be misleading as it does not imply that the Model is contained in a single location. The idea is that conceptually, the Model is a single entity, even though, in reality, it may be split across several locations, databases, or tools.

 The Model may be imagined to be a large, complex collection of information, and each View is analogous to opening up a small window into that Model. It is necessary to open up enough of these windows to provide confidence to all of the Stakeholders that the Model is understood well enough to realize a successful System or, to put it another way, to carry out Systems Engineering.

 One final aspect of Views that needs to be understood is that a View may be visualized in many different ways or, to put it another way, may be communicated in any number of different languages. This is the same concept as different Stakeholders speaking different languages and will be the focus of the next section.

 Visualizing the Model

 The way that each View is visualized is crucial to the successful communication and understanding of the System among its Stakeholders. In terms of MBSE, the various languages that each Stakeholder may speak are referred to as Notation, as shown in the following diagram:

 [image: Figure 2.4 – Notations, diagrams, and visualization]
 Figure 2.4: Notations, diagrams, and visualization

 The diagram in Figure 2.4 introduces the concepts of Notations and Diagrams to the original definition of Systems and Models.

 The Notation represents some sort of language that is used to communicate with a number of Stakeholders. This Notation represents the spoken language that was introduced in Chapter 1, Introduction to Systems Programming, or, to put it another way, it represents a basic communication mechanism that can be used to communicate with a set of Stakeholders.

 The Notation comprises a set of Diagrams that provide the actual communication mechanism that is used by the Notation. The term Diagram is used in its most general sense here and the concept of a Diagram may not even be graphical, as the Notation may be realized by almost any language, as follows:

 	The Notation may be a visual, or graphical, language that uses graphics as its communication mechanism. Examples of this include the Unified Modeling Language (UML) (UML 2019), SysML (SysML 2017), SysML2.0 (SysML 2022), the Business Process Modeling Notation (BPMN) (BPMN 2011), Flowcharts (ISO 1985), and so on.

 	The Notation may be mathematically based, using equations or some sort of formal method as its communication mechanism. Examples of this include languages based on first-order predicate calculus and set theory, such as the Vienna Development Method (VDM) (VDM 1998), Z (Z 1998), the Object Constraint Language (OCL 2014), and so on.

 	The Notation may be based on a natural language that uses structured or unstructured text as its basic communication mechanism.

 The Notation and its Diagrams are used to visualize the Views that comprise the Model. If the Model is imagined to be a large, complex collection of information and each View is analogous to opening up a small window into that Model, then the Diagrams may be thought of as applying different filters or lenses to each window. In the same way that it is possible to apply a number of different optical filters to change the appearance of whatever is on the other side of a window, it is possible to visualize each View in any number of different ways.

 As an example of this, consider a View that contains text-based descriptions of a number of Need statements, which will be referred to as a Need Description View. It needs to be established whether or not this is a valid View, and the following points address this:

 	The Stakeholders that are interested in the Need Description View are the requirements engineer and the requirements manager.

 	The Need Description View is required so that the Stakeholders can both gain a high-level appreciation for the number of needs and get a brief idea of what each need entails.

 	The Need Description View contains a set of needs, each of which has a number of properties identified with it, such as its name, identifier, description, and priority.

 The three basic questions have now been answered, so the View can be confirmed as a valid View. The next question to ask is which language do the Stakeholders speak? and this will dictate how they are spoken to. In terms of the modeling, this will mean that different Notations may be used, as follows:

 	The Need Description View may be visualized using structured text, with each need being a paragraph and the properties being bullet points displayed under each paragraph.

 	The Need Description View may be visualized using UML Notation – specifically, a Diagram known as the class diagram, where each need is represented as a UML class and each property is represented by a UML attribute. Class diagrams in UML are very similar to block definition diagrams in SysML and, indeed, are the basis for block definition diagrams.

 	The Need Description View may be visualized using SysML using a requirement diagram, where each need is represented by a SysML requirement block and each of its properties is represented by a SysML property.

 This list represents just three possible options for visualizing the same View, making the point that any View may be visualized in any number of different ways.

 For the purposes of this book, a single Notation will be selected and used for all of the examples throughout. The Notation that will be adopted is SysML, which will be discussed in a lot more detail later in this chapter; therefore, the spoken language selected will be SysML. The next section will add to these concepts by introducing the two main concepts that comprise the approach.

 Defining the approach

 When developing a Model by creating a number of Views, it is obviously important that all of the Views are created in the same way, and this is one of the areas where the approach comes into play, as shown in the following diagram:

 [image: Figure 2.5 – Introducing the approach for MBSE]
 Figure 2.5: Introducing the approach for MBSE

 The diagram in Figure 2.5 introduces part of the overall approach that is required for MBSE in the form of the Framework and its associated Viewpoints and Ontology.

 Consider a situation where it is desirable to ensure that all documents of a similar type have the same structure and contents. When dealing with documents, the answer to this is quite straightforward, in that a template would be defined for the document to ensure that all future documents are consistent and have the same look and feel. When considering MBSE and the creation of Views, the answer is the same, in that a template of sorts is considered. The template for the Views is referred to as a Viewpoint, which, when defined properly, will ensure that all of the Views that are created and that are based on the same Viewpoint will be consistent.

 This is achieved by answering three basic View questions and storing the answers as part of the Viewpoint. Therefore, each Viewpoint contains the answers to the following questions:

 	Which Stakeholders are interested in looking at the View?

 	Why are they interested in looking at the View – or, to put it another way, what value will they realize?

 	What information is contained in the View?

 Each Viewpoint, therefore, contains the answers to these three questions, which ensures that the structure and content of all Views that are based on the Viewpoint are consistent.

 In order to ensure that all of these Viewpoints are consistent with all of the other Viewpoints, it is necessary to have a common set of concepts and associated terminology that form the basis of the content for the Views. This is referred to as Ontology and is actually the domain-specific language that was introduced and discussed in Chapter 1, Introduction to Systems Engineering.

OEBPS/Images/B19125_01_16.png
Process

drives >

enables

People

Tools

OEBPS/Images/B19125_01_08.png
Stakeholder

< defines the scope of

Need

describes purpose of >

System

<2 describes

Boundary

limits the realization of >

Constraint

is made up of

System Element

Attribute

<3 describes

eracts with s>

OEBPS/Images/B19125_01_11.png
<q is made up of is made up of >

is made up of is made up of

v

Chassis Interior Drive Train

OEBPS/Images/B19125_Free_PDF_QR.png
EE"

+

OEBPS/Text/toc.xhtml

 Contents

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Get in touch

 		Part I: Introduction to Systems Engineering

 		Introduction to Systems Engineering

 		A brief history of Systems Engineering

 		Defining systems engineering

 		Defining a System

 		Characteristics of a System

 		System elements – characterizing System structure

 		Stakeholders – characterizing who or what has an interest in the system

 		Attributes – characterizing system properties

 		Boundaries – defining the scope of a System

 		Needs – the purpose of the System

 		Constraints – limiting the realization of the System

 		Summary of System concepts

 		Defining Systems Engineering

 		The need for Systems Engineering

 		Complexity

 		An example…

 		The Complexity of the System Elements

 		The Complexity of Constraints

 		The Complexity of a System of Systems

 		Complexity shift

 		Bringing it all together

 		Identifying Complexity

 		Communication

 		Defining common Languages

 		Languages for Systems Engineering

 		Understanding

 		The implementation of Systems Engineering

 		Summary

 		Questions

 		References

 		Model-Based Systems Engineering

 		An introduction to MBSE

 		Abstracting the System

 		Visualizing the Model

 		Defining the approach

 		Grouping the MBSE concepts

 		Implementing the Notation

 		Showing compliance

 		Using MBSE

 		The evolution of MBSE

 		Stage 1 – Document-Based Systems Engineering

 		Stage 2 – Document-Centric Systems Engineering

 		Stage 3 – Model-Enhanced Systems Engineering

 		Stage 4 – Model-Centric Systems Engineering

 		Stage 5 – MBSE

 		Cross-cutting concerns

 		Modeling with MBSE

 		The need for modeling

 		Defining the Model

 		Two aspects of the Model

 		When and where to Model

 		The spoken language – the Systems Modeling Language

 		What SysML is (and what it is not)

 		The SysML diagrams

 		Example structural modeling

 		Identifying basic blocks and relationships

 		Describing a block in more detail

 		Describing relationships in more detail

 		Example behavioral modeling

 		Modeling interactions within a System element

 		Modeling behavior between elements

 		The domain-specific language – the Ontology

 		Understanding Ontology – the cornerstone of MBSE

 		Visualizing Ontology

 		Summary

 		Self-assessment tasks

 		References

 		Part II: Systems Engineering Concepts

 		Systems and Interfaces

 		Defining Systems

 		Demonstrating consistency between the Ontology and System hierarchy

 		Defining the System hierarchy

 		Defining interaction relationships

 		Describing Interfaces

 		Identifying Interfaces

 		Defining Interfaces

 		Modeling Interfaces

 		Modeling the Structural Breakdown View

 		Modeling the Interface Identification View

 		Modeling the Port Definition View

 		Modeling the Flow Type Definition View

 		Modeling the Interface Connectivity View

 		Modeling behavioral Views for Interfaces

 		Defining the Framework

 		Defining the Viewpoints in the Framework

 		Defining the Framework Context View

 		Defining the Ontology Definition View

 		Defining the Viewpoint Relationship View

 		Defining the Viewpoint Context View

 		Defining the Viewpoint Definition View

 		Defining the Ruleset Definition View

 		Summary

 		Self-assessment tasks

 		References

 		Life Cycles

 		Introduction to Life Cycles

 		Defining Life Cycle concepts

 		Defining a Life Cycle for Systems

 		Defining a Life Cycle for Procurement

 		Defining a Life Cycle for Technology

 		Defining a Life Cycle for Assets

 		Describing the Vee Life Cycle

 		Defining Life Cycle Models

 		Defining a linear Life Cycle Model

 		Defining an iterative Life Cycle Model

 		Defining an incremental Life Cycle Model

 		Interacting Life Cycles and Life Cycle Models

 		Identifying Interactions between Life Cycles

 		Defining the behavior of Interactions

 		Defining the Framework

 		Defining the Viewpoints in the Framework

 		Defining the Framework Context View

 		Defining the Ontology Definition View

 		Defining the Viewpoint Relationship View

 		Defining the Viewpoint Context View

 		Defining the Viewpoint Definition View

 		Defining the Ruleset Definition View

 		Summary

 		Self-assessment tasks

 		References

 		Systems Engineering Processes

 		Understanding Process fundamentals

 		Defining Process properties

 		Defining Process types

 		Process concepts

 		Process modeling

 		Defining the Process Context

 		Defining the Process library

 		Defining the Process Stakeholders

 		Defining the Process Artifacts

 		Defining the Process Behavior

 		Defining a sequence of Processes

 		Modeling Standards using Process modeling

 		Identifying Systems Engineering Standards

 		Modeling ISO 15288

 		ISO 15288 – the Need Context View

 		ISO 15288 – the Process Structure View

 		ISO 15288 – the Stakeholder View

 		ISO 15288 – the Process Content View

 		Process Content View for the Technical Process Group

 		Process Content View for the Agreement Process Group

 		Process Content View for the Organizational Project-enabling Process Group

 		Process Content View for the Technical Management Process Group

 		Demonstrating compliance with ISO 15288

 		Defining the Framework

 		Defining the Viewpoints in the Framework

 		Defining the Framework Context View

 		Defining the Ontology Definition View

 		Defining the Viewpoint Relationship View

 		Defining the Viewpoint Context View

 		Defining the Viewpoint Definition View

 		Defining the Ruleset Definition View

 		Summary

 		Self-assessment tasks

 		References

 		Part III: Systems Engineering Techniques

 		Needs and Requirements

 		Introducing Needs and Requirements

 		Defining Needs

 		Defining types of Needs

 		Describing Needs

 		Validating Needs and Use Cases

 		Visualizing Needs using different SysML diagrams

 		Visualizing Source Elements

 		Visualizing Need Descriptions

 		Visualizing the Context Definition

 		Visualizing Contexts

 		Exploring different Contexts

 		Visualizing Scenarios

 		Visualizing Operational Scenarios

 		Visualizing Performance Scenarios

 		Life Cycle and Processes

 		Defining the Framework

 		Defining the Viewpoints in the Framework

 		Defining the Framework Context View

 		Defining the Ontology Definition View

 		Defining the Viewpoint Relationship View

 		Defining the Viewpoint Context View

 		Defining the Viewpoint Definition View

 		Defining the Ruleset Definition View

 		Summary

 		Self-assessment tasks

 		References

 		Modeling the Design

 		Defining design

 		Architectural design

 		Detailed design

 		Defining Logical Model Elements

 		Defining Functional Model Elements

 		Defining the structural aspect of Functions

 		Defining the behavioral aspect of Functions

 		Defining Physical Elements

 		Modeling the System structure of Physical Elements

 		Modeling the Configuration of Physical Elements

 		Defining System behavior

 		Complying with best practice Processes

 		Complying with the ISO 15288 Architecture Definition Process

 		Complying with the ISO 15288 Design Definition Process

 		Defining the Framework

 		Defining the Viewpoints in the Framework

 		Defining the Framework Context View

 		Defining the Ontology Definition View

 		Defining the Viewpoint Relationship View

 		Defining the Viewpoint Context View

 		Defining the Viewpoint Definition View

 		Defining the Ruleset Definition View

 		Summary

 		Self-assessment tasks

 		References

 		Modeling Verification and Validation

 		Defining testing concepts

 		Modeling Verification and Validation Views

 		Modeling the Testing Context

 		Modeling the testing setup

 		Modeling the Testing Configuration

 		Using existing Views for testing

 		Satisfying the Validate System Use Case

 		Satisfying the Verify System Use Case

 		Complying with best-practice Processes

 		Complying with the ISO 15288 Verification Process

 		Complying with the ISO 15288 Validation Process

 		Defining the Framework

 		Defining the Viewpoints in the Framework

 		Defining the Framework Context View

 		Defining the Ontology Definition View

 		Defining the Viewpoint Relationship View

 		Defining the Viewpoint Context View

 		Defining the Viewpoint Definition View

 		Defining the Ruleset Definition View

 		Summary

 		Self-assessment tasks

 		References

 		Methodologies

 		Introducing methodologies

 		Introducing SAFe

 		Defining the SAFe concepts

 		Defining the SAFe core concepts

 		SAFe Configurations

 		Summarizing the SAFe method

 		Introducing OOSEM

 		Defining OOSEM concepts

 		Defining the OOSEM approach

 		OOSEM Activities

 		Summarizing the OOSEM method

 		Methodologies and MBSE

 		Methodologies and approach

 		Methodologies and Goals

 		Methodologies and visualization

 		Methodologies and implementation

 		Methodologies and compliance

 		Summary

 		Self-assessment tasks

 		References

 		Systems Engineering Management

 		Introducing management

 		The Project Planning Process

 		Applying modeling to the “Activate the project()” activity

 		Applying modeling to the “Define the project()” activity

 		Applying modeling to the “Plan project and technical management()” activity

 		Summary of the Project Planning Process

 		The Decision Management Process

 		Applying modeling to the “Prepare for decisions()” activity

 		Applying modeling to the “Analyze the decision information()” activity

 		Applying modeling to the “Make and manage decisions()” activity

 		Summary of the Decision Management Process

 		The Project Assessment and Control Process

 		Applying modeling to the “Plan for project assessment and control()” activity

 		Applying modeling to the “Assess the project()” activity

 		Applying modeling to the “Control the project()” activity

 		Summary of the Project Assessment and Control Process

 		The Risk Management Process

 		Applying modeling to the “Plan risk management()” activity

 		Applying modeling to the “Analyze risks()” activity

 		Applying modeling to the “Manage the risk profile()” activity

 		Applying modeling to the “Monitor risks()” activity

 		Applying modeling to the “Treat risks()” activity

 		Summary of the Risk Management Process

 		The Information Management Process

 		Applying modeling to the “Prepare for information management()” activity

 		Applying modeling to the “Perform information management()” activity

 		Summary of the Information Management Process

 		The Configuration Management Process

 		Applying modeling to the “Plan configuration management()” activity

 		Applying modeling to the “Perform configuration identification()” activity

 		Applying modeling to the “Perform configuration change management()” activity

 		Applying modeling to the “Perform configuration status accounting()” activity

 		Applying modeling to the “Perform configuration evaluation()” activity

 		Applying modeling to the “Perform release control()” activity

 		Summary of the Configuration Management Process

 		The Measurement Process

 		Applying modeling to the “Prepare for measurement()” activity

 		Applying modeling to the “Perform measurement()” activity

 		Summary of the Measurement Process

 		The Quality Assurance Process

 		Applying modeling to the “Prepare for quality assurance()” activity

 		Applying modeling to the “Perform product or service evaluations()” activity

 		Applying modeling to the “Perform process evaluations()” activity

 		Applying modeling to the “Treat incidents and problems()” activity

 		Applying modeling to the “Manage quality assurance records and reports()” activity

 		Summary of the quality assurance Process

 		Summary

 		Self-assessment tasks

 		Part IV: Next Steps

 		Deploying MBSE

 		Introduction to Trinity

 		Defining the rationale for MBSE

 		Understanding the Context for MBSE deployment

 		Context Modeling using TeamStorming

 		Defining the MBSE Capability

 		Capturing the current MBSE Capability

 		Defining the MBSE Maturity

 		A Technique to capture the MBSE Capability and MBSE Maturity

 		The basic RAVEnS process

 		Defining the MBSE Strategy

 		Summary

 		Self-assessment tasks

 		References

 		The Art of Modeling

 		The Philosophy of MBSE

 		The Model versus Modeling

 		The Psychology of Modeling

 		Strategies for Practical Modeling

 		From source material to models, and back

 		Iterative Modeling and the Brontosaurus of Complexity

 		Changing the Visualization

 		Modeling through the Life Cycle and the Brontosaurus of Complexity

 		Inspiring Confidence in Models

 		Consistency Is King

 		Notational

 		Ontological

 		Validation of System

 		Applying Consistency

 		Demonstrating Benefits and Value

 		Identifying the Stakeholders

 		Summary

 		Self-assessment tasks

 		References

 		Best Practices

 		Introducing key Standards

 		ISO 15288 – Systems and software engineering Life Cycle Processes

 		Other Standards

 		Introducing key guidelines

 		The INCOSE Competency Framework

 		Other guidelines

 		Organizations

 		Summary

 		Other Books You May Enjoy

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/B19125_01_07.png
Constraint

limits the realization of >

OEBPS/Images/blockquote-top.png

OEBPS/Images/B19125_02_03.png
<] abstracts

System

Model

is made up of

v

View

is consistent with >

OEBPS/Images/QR_Code1158856527374468.png

OEBPS/Images/B19125_01_03.png
Stakeholder

has an interest in >

OEBPS/Images/B19125_01_09.png
Systems Engineering

realizes successful

OEBPS/Images/B19125_01_12.png
constrains

| o

Develop car

constrains

Be fast

OEBPS/Images/tip.png

OEBPS/Images/B19125_01_13.png
Comply with standards. Comply with legislation

@

~

Provide a positive driving)
experience

Develop car

Ensure connectivity

T~
\\\ Be reliable S~

‘constrains

AN

=

Be environmentally
friendly

OEBPS/Images/B19125_01_17.png
Organization

work for

<1 describes abilty of

s made up of

Organizational Unit

Capability

< realizes

Process

person

<1 describes abilty of

drives

holds role of
v

Stakeholder

Competence

Tool

OEBPS/Images/cover.png
EXPERT INSIGHT

Systems
Engineering
Demystified

Apply modern, model-based systems engineering
to build

Second Edition

Foreword by:
Tim Weilkiens
MBSE Consultant, Trainer, and

Executive Board Member at oose.
Founder of MBSE4U

Jon Holt

OEBPS/Images/B19125_01_04.png
<] describes

Attribute

OEBPS/Images/B19125_02_04.png
< abstracts

System Model

is made up of |
\

< visualizes

Notation

View

is consistent with &

is made up of
\

Diagram

OEBPS/Images/info.png

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B19125_01_01.png
are types of

Systems

Natural Systems

are types of

are types of

Designed Abstract
Systems

Transcendental
Systems

are types

of are types of

Designed Physical
Systems

Human Activity
Systems

OEBPS/Images/B19125_02_01.png
Systems Engineering

realizes successful o>

A

is a type of

Model - Based
Systems Engineering

System

OEBPS/Images/B19125_01_14.png
Language

<1 communicate using

is atype of

A

is a type of

Domain-Specific
Language

Spoken Language

Stakeholder

OEBPS/Images/B19125_01_05.png
System

< defines the scope of

Boundary

OEBPS/Images/B19125_02_05.png
s made up of| ismade up of
¥ ¥

is made p of is made p of
¥ LA
defines the sructure and
Ontology Viewpoint content for
<isbasedon ‘—

is consistent with =

OEBPS/Images/B19125_01_10.png
System

manifests >

Complexity

is a type of

Essential Complexity

is a type of

Accidental Complexity

OEBPS/Images/B19125_01_15.png
Stakeholder

isatype of o> s a type of <tisatypeof
Customer External Supplier
is atype of >, < isatypeof s atype of isatype of
user Operator Standard Engineer
P A
isatype of is atype of
Driver Maintainer

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Images/B19125_01_06.png
is a type of

Need

describes purpose of >

Requirement

is a type of

Goal

is a type of

Feature

System

OEBPS/Images/B19125_02_02.png
<] abstracts

OEBPS/Images/B19125_01_02.png
System of Interest

<1 is a type of
System //
< is a type of
is made up of

Enabling System

v

System Element

interacts with |

