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			Preface

			What excites me about Svelte? Its simplicity, elegance, and pragmatic design ethos. Its growing success in the marketplace suggests that other programmers feel the same way too. I’m not surprised by this. When we write software for the JavaScript ecosystem, we have a choice: we can either accept and be consumed by the complexity of its primary constituents (React, Node.js, webpack, Babel, and so on) or we can actively seek out the marginalized products and processes that aim to simplify our work.

			It’ll be no surprise to you that I place Test-Driven Development (TDD) firmly in this second camp. Because without it, what you have is a development workflow that largely consists of chasing bugs and carrying a lot of context in your head. This is always what I think of as the bad old days.

			When I first started programming as a youngster, I remember the infuriating experience of debugging – writing some code, trying it out, finding bugs, and struggling for hours to figure out where the errors were hidden in my code. It seemed like a natural part of programming: devoting a large portion of my time to debugging. And this carried through into my first job as a C++ desktop application developer. (It wasn’t long before I discovered TDD and how it could help me have a simpler, quieter, calmer life.)

			Then there’s the mental context you need when you plan out a grand design for the next feature you’re about to implement. You have to know where you’re at, what you’ve done, and what’s next, and do your best to not stray from the path. That’s hard when you’re being derailed by debugging and other distractions.

			Sure, you can write a to-do list or keep a diary, but why not write some automated tests instead? They not only remind you where you’re at but they check for bugs, too.

			That is essentially the idea behind TDD.

			And if you like Svelte because it simplifies your life and makes you feel like you’re swimming rather than wading through mud, I think you’ll also like TDD. This book shows you the how and why of Svelte with TDD. I hope you enjoy it. Thanks for reading!

			Who this book is for

			If you’re a Svelte programmer, this book is for you. I aim to show you how TDD can improve your work. If you’re already knowledgeable about TDD, I hope there’s still a lot you can learn from comparing your own process with mine.

			If you don’t already know Svelte, but you’re familiar with any modern frontend framework such as React, you should be able to follow along and pick things up as you go. TDD is a wonderful platform for explaining new technologies, and it’s entirely plausible that you’ll be able to pick up Svelte simply by following this book.

			What this book covers

			Chapter 1, Setting up for Testing, covers the SvelteKit package and configuring your development environment for effective TDD work with both the Vitest and Playwright test runners.

			Chapter 2, Introducing the Red-Green-Refactor Workflow, shows how the basic TDD process works, and discusses why it’s useful. It introduces the Vitest test runner for writing unit tests.

			Chapter 3, Loading Data into a Route, demonstrates how to load data into a Svelte page component using TDD. It introduces the Playwright test runner for writing end-to-end tests.

			Chapter 4, Saving Form Data, shows how to implement a basic HTML form along with its submit action.

			Chapter 5, Validating Form Data, adds form validation rules to the form built in Chapter 4.

			Chapter 6, Editing Form Data, shows how TDD can be used to evolve a system design, by modifying the form to work in edit mode.

			Chapter 7, Tidying up Test Suites, switches focus to look at techniques for better testing, starting with a look at how test suites can be kept neat and tidy.

			Chapter 8, Creating Matchers to Simplify Tests, explains an advanced technique for managing the complexity of test suites: creating and using expectation matcher functions.

			Chapter 9, Extracting Logic Out of the Framework, discusses how you can make your application design more testable by moving logic out of framework-controlled modules.

			Chapter 10, Test-Driving API Endpoints, looks at how you can use TDD to implement API calls.

			Chapter 11, Replacing Behavior with a Side-By-Side Implementation, shows how TDD is useful even when faced with complex refactoring exercises.

			Chapter 12, Using Component Mocks to Clarify Tests, introduces the most complex piece of frontend automated testing: component mocking.

			Chapter 13, Adding Cucumber Tests, introduces the Cucumber test framework and shows how it can be applied to a SvelteKit project.

			Chapter 14, Testing Authentication, shows an approach to writing both unit and end-to-end tests for authentication libraries.

			Chapter 15, Test-Driving Svelte Stores, provides a brief look at how Svelte stores can be effectively tested.

			Chapter 16, Test-Driving Service Workers, shows how to write automated tests for service workers, as supported by the SvelteKit framework.

			To get the most out of this book

			There are two ways to read this book.

			The first is to use it as a reference when you are faced with specific testing challenges. Use the index to find what you’re after and move to that page.

			The second, and the one I’d recommend starting with, is to follow the walk-throughs step by step, building your own code base as you go along. The companion GitHub repository has a directory for each chapter (such as Chapter01) and then, within that, two directories:

			
					Start, which is the starting point for the chapter; you should start here if you’re following along.

					Complete, which contains completed solutions to all the exercises.

			

			You will need to be at least a little proficient with Git; a basic understanding of the branch, checkout, clone, commit, diff, and merge commands should be sufficient.

			Take a look at the README.md file in the GitHub repository for more information and instructions on working with the code base.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Svelte-with-Test-Driven-Development. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/GD8Lg.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We can start with a test that specifies what this Birthday component will do with its name prop.”

			A block of code is set as follows:

			
import { describe, it, expect } from 'vitest';
import {
  render,
  screen
} from '@testing-library/svelte';
import Birthday from './Birthday.svelte';

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
describe('Birthday', () => {
  it('displays the name of the person', () => {
    render(Birthday, { name: 'Hercules' });
  });
});

			Any command-line input or output is written as follows:

			
mkdir birthdays
cd birthdays
npm create svelte@latest

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “The user clicks the Save button.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Svelte with Test-Driven Development, we’d love to hear your thoughts! Please select https://www.amazon.in/review/create-review/error?asin=1837638330 for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			 

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781837638338

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1: Learning the TDD Cycle

			The first part introduces the Test-Driven Development (TDD) workflow and explains how you can use it to build Svelte applications.

			This part has the following chapters:

			
					Chapter 1, Setting up for Testing

					Chapter 2, Introducing the Red-Green-Refactor Workflow

					Chapter 3, Loading Data into a Route

					Chapter 4, Saving Form Data

					Chapter 5, Validating Form Data

					Chapter 6, Editing Form Data

			

		

		
			
			

		

		
			
			

		

		
			
			

		

	


		
			1

			Setting up for Testing

			Back when you were a young schoolchild, you probably learned to write by using a pencil on paper. Now that you’re older, it’s likely you prefer pens. For learners, pencils have a distinct advantage over pens in that mistakes are easy to correct, and when you first start writing out letters and words, you will be making a lot of mistakes. Pencils are also safer for small children – no caps or messy ink to worry about.

			But pencils remain a valid writing instrument, and you might still have a personal preference for pencils over pens. The pencil is a perfectly good tool for the job.

			Test-Driven Development (TDD) is a tool that can serve you in a similar way. It’s a great way to learn and grow as a developer. Many experienced developers prefer it for their day-to-day work over any alternative.

			In this chapter, you’ll configure a work environment that’s designed to help you get the most out of TDD techniques. Since TDD asks you to do a bunch of small repetitive tasks – writing tests, running tests, committing early and often, and switching between test code and application code – it’s important that each of those tasks can be done easily and quickly.

			It follows that an important personal discipline to cultivate is that of objectively critiquing your development tools. For every tool that you use, ask yourself this: is this tool serving me well? Is it easy and quick to use?

			This could be your Integrated Development Environment (IDE), your operating system, your source code repository, your note-taking program, your time management utilities, and so on. Anything and everything you use in your day job. Scrutinize your tools. Throw away whatever isn’t working for you.

			This is a very personal thing and depends a lot on experience and individuality. And your preferences are likely to change over time, too.

			I often reach for very plain, simple, keyboard-driven tools that work for me consistently, regardless of the programming language I’m working in, such as the text editor Vim. It doesn’t offer any knowledge about the JavaScript programming language or the Svelte framework, but it makes me extremely effective at editing text.

			But if you care about learning JavaScript or program design, then you might prefer an IDE that gives you JavaScript auto-complete suggestions and helpful project assistance.

			This chapter walks through the setup of a new SvelteKit project and highlights all the individual choices you’ll need to make, and the additional extras you’ll need in order to practice effective TDD.

			It covers the following topics:

			
					Creating a new SvelteKit project

					Preparing your development environment for frequent test runs

					Configuring support for Svelte component tests

					Optional configuration you may want to try

			

			By the end of the chapter, you’ll know how to create a new Svelte project that is ready for test-driven feature building.

			Technical requirements

			The code for the chapter can be found online at https://github.com/PacktPublishing/Svelte-with-Test-Driven-Development/tree/main/Chapter01/Start.

			You will need to have a recent version of Node.js installed. See https://nodejs.org for instructions on how to install and update Node.js for your platform.

			Creating a new SvelteKit project

			In this section, you’ll use the default method for creating a new SvelteKit project, which uses the npm create command. (For reference, you can also check the official documentation at https://kit.svelte.dev/docs/creating-a-project.)

			The project we are building is called Birthdays and the npm package name is birthdays. It will be introduced properly in Chapter 2, Introducing the Red-Green-Refactor Workflow.

			SvelteKit 1.0

			These instructions were valid at the time of writing, for SvelteKit 1.0. It’s likely things will improve in time, so you may find some of the later instructions will become unnecessary or may no longer work. Check the book’s GitHub repository for the most up-to-date instructions.

			For now, we’ll concentrate on the mechanics of building a new project:

			
					Start by opening a Terminal window in your usual work location (for me, this is ~/work on my Mac). Then type the following commands:
mkdir birthdays
cd birthdays
npm create svelte@latest


			

			If this is the first Svelte project you’ve created, you’ll be presented with the following message from npm:

			
Need to install the following packages:
  create-svelte@2.1.0
Ok to proceed? (y)

			
					Answer y to that. You’ll see a bunch more questions, which we’ll go through individually:
create-svelte version 2.1.0
Welcome to SvelteKit!
? Where should we create your project?
  (leave blank to use current directory) ›


					Since you’re already in the birthdays directory, just leave this blank, and hit Enter. Next, you’ll be asked about which app template you’d like to use:
? Which Svelte app template? › - Use arrow-keys. Return to submit.
    SvelteKit demo app
❯   Skeleton project - Barebones scaffolding for your new SvelteKit app
    Library skeleton project


					Choose Skeleton project. Next, you’ll be asked about TypeScript:
? Add type checking with TypeScript? › - Use arrow-keys. Return to submit.
    Yes, using JavaScript with JSDoc comments
    Yes, using TypeScript syntax
❯   No


					For this question, I’ve chosen No. That’s because this book is about testing techniques, not typing techniques. That’s not to say that this book doesn’t apply to TypeScript projects – it most certainly does – just that typing is not the topic at hand.

			

			If you want to use TypeScript

			If you’re a seasoned TypeScript developer, please feel free to choose that option instead. The code samples in the book won’t need too much modification except for the additional type definitions, which you’ll need to provide.

			
					Finally, you’ll be asked about extra package dependencies:
? Add ESLint for code linting? › No / Yes
? Add Prettier for code formatting? › No / Yes
? Add Playwright for browser testing? › No / Yes
    ✔ Add Vitest for unit testing? … No / Yes


					Choose Yes as the answer to all these questions. Although we won’t mention ESLint in this book, it’s always good to have. And we’ll need Playwright and Vitest.

			

			You’ll then see a summary of all your choices, followed by a Next steps list:

			
Your project is ready!
✔ ESLint
  https://github.com/sveltejs/eslint-plugin-svelte3
✔ Prettier
  https://prettier.io/docs/en/options.html
  https://github.com/sveltejs/prettier-plugin-svelte#options
✔ Playwright
  https://playwright.dev
✔ Vitest
  https://vitest.dev
Install community-maintained integrations:
  https://github.com/svelte-add/svelte-adders
Next steps:
  1: npm install (or pnpm install, etc)
  2: git init && git add -A && git commit -m "Initial commit" (optional)
  3: npm run dev -- --open

			We’ll perform these next steps but before we do that, we’ll run some extra verification steps. It’s always good to check your work.

			Type npm install into the Terminal and confirm that everything is installed correctly. Then, go ahead and commit your changes. (If you’ve forked the GitHub repository, you won’t need to use the git init command.)

			Committing early and often

			It’s a good idea to be checking in your work very often. While you’re learning the TDD approach to testing, it can be helpful to check in after every single test. This might seem like a lot but it will help you backtrack in case you get stuck.

			Then, run npm run dev – –open. It should open your web browser and show you a "Welcome to SvelteKit" message.

			You can then close the browser and hit Ctrl + C in the Terminal to stop the web server.

			Next, let’s verify the Playwright and Vitest dependencies.

			Installing and running Playwright

			Although we won’t use Playwright in this chapter, it’s a good idea to get it installed and verify that it’s working.

			Start by running npm test at the command line:

			
work/birthdays % npm test
> birthdays@0.0.1 test
> playwright test
Running 1 test using 1 worker
[WebServer]
[WebServer]
[WebServer] Generated an empty chunk: "hooks".
[WebServer]
  ✘  1 test.js:3:1 › index page has expected h1 (7ms)
  1) test.js:3:1 › index page has expected h1 =============================================
    browserType.launch: Executable doesn't exist at /Users/daniel/Library/Caches/ms-playwright/chromium-1041/chrome-mac/Chromium.app/Contents/MacOS/Chromium
    ...
  1 failed
    test.js:3:1 › index page has expected h1 ============================================

			If you’ve never installed Playwright before, you’ll see a message like the preceding one.

			Playwright has its own environment setup to do, such as installing Chromium onto your machine. You can install it with the following command:

			
npx playwright install

			Then, trying npm test again should give you the following output, showing that the one example test that’s included is passing:

			
> birthdays@0.0.1 test
> playwright test
Running 1 test using 1 worker
[WebServer]
[WebServer]
[WebServer] Generated an empty chunk: "hooks".
[WebServer]
  ✓  1 test.js:3:1 › index page has expected h1 (307ms)
  1 passed (4s)

			This test, index page has expected h1, is a test for the "Welcome to SvelteKit" message you saw earlier when you launched the application in the browser.

			Running Vitest

			Running npm run test:unit is the default way to run Vitest tests. Try it now:

			
work/birthdays % npm run test:unit
> birthdays@0.0.1 test:unit
> vitest
 DEV  v0.25.8 /Users/daniel/work/birthdays
 ✓ src/index.test.js (1)
 Test Files  1 passed (1)
      Tests  1 passed (1)
   Start at  15:56:18
   Duration  737ms (transform 321ms, setup 0ms, collect 16ms, tests 2ms)
 PASS  Waiting for file changes...
       press h to show help, press q to quit

			This automatically puts you in watch mode, which means any changes to the filesystem will cause tests to re-run. Press q to quit this mode. I personally don’t use watch mode and we won’t be using it in this book. See the Creating a shell alias section for a little discussion on why this is.

			In the next section, we’ll make the ergonomics of the project a little easier for us.

			Preparing your development environment for frequent unit testing

			In this section, we’ll take some configuration actions that will make our test-driven lives much simpler.

			Choosing your editor

			Let’s start with your choice of code editor. More than likely, this means a choice between an IDE, such as Visual Studio Code, or a plain text editor, such as Vim or Emacs.
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