
		
			[image: Cover.png]
		

	
		
			Svelte with Test-Driven Development

			Advance your skills and write effective automated tests with Vitest, Playwright, and Cucumber.js

			Daniel Irvine

			[image: ]

			BIRMINGHAM—MUMBAI

			Svelte with Test-Driven Development

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Bhavya Rao

			Content Development Editor: Abhishek Jadhav

			Technical Editor: Simran Ali

			Copy Editor: Safis Editing

			Project Coordinator: Sonam Pandey

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Jyoti Chauhan

			Marketing Coordinator: Nivedita Pandey

			First published: July 2023

			Production reference: 1060623

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-83763-833-8

			www.packtpub.com

			Contributors

			About the author

			Daniel Irvine is a software consultant based in London. He works with a variety of languages, including C#, Clojure, JavaScript, and Ruby. He’s a mentor and coach for developers and runs TDD and XP workshops and courses. When he’s not working, he spends time cooking and practicing yoga. He co-founded the Queer Code London meetup and is an active member of the European Software Craft community. He is the author of Mastering React Test-Driven Development (Packt), now in its second edition, and Build Your Own Test Framework (Apress). He can be contacted through his website: www.danielirvine.com.

			I want to thank my developer friends and colleagues at Mindful Chef, in particular Aleksandra Sezer, Brendan Murphy, James Edward-Jones, James Graham, James Teale, Mark McDermid, Tito Molina, and Zack Xu, who all assisted me during the authoring process. The team at Packt have been brilliant, as usual, giving me exactly the support I needed to complete the book. Thanks in particular to Bhavya Rao, Sonam Pandey, and Abhishek Jadhav. I look forward to our next project!

			About the reviewer

			Aakash Goplani is a JavaScript developer with eight years of rich experience in developing web applications using Angular and Svelte. Aakash is also experienced in developing hybrid mobile applications using Ionic. Apart from web development, Aakash has also worked on content management systems using Oracle WebCenter Sites.

		

	
		
			Table of Contents

			Preface

			Part 1: Learning the TDD Cycle

			1

			Setting up for Testing

			Technical requirements

			Creating a new SvelteKit project

			Installing and running Playwright

			Running Vitest

			Preparing your development environment for frequent unit testing

			Choosing your editor

			Creating a shell alias

			Changing the test runner to report each test name

			Watching the test fail

			Configuring support for Svelte component tests

			Installing jsdom and testing library helpers

			Writing a test for the DOM

			Writing a first Svelte component test

			Ensuring the DOM is cleared after each test run

			Restoring mocks automatically

			Optional configuration

			Configuring Prettier’s print width

			Reducing the tab width in the Terminal

			Summary

			2

			Introducing the Red-Green-Refactor Workflow

			Technical requirements

			Understanding the Red-Green-Refactor workflow

			Thinking ahead with some up-front design

			The Birthdays application

			Writing a failing test

			Making it pass

			Repeating the process

			Refactoring the tests

			Cleaning up warnings

			Adding a third test to triangulate

			Adding styles to the component

			Summary

			3

			Loading Data into a Route

			Technical requirements

			Using Playwright to specify end-to-end behavior

			Writing the test and watching it fail

			Understanding the difference between Vitest tests and Playwright tests

			Deciding an approach to make the end-to-end test pass

			Test-driving the load function

			Test-driving the page component

			Summary

			4

			Saving Form Data

			Technical requirements

			Adding a Playwright test for data input

			Test-driving a SvelteKit form

			Adding the form component to the page component

			Test-driving a SvelteKit form action

			Building a factory for the FormData objects

			Building a Vitest test suite for the form action

			Summary

			5

			Validating Form Data

			Technical requirements

			Adding a Playwright test for validating form errors

			Displaying SvelteKit form errors

			Passing the form data through the page component

			Validating data in the form action

			Clearing the data store between tests

			Summary

			6

			Editing Form Data

			Technical requirements

			Planning the path ahead

			Adding a Playwright test for editing form data

			Evolving the repository to allow ID lookup

			Updating the form action to handle edits

			Replacing items in the repository

			Protecting against unknown identifiers

			Updating return values to include identifiers

			Updating the list page with a new edit mode

			Adding a toggle mode to the page

			Summary

			Part 2: Refactoring Tests and Application Code

			7

			Tidying up Test Suites

			Technical requirements

			Using page object models in Playwright tests

			Extracting an action helper

			Extracting a factory method for creating data objects

			Summary

			8

			Creating Matchers to Simplify Tests

			Technical requirements

			Test-driving the pass or failure of an expectation

			Understanding matcher structure

			Testing a matcher

			Writing the toBeUnprocessableEntity matcher

			Providing extra information in failure messages

			Implementing the negated matcher

			Updating existing tests to use the matcher

			Summary

			9

			Extracting Logic Out of the Framework

			Technical requirements

			Migrating tests with a test todo list

			Porting tests from the form action

			Duplicating form validation behavior in the repository

			Extracting common methods

			Summary

			10

			Test-Driving API Endpoints

			Technical requirements

			Creating a service test with Playwright

			Adding an API endpoint for retrieving data

			Adding an API endpoint for saving data

			Adding an API endpoint for updating data

			Summary

			11

			Replacing Behavior with a Side-By-Side Implementation

			Technical requirements

			Updating the route loader to use the API

			Updating the page form action to use the API

			Using a server hook to seed sample data

			Summary

			12

			Using Component Mocks to Clarify Tests

			Technical requirements

			Avoiding component mocks

			Avoiding overtesting using TDD

			Using hand-rolled component stubs

			Rendering all props within a component stub

			Checking the ordering of component instances

			Dealing with complex props

			Dispatching component events

			Using a component mock library

			Installing the library

			Writing tests using the componentDouble function

			Summary

			13

			Adding Cucumber Tests

			Technical requirements

			Creating the feature file

			Setting up a Playwright world object

			Implementing the step definitions

			Summary

			Part 3: Testing SvelteKit Features

			14

			Testing Authentication

			Technical requirements

			Testing authentication with Playwright

			Creating an auth profile for dev and test modes

			Writing tests for login

			Updating existing tests to authenticate the user

			Testing authentication with Vitest

			Defining a session factory

			Updating existing tests for page load functions

			Updating existing tests for form actions

			Summary

			15

			Test-Driving Svelte Stores

			Technical requirements

			Designing a store for birthdays

			Writing tests for reading store values

			Writing tests for updating store values

			Summary

			16

			Test-Driving Service Workers

			Technical requirements

			Adding a Playwright test for offline access

			Implementing the service worker

			Summary

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			What excites me about Svelte? Its simplicity, elegance, and pragmatic design ethos. Its growing success in the marketplace suggests that other programmers feel the same way too. I’m not surprised by this. When we write software for the JavaScript ecosystem, we have a choice: we can either accept and be consumed by the complexity of its primary constituents (React, Node.js, webpack, Babel, and so on) or we can actively seek out the marginalized products and processes that aim to simplify our work.

			It’ll be no surprise to you that I place Test-Driven Development (TDD) firmly in this second camp. Because without it, what you have is a development workflow that largely consists of chasing bugs and carrying a lot of context in your head. This is always what I think of as the bad old days.

			When I first started programming as a youngster, I remember the infuriating experience of debugging – writing some code, trying it out, finding bugs, and struggling for hours to figure out where the errors were hidden in my code. It seemed like a natural part of programming: devoting a large portion of my time to debugging. And this carried through into my first job as a C++ desktop application developer. (It wasn’t long before I discovered TDD and how it could help me have a simpler, quieter, calmer life.)

			Then there’s the mental context you need when you plan out a grand design for the next feature you’re about to implement. You have to know where you’re at, what you’ve done, and what’s next, and do your best to not stray from the path. That’s hard when you’re being derailed by debugging and other distractions.

			Sure, you can write a to-do list or keep a diary, but why not write some automated tests instead? They not only remind you where you’re at but they check for bugs, too.

			That is essentially the idea behind TDD.

			And if you like Svelte because it simplifies your life and makes you feel like you’re swimming rather than wading through mud, I think you’ll also like TDD. This book shows you the how and why of Svelte with TDD. I hope you enjoy it. Thanks for reading!

			Who this book is for

			If you’re a Svelte programmer, this book is for you. I aim to show you how TDD can improve your work. If you’re already knowledgeable about TDD, I hope there’s still a lot you can learn from comparing your own process with mine.

			If you don’t already know Svelte, but you’re familiar with any modern frontend framework such as React, you should be able to follow along and pick things up as you go. TDD is a wonderful platform for explaining new technologies, and it’s entirely plausible that you’ll be able to pick up Svelte simply by following this book.

			What this book covers

			Chapter 1, Setting up for Testing, covers the SvelteKit package and configuring your development environment for effective TDD work with both the Vitest and Playwright test runners.

			Chapter 2, Introducing the Red-Green-Refactor Workflow, shows how the basic TDD process works, and discusses why it’s useful. It introduces the Vitest test runner for writing unit tests.

			Chapter 3, Loading Data into a Route, demonstrates how to load data into a Svelte page component using TDD. It introduces the Playwright test runner for writing end-to-end tests.

			Chapter 4, Saving Form Data, shows how to implement a basic HTML form along with its submit action.

			Chapter 5, Validating Form Data, adds form validation rules to the form built in Chapter 4.

			Chapter 6, Editing Form Data, shows how TDD can be used to evolve a system design, by modifying the form to work in edit mode.

			Chapter 7, Tidying up Test Suites, switches focus to look at techniques for better testing, starting with a look at how test suites can be kept neat and tidy.

			Chapter 8, Creating Matchers to Simplify Tests, explains an advanced technique for managing the complexity of test suites: creating and using expectation matcher functions.

			Chapter 9, Extracting Logic Out of the Framework, discusses how you can make your application design more testable by moving logic out of framework-controlled modules.

			Chapter 10, Test-Driving API Endpoints, looks at how you can use TDD to implement API calls.

			Chapter 11, Replacing Behavior with a Side-By-Side Implementation, shows how TDD is useful even when faced with complex refactoring exercises.

			Chapter 12, Using Component Mocks to Clarify Tests, introduces the most complex piece of frontend automated testing: component mocking.

			Chapter 13, Adding Cucumber Tests, introduces the Cucumber test framework and shows how it can be applied to a SvelteKit project.

			Chapter 14, Testing Authentication, shows an approach to writing both unit and end-to-end tests for authentication libraries.

			Chapter 15, Test-Driving Svelte Stores, provides a brief look at how Svelte stores can be effectively tested.

			Chapter 16, Test-Driving Service Workers, shows how to write automated tests for service workers, as supported by the SvelteKit framework.

			To get the most out of this book

			There are two ways to read this book.

			The first is to use it as a reference when you are faced with specific testing challenges. Use the index to find what you’re after and move to that page.

			The second, and the one I’d recommend starting with, is to follow the walk-throughs step by step, building your own code base as you go along. The companion GitHub repository has a directory for each chapter (such as Chapter01) and then, within that, two directories:

			
					Start, which is the starting point for the chapter; you should start here if you’re following along.

					Complete, which contains completed solutions to all the exercises.

			

			You will need to be at least a little proficient with Git; a basic understanding of the branch, checkout, clone, commit, diff, and merge commands should be sufficient.

			Take a look at the README.md file in the GitHub repository for more information and instructions on working with the code base.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Svelte-with-Test-Driven-Development. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/GD8Lg.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We can start with a test that specifies what this Birthday component will do with its name prop.”

			A block of code is set as follows:

			
import { describe, it, expect } from 'vitest';
import {
  render,
  screen
} from '@testing-library/svelte';
import Birthday from './Birthday.svelte';

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
describe('Birthday', () => {
  it('displays the name of the person', () => {
    render(Birthday, { name: 'Hercules' });
  });
});

			Any command-line input or output is written as follows:

			
mkdir birthdays
cd birthdays
npm create svelte@latest

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “The user clicks the Save button.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Svelte with Test-Driven Development, we’d love to hear your thoughts! Please select https://www.amazon.in/review/create-review/error?asin=1837638330 for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			 

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781837638338

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1: Learning the TDD Cycle

			The first part introduces the Test-Driven Development (TDD) workflow and explains how you can use it to build Svelte applications.

			This part has the following chapters:

			
					Chapter 1, Setting up for Testing

					Chapter 2, Introducing the Red-Green-Refactor Workflow

					Chapter 3, Loading Data into a Route

					Chapter 4, Saving Form Data

					Chapter 5, Validating Form Data

					Chapter 6, Editing Form Data

			

		

		
			
			

		

		
			
			

		

		
			
			

		

	


		
			1

			Setting up for Testing

			Back when you were a young schoolchild, you probably learned to write by using a pencil on paper. Now that you’re older, it’s likely you prefer pens. For learners, pencils have a distinct advantage over pens in that mistakes are easy to correct, and when you first start writing out letters and words, you will be making a lot of mistakes. Pencils are also safer for small children – no caps or messy ink to worry about.

			But pencils remain a valid writing instrument, and you might still have a personal preference for pencils over pens. The pencil is a perfectly good tool for the job.

			Test-Driven Development (TDD) is a tool that can serve you in a similar way. It’s a great way to learn and grow as a developer. Many experienced developers prefer it for their day-to-day work over any alternative.

			In this chapter, you’ll configure a work environment that’s designed to help you get the most out of TDD techniques. Since TDD asks you to do a bunch of small repetitive tasks – writing tests, running tests, committing early and often, and switching between test code and application code – it’s important that each of those tasks can be done easily and quickly.

			It follows that an important personal discipline to cultivate is that of objectively critiquing your development tools. For every tool that you use, ask yourself this: is this tool serving me well? Is it easy and quick to use?

			This could be your Integrated Development Environment (IDE), your operating system, your source code repository, your note-taking program, your time management utilities, and so on. Anything and everything you use in your day job. Scrutinize your tools. Throw away whatever isn’t working for you.

			This is a very personal thing and depends a lot on experience and individuality. And your preferences are likely to change over time, too.

			I often reach for very plain, simple, keyboard-driven tools that work for me consistently, regardless of the programming language I’m working in, such as the text editor Vim. It doesn’t offer any knowledge about the JavaScript programming language or the Svelte framework, but it makes me extremely effective at editing text.

			But if you care about learning JavaScript or program design, then you might prefer an IDE that gives you JavaScript auto-complete suggestions and helpful project assistance.

			This chapter walks through the setup of a new SvelteKit project and highlights all the individual choices you’ll need to make, and the additional extras you’ll need in order to practice effective TDD.

			It covers the following topics:

			
					Creating a new SvelteKit project

					Preparing your development environment for frequent test runs

					Configuring support for Svelte component tests

					Optional configuration you may want to try

			

			By the end of the chapter, you’ll know how to create a new Svelte project that is ready for test-driven feature building.

			Technical requirements

			The code for the chapter can be found online at https://github.com/PacktPublishing/Svelte-with-Test-Driven-Development/tree/main/Chapter01/Start.

			You will need to have a recent version of Node.js installed. See https://nodejs.org for instructions on how to install and update Node.js for your platform.

			Creating a new SvelteKit project

			In this section, you’ll use the default method for creating a new SvelteKit project, which uses the npm create command. (For reference, you can also check the official documentation at https://kit.svelte.dev/docs/creating-a-project.)

			The project we are building is called Birthdays and the npm package name is birthdays. It will be introduced properly in Chapter 2, Introducing the Red-Green-Refactor Workflow.

			SvelteKit 1.0

			These instructions were valid at the time of writing, for SvelteKit 1.0. It’s likely things will improve in time, so you may find some of the later instructions will become unnecessary or may no longer work. Check the book’s GitHub repository for the most up-to-date instructions.

			For now, we’ll concentrate on the mechanics of building a new project:

			
					Start by opening a Terminal window in your usual work location (for me, this is ~/work on my Mac). Then type the following commands:
mkdir birthdays
cd birthdays
npm create svelte@latest


			

			If this is the first Svelte project you’ve created, you’ll be presented with the following message from npm:

			
Need to install the following packages:
  create-svelte@2.1.0
Ok to proceed? (y)

			
					Answer y to that. You’ll see a bunch more questions, which we’ll go through individually:
create-svelte version 2.1.0
Welcome to SvelteKit!
? Where should we create your project?
  (leave blank to use current directory) ›


					Since you’re already in the birthdays directory, just leave this blank, and hit Enter. Next, you’ll be asked about which app template you’d like to use:
? Which Svelte app template? › - Use arrow-keys. Return to submit.
    SvelteKit demo app
❯   Skeleton project - Barebones scaffolding for your new SvelteKit app
    Library skeleton project


					Choose Skeleton project. Next, you’ll be asked about TypeScript:
? Add type checking with TypeScript? › - Use arrow-keys. Return to submit.
    Yes, using JavaScript with JSDoc comments
    Yes, using TypeScript syntax
❯   No


					For this question, I’ve chosen No. That’s because this book is about testing techniques, not typing techniques. That’s not to say that this book doesn’t apply to TypeScript projects – it most certainly does – just that typing is not the topic at hand.

			

			If you want to use TypeScript

			If you’re a seasoned TypeScript developer, please feel free to choose that option instead. The code samples in the book won’t need too much modification except for the additional type definitions, which you’ll need to provide.

			
					Finally, you’ll be asked about extra package dependencies:
? Add ESLint for code linting? › No / Yes
? Add Prettier for code formatting? › No / Yes
? Add Playwright for browser testing? › No / Yes
    ✔ Add Vitest for unit testing? … No / Yes


					Choose Yes as the answer to all these questions. Although we won’t mention ESLint in this book, it’s always good to have. And we’ll need Playwright and Vitest.

			

			You’ll then see a summary of all your choices, followed by a Next steps list:

			
Your project is ready!
✔ ESLint
  https://github.com/sveltejs/eslint-plugin-svelte3
✔ Prettier
  https://prettier.io/docs/en/options.html
  https://github.com/sveltejs/prettier-plugin-svelte#options
✔ Playwright
  https://playwright.dev
✔ Vitest
  https://vitest.dev
Install community-maintained integrations:
  https://github.com/svelte-add/svelte-adders
Next steps:
  1: npm install (or pnpm install, etc)
  2: git init && git add -A && git commit -m "Initial commit" (optional)
  3: npm run dev -- --open

			We’ll perform these next steps but before we do that, we’ll run some extra verification steps. It’s always good to check your work.

			Type npm install into the Terminal and confirm that everything is installed correctly. Then, go ahead and commit your changes. (If you’ve forked the GitHub repository, you won’t need to use the git init command.)

			Committing early and often

			It’s a good idea to be checking in your work very often. While you’re learning the TDD approach to testing, it can be helpful to check in after every single test. This might seem like a lot but it will help you backtrack in case you get stuck.

			Then, run npm run dev – –open. It should open your web browser and show you a "Welcome to SvelteKit" message.

			You can then close the browser and hit Ctrl + C in the Terminal to stop the web server.

			Next, let’s verify the Playwright and Vitest dependencies.

			Installing and running Playwright

			Although we won’t use Playwright in this chapter, it’s a good idea to get it installed and verify that it’s working.

			Start by running npm test at the command line:

			
work/birthdays % npm test
> birthdays@0.0.1 test
> playwright test
Running 1 test using 1 worker
[WebServer]
[WebServer]
[WebServer] Generated an empty chunk: "hooks".
[WebServer]
  ✘  1 test.js:3:1 › index page has expected h1 (7ms)
  1) test.js:3:1 › index page has expected h1 =============================================
    browserType.launch: Executable doesn't exist at /Users/daniel/Library/Caches/ms-playwright/chromium-1041/chrome-mac/Chromium.app/Contents/MacOS/Chromium
    ...
  1 failed
    test.js:3:1 › index page has expected h1 ============================================

			If you’ve never installed Playwright before, you’ll see a message like the preceding one.

			Playwright has its own environment setup to do, such as installing Chromium onto your machine. You can install it with the following command:

			
npx playwright install

			Then, trying npm test again should give you the following output, showing that the one example test that’s included is passing:

			
> birthdays@0.0.1 test
> playwright test
Running 1 test using 1 worker
[WebServer]
[WebServer]
[WebServer] Generated an empty chunk: "hooks".
[WebServer]
  ✓  1 test.js:3:1 › index page has expected h1 (307ms)
  1 passed (4s)

			This test, index page has expected h1, is a test for the "Welcome to SvelteKit" message you saw earlier when you launched the application in the browser.

			Running Vitest

			Running npm run test:unit is the default way to run Vitest tests. Try it now:

			
work/birthdays % npm run test:unit
> birthdays@0.0.1 test:unit
> vitest
 DEV  v0.25.8 /Users/daniel/work/birthdays
 ✓ src/index.test.js (1)
 Test Files  1 passed (1)
      Tests  1 passed (1)
   Start at  15:56:18
   Duration  737ms (transform 321ms, setup 0ms, collect 16ms, tests 2ms)
 PASS  Waiting for file changes...
       press h to show help, press q to quit

			This automatically puts you in watch mode, which means any changes to the filesystem will cause tests to re-run. Press q to quit this mode. I personally don’t use watch mode and we won’t be using it in this book. See the Creating a shell alias section for a little discussion on why this is.

			In the next section, we’ll make the ergonomics of the project a little easier for us.

			Preparing your development environment for frequent unit testing

			In this section, we’ll take some configuration actions that will make our test-driven lives much simpler.

			Choosing your editor

			Let’s start with your choice of code editor. More than likely, this means a choice between an IDE, such as Visual Studio Code, or a plain text editor, such as Vim or Emacs.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/image/Packt_Logo_New.png
<PACKD





OEBPS/toc.xhtml


		

		Contents



			

						Svelte with Test-Driven Development



						Contributors



						About the author



						About the reviewer



						Preface

					

								Who this book is for



								What this book covers



								To get the most out of this book



								Download the example code files



								Download the color images



								Conventions used



								Get in touch



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



						Part 1: Learning the TDD Cycle



						Chapter 1: Setting up for Testing

					

								Technical requirements



								Creating a new SvelteKit project

							

										Installing and running Playwright



										Running Vitest



							



						



								Preparing your development environment for frequent unit testing

							

										Choosing your editor



										Creating a shell alias



										Changing the test runner to report each test name



										Watching the test fail



							



						



								Configuring support for Svelte component tests

							

										Installing jsdom and testing library helpers



										Writing a test for the DOM



										Writing a first Svelte component test



										Ensuring the DOM is cleared after each test run



										Restoring mocks automatically



							



						



								Optional configuration

							

										Configuring Prettier’s print width



										Reducing the tab width in the Terminal



							



						



								Summary



					



				



						Chapter 2: Introducing the Red-Green-Refactor Workflow

					

								Technical requirements



								Understanding the Red-Green-Refactor workflow



								Thinking ahead with some up-front design

							

										The Birthdays application



							



						



								Writing a failing test



								Making it pass

							

										Repeating the process



							



						



								Refactoring the tests

							

										Cleaning up warnings



										Adding a third test to triangulate



							



						



								Adding styles to the component



								Summary



					



				



						Chapter 3: Loading Data into a Route

					

								Technical requirements



								Using Playwright to specify end-to-end behavior

							

										Writing the test and watching it fail



										Understanding the difference between Vitest tests and Playwright tests



							



						



								Deciding an approach to make the end-to-end test pass



								Test-driving the load function



								Test-driving the page component



								Summary



					



				



						Chapter 4: Saving Form Data

					

								Technical requirements



								Adding a Playwright test for data input



								Test-driving a SvelteKit form

							

										Adding the form component to the page component



							



						



								Test-driving a SvelteKit form action

							

										Building a factory for the FormData objects



										Building a Vitest test suite for the form action



							



						



								Summary



					



				



						Chapter 5: Validating Form Data

					

								Technical requirements



								Adding a Playwright test for validating form errors



								Displaying SvelteKit form errors

							

										Passing the form data through the page component



							



						



								Validating data in the form action



								Clearing the data store between tests



								Summary



					



				



						Chapter 6: Editing Form Data

					

								Technical requirements



								Planning the path ahead



								Adding a Playwright test for editing form data



								Evolving the repository to allow ID lookup



								Updating the form action to handle edits

							

										Replacing items in the repository



										Protecting against unknown identifiers



										Updating return values to include identifiers



							



						



								Updating the list page with a new edit mode

							

										Adding a toggle mode to the page



							



						



								Summary



					



				



						Part 2: Refactoring Tests and Application Code



						Chapter 7: Tidying up Test Suites

					

								Technical requirements



								Using page object models in Playwright tests



								Extracting an action helper



								Extracting a factory method for creating data objects



								Summary



					



				



						Chapter 8: Creating Matchers to Simplify Tests

					

								Technical requirements



								Test-driving the pass or failure of an expectation

							

										Understanding matcher structure



										Testing a matcher



										Writing the toBeUnprocessableEntity matcher



							



						



								Providing extra information in failure messages



								Implementing the negated matcher



								Updating existing tests to use the matcher



								Summary



					



				



						Chapter 9: Extracting Logic Out of the Framework

					

								Technical requirements



								Migrating tests with a test todo list



								Porting tests from the form action



								Duplicating form validation behavior in the repository



								Extracting common methods



								Summary



					



				



						Chapter 10: Test-Driving API Endpoints

					

								Technical requirements



								Creating a service test with Playwright



								Adding an API endpoint for retrieving data



								Adding an API endpoint for saving data



								Adding an API endpoint for updating data



								Summary



					



				



						Chapter 11: Replacing Behavior with a Side-By-Side Implementation

					

								Technical requirements



								Updating the route loader to use the API



								Updating the page form action to use the API



								Using a server hook to seed sample data



								Summary



					



				



						Chapter 12: Using Component Mocks to Clarify Tests

					

								Technical requirements



								Avoiding component mocks

							

										Avoiding overtesting using TDD



							



						



								Using hand-rolled component stubs

							

										Rendering all props within a component stub



										Checking the ordering of component instances



										Dealing with complex props



										Dispatching component events



							



						



								Using a component mock library

							

										Installing the library



										Writing tests using the componentDouble function



							



						



								Summary



					



				



						Chapter 13: Adding Cucumber Tests

					

								Technical requirements



								Creating the feature file



								Setting up a Playwright world object



								Implementing the step definitions



								Summary



					



				



						Part 3: Testing SvelteKit Features



						Chapter 14: Testing Authentication

					

								Technical requirements



								Testing authentication with Playwright

							

										Creating an auth profile for dev and test modes



										Writing tests for login



										Updating existing tests to authenticate the user



							



						



								Testing authentication with Vitest

							

										Defining a session factory



										Updating existing tests for page load functions



										Updating existing tests for form actions



							



						



								Summary



					



				



						Chapter 15: Test-Driving Svelte Stores

					

								Technical requirements



								Designing a store for birthdays



								Writing tests for reading store values



								Writing tests for updating store values



								Summary



					



				



						Chapter 16: Test-Driving Service Workers

					

								Technical requirements



								Adding a Playwright test for offline access



								Implementing the service worker



								Summary



					



				



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		

	





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/CourierStd.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/image/Cover.png
Svelte with
Test-Driven Development

Advance your skills and write effective automated tests
with Vitest, Playwright, and Cucumber.js

<> DANIEL IRVINE





OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/image/B19611_QR_Free_PDF.jpg





