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			Preface

			Performance matters!

			I started programming on 8-bit micros, and boy, was that an interesting time! Memory was typically not a problem, as we didn’t write big programs, but they certainly weren’t running fast, especially if you run them with a built-in BASIC interpreter. It is not surprising that I quickly learned assembler and spent lots of early years shifting bits and registers around. So did almost everybody else who wanted to release a commercial application written for one of those computers. There were, more or less, no games and applications written in BASIC simply because they would run too slowly and nobody would use them.

			Times have changed; computers are now fast — incredibly fast! If you don’t believe me, check the code examples for this book. A lot of times, I had to write loops that spin over many million iterations so that the result of changing the code would be noticed at all. The raw speed of processors has also changed the software development world. Low-level languages such as assembler and C mostly gave way to more abstract approaches — C#, C++, Delphi, F#, Java, Python, Ruby, JavaScript, Go, and so on. The choice is yours. Almost anything you write in these languages runs fast or at least fast enough.

			Computers are so fast that we sometimes forget the basic rule — performance matters.

			Customers like programs that operate so fast that they don’t have to think about it. If they have to wait 10 seconds for a form to appear after clicking on a button, they won’t be very happy. They’ll probably still use the software, though, provided that it works for them and doesn’t crash. On the other hand, if you write a data processing application that takes 26 hours to do a job that needs to execute daily, you’ll certainly lose them.

			I’m not saying that you should switch to assembler. Low-level languages are fast, but coding in them is too slow for modern times, and the probability of introducing bugs is just too high. High-level languages are just fine, but you have to know how to use them. You have to know what is fast and what is not, and ideally, you should take this into account when designing code.

			This book will walk you through the different approaches that will help you write better code. Writing fast code is not the same as optimizing a few lines of your program to the max. Most of the time, that is, in fact, the completely wrong approach! However, I’m getting ahead of myself. Let the book speak for itself.

			Who this book is for

			This book was written for all Delphi programmers out there. You will find something interesting inside, whether you are new to programming or a seasoned old soul. I’m talking about basic stuff, such as strings, arrays, lists, and objects, but I’m also discussing parallel programming, memory manager internals, and object linking. There are also plenty of dictionaries, pointers, algorithmic complexities, code inlining, parameter passing, and whatnot.

			So, whoever you are, dear reader, I’m pretty sure you’ll find something new in this book. Enjoy!

			What this book covers

			Chapter 1, About Performance, discusses performance. We’ll dissect the term itself and try to find out what users actually mean when they say that a program performs (or doesn’t perform) well. Then, we will move into the area of algorithm complexity. We’ll skip all the boring mathematics and just mention the parts relevant to programming.

			Chapter 2, Profiling the Code, gives you a basic idea about measuring program performance. We will look at different ways of finding the slow (non-performant) parts of the program, from pure guesswork to measuring tools of a different sophistication, homemade and commercial.

			Chapter 3, Fixing the Algorithm, examines a few practical examples where changing an algorithm can speed up a program dramatically. In the first part, we’ll look at graphical user interfaces and what we can do when a simple update to TListBox takes too long. The second part of the chapter explores the idea of caching and presents a reusable caching class with very fast implementation.

			Chapter 4, Don’t Reinvent, Reuse, admits that sometimes other people will write better code than we may do and that using a good external library is preferred to any other solution. This chapter looks at the Spring4D collections library and explains when and why you should use lists, dictionaries, sets, hashmaps, or other collection types.

			Chapter 5, Fine-Tuning the Code, deals with lots of small things. Sometimes, performance lies in many small details, and this chapter shows how to use them to your advantage. We’ll check the Delphi compiler settings and see which ones affect the code speed. We’ll look at the implementation details for built-in data types and method calls. Using the correct type in the right way can mean a lot. Of course, we won’t forget about the practical side. This chapter will give examples of different optimization techniques, such as extracting common expressions, using pointers to manipulate data, and implementing parts of the solution in assembler.

			Chapter 6, Memory Management, is all about memory. It starts with a discussion on strings, arrays, and how their memory is managed. After that, we will move to the memory functions exposed by Delphi. We’ll see how we can use them to manage memory. Next, we’ll cover records — how to allocate them, how to initialize them, and how to create useful dynamically allocated generic records. We’ll then move into the murky waters of memory manager implementation. I’ll sketch a very rough overview of FastMM, the default memory manager in Delphi. First, I’ll explain why FastMM is excellent, and then I’ll show when and why it may slow you down. We’ll see how to analyze memory performance problems and how to switch the memory manager to a different one. In the last part, we’ll revisit the SlowCode program and reduce the number of memory allocations it makes.

			Chapter 7, Getting Started with the Parallel World, explores the topic of parallel programming. In the introduction, I’ll talk about processes, threads, multithreading, and multitasking to establish some common ground for discussion. After that, you’ll start learning what not to do when writing parallel code. I’ll explain how a user interface must be handled from background threads and what problems are caused by sharing data between threads. Then, I’ll start fixing those problems by implementing various kinds of synchronization mechanisms and interlocked operations. We’ll also deal with the biggest problem synchronization brings to code — deadlocking. As synchronization inevitably slows a program down, I’ll explain how to achieve the highest possible speed using data duplication, aggregation, and communication. Finally, I’ll introduce two third-party libraries that contain helpful parallel functions and data structures.

			Chapter 8, Working with Parallel Tools, focuses on a single topic, Delphi’s TThread class. In the introduction, I’ll explain why I believe that TThread is still important even in this modern age. I will explore different ways in which Tthread-based threads can be managed in your code. After that, I’ll go through the most important TThread methods and properties and explain what they’re good for. In the second part of the chapter, I’ll extend TThread into something more modern and easier to use. First, I’ll add a communication channel so that are able to send messages to the thread. After that, I’ll implement a derived class designed to handle one specific usage pattern and show how this approach simplifies writing parallel code to the extreme.

			Chapter 9, Exploring Parallel Practices, moves the multithreaded programming to more abstract terms. In this chapter, we’ll discuss modern multithreading concepts – tasks and patterns. We’ll look into Delphi’s own implementation, the Parallel Programming Library, and demonstrate the use of TTask/ITask. We’ll look at topics such as task management, exception handling, and thread pooling. After that, we’ll move on to patterns and talk about all Parallel Programming Library patterns – Join, Future, and Parallel For. We will also introduce three custom patterns — Async/Await, Join/Await, and Pipeline.

			Chapter 10, More Parallel Patterns, looks into another external programming library, OmniThreadLibrary, and explores its parallel programming patterns. In this chapter, we will revisit Async/Await, Join/Await, Future, and Pipeline from the OmniThreadLibrary perspective and introduce four new patterns – Parallel Task, Background Worker, Parallel Map, and Timed Task.

			Chapter 11, Using External Libraries, admits that sometimes Delphi is not enough. Sometimes, a problem is too complicated to be efficiently solved by a human. Sometimes, Pascal is just lacking speed. In such cases, we can try finding an existing library that solves our problem. In most cases, it will not support Delphi directly but will provide some kind of C or C++ interface. This chapter looks into linking with C object files and describes typical problems that you’ll encounter on the way. In the second half, we’ll present a complete example of linking to a C++ library, from writing a proxy DLL to using it in Delphi.

			Chapter 12, Best Practices, wraps everything up and revisits all the important topics we explored in previous chapters. At the same time, we’ll drop in some additional tips, tricks, and techniques.

			To get the most out of this book

			You will need basic proficiency with the Delphi development tool. All programs were tested with Delphi 11.3 Alexandria. Most of the examples, however, should also work with older versions, going back to Delphi XE.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Embarcadero RAD Studio or Embarcadero Delphi (11.3 or newer preferred)

						
							
							Windows

						
					

					
							
							Microsoft Visual Studio 2019 or 2022

						
							
					

				
			

			Microsoft Visual Studio is only required to compile some of the examples in Chapter 11, Using External Libraries.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Delphi-High-Performance---Second-Edition. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/GLK5S.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “This default value can be changed in the code by inserting {$INLINE ON}, {$INLINE OFF}, or {$INLINE AUTO} into the source.”

			A block of code is set as follows:

			
{$IFOPT O+}{$DEFINE OPTIMIZATION}{$ELSE}{$UNDEF OPTIMIZATION}{$ENDIF}
{$OPTIMIZATION ON}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
{$IFOPT O+}{$DEFINE OPTIMIZATION}{$ELSE}{$UNDEF OPTIMIZATION}{$ENDIF}
{$OPTIMIZATION ON}

			Any command-line input or output is written as follows:

			
3
3,6

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “They all always work in an unsorted mode, so adding an element takes O(1), while finding and removing an element takes O(n) steps.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Delphi High Performance, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below
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			1

			About Performance

			“My program is not fast enough. Users are saying that it is not performing well. What can I do?”

			These are the words I hear a lot when consulting on different programming projects. Sometimes the answer is simple, sometimes hard, but almost always, the critical part of the answer lies in the question. More specifically, in one word: performing.

			What do we mean when we say that a program is performing well? Actually, nobody cares. What we have to know is what users mean when they say that the program is not performing well. And users, you’ll probably admit, look at the world in a very different way than us programmers.

			Before starting to measure and improve the performance of a program, we have to find out what users really mean by the word performance. Only then can we do something productive about it.

			We will cover the following topics in this chapter:

			
					What is performance?

					What do we mean when we say that a program performs well?

					What can we tell about the code speed by looking at the algorithm?

					How does knowledge of compiler internals help us write fast programs?

			

			Technical requirements

			All code in this chapter was written with Delphi 11.3 Alexandria. It does not use the latest additions to the language, so most of the code could still be executed on Delphi XE and newer. You can find all the examples on GitHub at https://github.com/PacktPublishing/Delphi-High-Performance---Second-Edition/tree/main/ch1.

			What is performance?

			To better understand what we mean when we say that a program is performing well, let’s take a look at a user story. In this book, we will use a fictitious person, namely Mr. Smith, chief of the Antarctica Department of Forestry. Mr. Smith is stationed in McMurdo Base, Antarctica, and he doesn’t have much real work to do. He has already mapped all the forests in the vicinity of the station, and half of the year, it is too dark to be walking around and counting trees, anyway. That’s why he spends most of his time behind a computer. And that’s also why he is very grumpy when his programs are not performing well.

			Some days, he writes long documents analyzing the state of forests in Antarctica. When he is doing that, he wants the document editor to perform well. By that, he actually means that the editor should work fast enough so that he doesn’t feel any delay (or lag, as we call the delay when dealing with user input) while typing, preparing graphs, formatting tables, and so on.

			In this scenario, performance simply means working fast enough and nothing else. If we speed up the operation of the document editor by a factor of 2, or even by a factor of 10, that would make no noticeable improvement for our Mr. Smith. The document editor would simply stay fast enough as far as he is concerned.

			The situation completely changes when he is querying a large database of all of the forests on Earth and comparing the situation across the world to the local specifics of Antarctica. He doesn’t like to wait, and he wants each database query to complete in as short a time as possible. In this case, performance translates to speed. We will make Mr. Smith a happier person if we find a way to speed up his database searches by a factor of 10, or even a factor of 5, or 2. He will be happy with any speedup and he’d praise us up to the heavens.

			After all this hard work, Mr. Smith likes to play a game. While the computer is thinking about the next move, a video call comes in. Mr. Smith knows he’s in for a long chat and he starts resizing the game window so that it will share the screen with a video call application. But the game is thinking hard and is not processing user input and poor Mr. Smith is unable to resize it, which makes him unhappy.

			In this example, Mr. Smith simply expects that the application’s user interface will respond to his commands. He doesn’t care whether the application takes some time to find the next move, as long as he can do with the application what he wants to. In other words, he wants a user interface that doesn’t block.

			Different types of speed

			It is obvious from the previous example that we don’t always mean the same thing when we talk about a program’s speed. There is a real speed, as in the database example, and there is a perceived speed, hinted at in the document editor and game scenario. Sometimes, we don’t need to improve the program speed at all. We just have to make it not stutter while working (by making the user interface responsive at all times) and users will be happy.

			We will deal with two types of performance in this book:

			
					Programs that react quickly to user input

					Programs that perform computations quickly

			

			As you’ll see, the techniques to achieve the former and the latter are somewhat different. To make a program react quickly, we can sometimes just put a long operation (as was the calculation of the next move in the fictitious game) into a background thread. The code will still run as long as in the original version but the user interface won’t be blocked and everybody will be happy.

			To speed up a program (which can also help with a slowly reacting user interface), we can use different techniques, from changing the algorithm to changing the code so that it will use more than one CPU at once, to using a hand-optimized version, either written by us or imported from an external library.

			To do anything, we have to know which part of the code is causing a problem. If we are dealing with a big legacy program, the problematic part may be hard to find. In the rest of this chapter, we will look at different ways to locate such code. We’ll start by taking an educated guess and then we’ll improve that by measuring the code speed, first by using home-grown tools and then with a few different open source and commercial programs.

			Algorithm complexity

			Before we start with the dirty (and fun) job of improving program speed, I’d like to present a bit of computer science theory, namely, Big O notation.

			You don’t have to worry, I will not use pages of mathematical formulas and talk about infinitesimal asymptotes. Instead, I will just present the essence of Big O notation, the parts that are important to every programmer.

			In the literature and, of course, on the web, you will see expressions such as O(n), O(n^2), O(1), and similar. This fancy-looking notation hides a really simple story. It tells us how much slower the algorithm will become if we increase the data size by a factor of n.

			Information

			The n^2 notation means “n to the power of two,” or n2. This notation is frequently used on the internet because it can be written with standard ASCII characters. This book uses the more readable variant, O(n2).

			Let’s say we have an algorithm with a complexity of O(n), which on average takes T seconds to process input data of size N. If we increase the size of the data by a factor of 10 (to 10*N), then the algorithm will (on average) also take 10 times more time (that is, 10*T) to process the data. If we process 1,000 times more data, the program will also run 1,000 times slower.

			If the algorithm complexity is O(n2), increasing the size of the data by a factor of 10 will cause the algorithm to run 102 or 100 times longer. If we want to process 1,000 times more data, then the algorithm will take 1,0002 or a million times longer, which is quite a hit. Such algorithms are typically not very useful if we have to process large amounts of data.

			Note

			Most of the time, we use Big O notation to describe how the computation time relates to the input data size. When this is the case, we call Big O notation time complexity. On the other hand, sometimes the same notation is used to describe how much storage (memory) the algorithm is using. In that case, we are talking about space complexity.

			You may have noticed that I was using the word average a lot in the last few paragraphs. When talking about the algorithm complexity, we are mostly interested in the average behavior, but sometimes we will also need to know about the worst behavior. We rarely talk about the best behavior because users don’t really care much if the program is sometimes faster than average.

			Let’s look at an example. The following function checks whether a string parameter value is present in a string list:

			
function IsPresentInList(strings: TStrings; const value: string): Boolean;
var
   i: Integer;
begin
  Result := False;
  for i := 0 to strings.Count - 1 do
    if SameText(strings[i], value) then
      Exit(True);
end;

			What can we tell about this function? The best case is really simple—it will find that value is equal to strings[0] and it will exit. Great! The best behavior for our function is O(1). That, sadly, doesn’t tell us much as that won’t happen frequently in practice.

			The worst behavior is also easy to find. If value is not present in the list, the code will have to scan all of the strings list before deciding that it should return False. In other words, the worst behavior is O(n), if the n represents the number of elements in the list. It is also quite obvious (and simple to prove) that, on average, this algorithm finds an element in n/2 steps. Is the Big O limit for this search, therefore, O(n/2)?

			Note

			Big O limits don’t care about constant factors. If an algorithm would use n/2 steps on average, or even just 0.0001 * n steps, we would still write this down as O(n). Of course, an O(10 * n) algorithm is slower than an O(n) algorithm, and that is absolutely important when we fine-tune the code, but no constant factor C will make O(C * n) faster than O(log n) if n gets sufficiently large.

			There are better ways to check whether an element is present in some data than searching the list sequentially. We will explore one of them in the next section, Big O and Delphi data structures.

			While the function of n inside the O() notation can be anything, there are some O functions that appear constantly in standard programming problems. The following table shows those Big O limits and the most common examples of problems that belong to each class:

			
				
					
					
				
				
					
							
							Time complexity

						
							
							Common examples of problems with that time complexity

						
					

				
				
					
							
							O(1)

						
							
							Accessing array elements

						
					

					
							
							O(log n)

						
							
							Search in an ordered list

						
					

					
							
							O(n)

						
							
							Linear search

						
					

					
							
							O(n log n)

						
							
							Quick sort (average behavior)

						
					

					
							
							O(n2)

						
							
							Quick sort (worst behavior), naive sort (bubble sort, insertion sort, selection sort)

						
					

					
							
							O(cn)

						
							
							Recursive Fibonacci, traveling salesman problem using dynamic programming (c is some numeric constant)

						
					

				
			

			Table 1.1 – Big O limits of the most commonly encountered programming problems

			If we care about program performance, then O(1) algorithms are of special interest to us as they present algorithms that don’t get slower (at least, not noticeably) when we increase the problem size. We’ll see an example of such O(1) algorithms in the next section.

			When we deal with algorithms that search in some datasets, we usually try to make them behave as O(log n), not O(n), as the former slows down much, much slower than the latter.

			Another big class of problems deals with sorting the data. While the naive approaches sort in O(n2), better algorithms (such as merge sort and quicksort) need on average just O(n log n) steps.

			The following figure shows how the time complexity for these typical limits (we have used 2n as an example of a more generic cn) grows when we increase the problem size up to 20-fold:

			
				
					[image: Figure 1.1 – Comparison of growth for ﻿the most commonly encountered Big-O limits]
				

			

			Figure 1.1 – Comparison of growth for the most commonly encountered Big-O limits

			We can see that O(1) and O(log n) grow very slowly. While O(n log n) grows faster than O(n), it also grows much slower than O(n2), which we had to stop plotting when data was increased nine-fold.

			O(2n) starts slowly and looks like a great solution for small data sizes (small n), but then it starts rising terribly fast, much faster than O(n2).

			The following table shows how fast O(n log n) and O(n2) are growing if we compare them with O(n), and how quickly O(2n) explodes.

			The Data size column shows the data size increase factor. The number 10 in this column, for example, represents input with 10 times more elements than in the original data:
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			Table 1.2 – Examples of a growth factor for the most commonly encountered Big-O limits

			We can see from this table that O(log n) algorithms present a big improvement over O(n) algorithms (8 versus 100 times increase in time when data increases 100-fold). We can also see that O(2n) quickly becomes completely unmanageable.

			The last cell in this table is particularly interesting. There are different estimates for the number of elementary particles (electrons, protons, neutrons, and so on) in the visible universe, but they all lie somewhere around 1090. Suppose we have a computer that can solve an O(2n) algorithm in a reasonable time. If we were to increase the input data by a factor of just 300, then we would need 1090 computers to solve the new problem in the same time. That is as much as the number of particles in the visible universe!

			Tip

			Don’t use algorithms that have time complexity O(2n). It won’t end well.

			Big O and Delphi data structures

			Delphi’s Run-Time Library (RTL) contains many data structures (classes that are specifically designed to store and retrieve data), mostly stored in System.Classes and System.Generics.Collections units that greatly simplify everyday work. We should, however, be aware of their good and bad sides.

			Every data structure in the world is seeking a balance between four different types of data access: accessing data, inserting data, searching for data, and deleting data. Some data structures are good in some areas, others in different ones, but no data structure in this world can make all four operations independent of data size.

			When designing a program, we should therefore know what our needs are. That will help us select the appropriate data structure for the job.

			The most popular data structure in Delphi is undoubtedly TStringList. It can store a large number of strings and assign an object to each of them. It can—and this is important—work in two modes, unsorted and sorted. The former, which is a default, keeps strings in the same order as they were added, while the latter keeps them alphabetically ordered.

			This directly affects the speed of some operations. While accessing any element in a string list can always be done in a constant time (O(1)), adding to a list can take O(1) when the list is not sorted (and the underlying storage does not need to be increased), and O(log n) when the list is sorted.

			Why that big difference? When the list is unsorted, Add just adds a string at its end. If the list is, however, sorted, Add must first find a correct insertion place. It does this by executing a bisection search, which needs O(log n) steps to find the correct place.

			The reverse holds true for searching in a string list. If it is not sorted, IndexOf needs to use a linear search – that is, compare each element one by one to find a match.  In the worst case, this search will have to examine all elements in the list. In a sorted list, it can do it much faster (again, by using a bisection) in O(log n) steps.

			We can see that TStringList offers us two options – either a fast addition of elements or a fast lookup, but not both. In a practical situation, we must look at our algorithm and think wisely about what we really need and what will behave better.

			To sort a string list, you can call its Sort method, or you can set its Sorted property to True. There is, however, a subtle difference that you should be aware of. While calling Sort sorts the list, it doesn’t set its internal is sorted flag, and all operations on the list will proceed as if the list is unsorted. Setting Sorted := True, on the other hand, does both – it sets the internal flag and calls the Sort method to sort the data.

			To store any (non-string) data, we can use traditional TList and TObjectList classes or their more modern generic counterparts, TList<T> and TObjectList<T>. They all always work in an unsorted mode, and so adding an element takes O(1) while finding and removing an element takes O(n) steps.

			All provide a Sort function that sorts the data with a quicksort algorithm (O(n log n) on average) but only generic versions have a BinarySearch method, which searches for an element with a bisection search taking O(log n) steps. Be aware that BinarySearch requires the list to be sorted but doesn’t make any checks to assert that. It is your responsibility to sort the list before you use this function.

			If you need a very quick element lookup, paired with fast addition and removal, then TDictionary is the solution. It has methods for adding (Add), removing (Remove), and finding a key (ContainsKey and TryGetValue) that, on average, function in a constant time, O(1). Their worst behavior is actually quite bad, O(n), but that will only occur on specially crafted sets of data that you will never see in practical applications.

			I’ve told you before that there’s no free lunch and so we can’t expect that TDictionary is perfect. The big limitation is that we can’t access the elements it is holding in a direct way. In other words, there is no TDictionary[i]. We can walk over all elements in a dictionary by using a for statement, but we can’t access any of its elements directly. Another limitation of TDictionary is that it does not preserve the order in which elements were added.

			Delphi also offers two simple data structures that mimic a standard queue (TQueue<T>) and stack (TStack<T>). Both have very fast O(1) methods for adding and removing the data and a simple way to access the elements. The List property enables direct access to the array containing the data.  To insert data, we use Enqueue (queue) or Push (stack), and to remove data, we use Dequeue (queue) or Pop (stack).

			To help you select the right tool for the job, I have put together a table showing the most important data structures and their most important methods, together with average and (when they differ from the average) worst-case time complexities:
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			Table 1.3 – Time complexity of the most important operations on built-in Delphi data structures

			The table shows the time complexity of the most important operations on built-in Delphi data structures. Complexity for the worst case is only listed if it differs from the average complexity. Insertion into a sorted TStringList is not possible, hence the table lists only the complexity for inserting into an unsorted list.

			Data structures in practice

			Enough with the theory already! I know that you, like me, prefer to talk through the code. As one program explains more than a thousand words could, I have prepared a simple demo project: RandomWordSearch.

			This program functions as a very convoluted random word generator. When started, it will load a list of 370,101 English words from a file. It will also prepare three internal data structures preloaded with these words:
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			Figure 1.2 – Random word generator

			The program shows three buttons to the user. All three run basically the same code. The only difference is the test function, which is passed to the centralized word generator as a parameter:

			
procedure TfrmRandomWordSearch.FindGoodWord(
  const wordTest: TWordCheckDelegate);
var
   word: string;
   isWordOK: boolean;
   time: TStopwatch;
begin
  time := TStopwatch.StartNew;
  repeat
    word := GenerateWord;
    isWordOK := wordTest(word);
  until isWordOK or (time.ElapsedMilliseconds > 10000);
  if isWordOK then
    lbWords.ItemIndex := lbWords.Items.Add(Format('%s (%d ms)', 
      [word, time.ElapsedMilliseconds]))
  else
    lbWords.ItemIndex := lbWords.Items.Add('timeout'); end;

			The core of the FindGoodWord method can be easily described:

			
					Generate a random word by calling GenerateWord.

					Call the test function, wordTest, on that word. If this function returns False, repeat Step 1. Otherwise, show the word.

			

			The code is a bit more complicated because it also checks that the word generation part runs for at most 10 seconds, and reports a timeout if no valid word was found in that time.

			The GenerateWord random word generator is incredibly simple. It just appends together lowercase English letters until the specified length (settable in the user interface) is reached:

			
function TfrmRandomWordSearch.GenerateWord: string;
var
  pos: integer;
begin
  Result := '';
  for pos := 1 to inpWordLength.Value do
    Result := Result + 
              Chr(Ord('a') + Random(Ord('z') - Ord('a') + 1));
end;

			Let’s now check the data preparation phase. The not very interesting (and not shown here) OnCreate handler loads data from a file into TStringList and calls the LoadWords method:

			
procedure TfrmRandomWordSearch.LoadWords(wordList: TStringList);
var
  word: string;
begin
  FWordsUnsorted := TStringList.Create;
  FWordsUnsorted.Assign(wordList);
  FWordsSorted := TStringList.Create;
  FWordsSorted.Assign(wordList);
  FWordsSorted.Sorted := True;
  FWordsDictionary := TDictionary<string,boolean>.Create(
    wordList.Count);
  for word in wordList do
    FWordsDictionary.Add(word, True);
end;

			The first data structure is an unsorted TStringList, FWordsUnsorted. Data is just copied from the list of all words by calling the Assign method.

			The second data structure is a sorted TStringList, FWordsSorted. Data is firstly copied from the list of all words. The list is then sorted by setting FWordsSorted.Sorted := True.

			The last data structure is TDictionary, FWordsDictionary. TDictionary always stores pairs of keys and values. In our case, we only need the keys part as there is no data associated with any specific word, but Delphi doesn’t allow us to ignore the values part and so the code defines the value as a Boolean and always sets it to True.

			Although the dictionaries can grow, they work faster if we can initially set the number of elements that will be stored inside. In this case, that is simple—we can just use the length of wordList as a parameter to TDictionary.Create.

			The only interesting part of the code left is the OnClick handlers for all three buttons. All three call the FindGoodWord method, but each passes in a different test function.

			When you click on the Unsorted list button, the test function checks whether the word can be found in the FWordsUnsorted list by calling the IndexOf function. As we will mostly be checking non-English words (remember, they are just random strings of letters), this IndexOf function will typically have to compare all 370,101 words before returning -1:

			
procedure TfrmRandomWordSearch.btnUnsortedListClick(Sender: TObject);
begin
  FindGoodWord(
    function (const word: string): boolean
    begin
      Result := FWordsUnsorted.IndexOf(word) >= 0;
    end);
end;

			When you click on the Sorted list button, the test function calls FWordsSorted.IndexOf. As this TStringList is sorted, IndexOf will use a binary search that will need at most log(307101) = 19 (rounded up) comparisons to find out that a word is not found in the list. As this is much less than 370,101, we can expect that finding words with this approach will be much faster:

			
procedure TfrmRandomWordSearch.btnSortedListClick(Sender: TObject);
begin
  FindGoodWord(
    function (const word: string): boolean
    begin
      Result := FWordsSorted.IndexOf(word) >= 0;
    end);
end;

			A click on the last button, Dictionary, calls FWordsDictionary.ContainsKey to check whether the word can be found in the dictionary, and that can usually be done in just one step. Admittedly, this is a bit of a slower operation than comparing two strings, but still, the TDictionary approach should be faster than any of the TStringList methods:

			
procedure TfrmRandomWordSearch.btnDictionaryClick(Sender: TObject);
begin
  FindGoodWord(
    function (const word: string): boolean
    begin
      Result := FWordsDictionary.ContainsKey(word);
    end);
end;

			If we use the terminology from the last section, we can say that the O(n) algorithm (unsorted list) will run much slower than the O(log n) algorithm (sorted list), and that the O(1) algorithm (dictionary) will be the fastest of them all. Let’s check this in practice.

			Start the program and click on the Unsorted list button a few times. You’ll see that it typically needs from a few hundred milliseconds to a few seconds to generate a new word. As the process is random and dependent on CPU speed, your numbers may differ quite a lot from mine. If you are only getting timeout messages, you are running on a slow machine and you should decrease Word length to 3.

			If you increment Word length to 5 and click the button again, you’ll notice that the average calculation time will grow up to a few seconds. You may even get an occasional timeout. Increase it to 6 and you’ll mostly be getting timeouts. We are clearly hitting the limits of this approach.

			Prepare now to be dazed! Click on the Sorted list button (while keeping Word length at 6) and words will again be calculated blazingly fast. On my computer, the code only needs 10 to 100 milliseconds to find a new word:
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			Figure 1.3 – Testing with different word lengths and with the first two algorithms

			To better see the difference between a sorted list and a dictionary, we have to crank up the word length again. Setting it to 7 worked well for me. The sorted list needed from a few hundred milliseconds to a few seconds to find a new word, while the dictionary approach mostly found a new word in under 100 milliseconds.

			Increase Word length to 8 and the sorted list will start to time out while the dictionary will still work. Our O(1) approach is indeed faster than the O(log n) code:
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			Figure 1.4 – Comparing the sorted list (first six words and the two after “timeout”) with the dictionary approach (next five and last two)

			While knowledge of algorithms and their complexity is useful, it will not help on every occasion. Sometimes, you're already using the best possible algorithm but your program is still too slow. At such times, you’ll want to find the slow parts of the program and speed them up with whatever trick possible. To do that, you have to find them first, which is the topic of the rest of this chapter.

			Mr. Smith’s first program

			While I was talking about theory and data structures and best practices, our friend Mr. Smith read everything about polar forests on the internet and then got really bored. In a moment of sheer panic—when he was thinking about watching videos of cute kittens for the whole polar night—he turned to programming. He checked various internet sources and decided that Delphi is the way to go. After all, he could use it to put together a new game for iOS and Android and make lots of money while waiting for the sun to show up!

			As he didn’t have any programming literature on the Antarctic base, he learned programming from internet resources. Sadly, he found most of his knowledge on Experts Exchange and Yahoo Answers, and his programs sometimes reflect that.

			As of this moment, he has written one working program (and by working, I mean that it compiles), but he is not really sure what the program actually does. He only knows that the program is a bit slow and because of that, he named it SlowCode.

			His program is a console mode program, which, upon startup, calls the Test method:

			
procedure Test;
var
  data: Tarray<Integer>;
  highBound: Integer;
begin
  repeat
    Writeln('How many numbers (0 to exit)?');
    Write('> ');
    Readln(highBound);
    if highBound = 0 then
      Exit;
    data := SlowMethod(highBound);
    ShowElements(data);
  until false;
end;

			That one, at least, is easy to grasp. It reads some number, passes it to something called SlowMethod (hmm, Mr. Smith really should work on naming techniques), and then passes the result (which is of the TArray<Integer> type) to a method called ShowElements. When the user types in 0, the program exits.

			Let’s check the SlowMethod function:

			
function SlowMethod(highBound: Integer): TArray<Integer>;
var
  i: Integer;
  temp: TList<Integer>;
begin
  temp := TList<Integer>.Create;
  try
    for i := 2 to highBound do
      if not ElementInDataDivides(temp, i) then
        temp.Add(i);
    Result := Filter(temp);
  Finally
    FreeAndNil(temp);
  end;
end;

			The code creates a list of integers. Then it iterates from a value of 2 to the value that was entered by the user, and for each value, calls ElementInDataDivides, passing in the list and the current value. If that function returns True, the current value is entered into the list.

			After that, SlowMethod calls the Filter method, which does something with the list and converts it into an array of integers that is then returned as a function result:

			
function ElementInDataDivides(data: TList<Integer>; value: Integer): boolean;
var
  i: Integer;
begin
  Result := True;
  for i in data do
    if (value <> i) and ((value mod i) = 0) then
      Exit;
  Result := False;
end;

			The ElementInDataDivides function iterates over all the numbers in the list and checks whether any element in the list divides the value (with the additional constraint that this element in the list must not be equal to the value).

			Let’s check the last part of the puzzle—the Filter function together with a helper function, Reverse:

			
function Reverse(s: string): string;
var
  ch: char;
begin
  Result := '';
  for ch in s do
    Result := ch + Result;
end;
function Filter(list: TList<Integer>): TArray<Integer>;
var
  i: Integer;
  reversed: Integer;
begin
  SetLength(Result, 0);
  for i in list do
  begin
    reversed := StrToInt(Reverse(IntToStr(i)));
    if not ElementInDataDivides(list, reversed) then
    begin
      SetLength(Result, Length(Result) + 1);
      Result[High(Result)] := i;
    end;
  end;
end;

			This once again iterates over the list, reverses the numbers in each element (changes 123 to 321, 3341 to 1433, and so on), and calls ElementInDataDivides on the new number. If it returns True, the element is added to the returned result in a fairly inefficient way.

			I agree with Mr. Smith—it is hard to tell what the program does. Maybe it is easiest to run it and look at the output:
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			Figure 1.5 – Output of Mr. Smith’s first program

			It looks like the program is outputting prime numbers. Not all prime numbers, just some of them. (For example, 19 is missing from the list, and so is 23.) Let’s leave it at that for the moment.

			Looking at code through Big O eyes

			We can tell more about the program, about its good and bad parts, if we look at it through the eyes of time complexity, in terms of the Big O notation.

			We’ll start where the code starts—in the SlowMethod method. It has a loop iterating from 2 to the user-specified upper bound, for i := 2 to highBound do. The size of our data, or n, is therefore equal to highBound, and this for loop has a time complexity of O(n):

			
for i := 2 to highBound do
  if not ElementInDataDivides(temp, i) then
    temp.Add(i);

			Inside this loop, the code calls ElementInDataDivides followed by an occasional temp.Add. The latter will execute in O(1), but we can’t say anything about ElementInDataDivides before we examine it.

			This method also has a loop iterating over the data list. We can’t guess how many elements are in this list, but in the short test that we just performed, we know that the program writes out 13 elements when processing values from 2 to 100:

			
for i in data do
  if (value <> i) and ((value mod i) = 0) then
    Exit;

			For the purpose of this very rough estimation, I’ll just guess that the for i in data do loop also has a time complexity of O(n).

			In SlowMethod, we therefore have an O(n) loop executing another O(n) loop for each element, which gives us O(n2) performance.

			SlowMethod then calls the Filter method, which also contains O(n) for loop calling ElementInDataDivides, which gives us O(n2) complexity for this part:

			
for i in list do
begin
  reversed := StrToInt(Reverse(IntToStr(i)));
  if not ElementInDataDivides(list, reversed) then
  begin
    SetLength(Result, Length(Result) + 1);
    Result[High(Result)] := i;
  end;
end;

			There’s also a conversion to a string, some operation on that string, and conversion back to the StrToInt(Reverse(IntToStr(i))) integer. It works on all elements of the list (O(n)), but in each iteration, it processes all characters in the string representation of a number. As the length of the number is proportional to log n, we can say that this part has a complexity of O(n log n), which can be ignored as it is much less than the O(n2) complexity of the whole method.

			There are also some operations hidden inside SetLength, but at this moment, we don’t know yet what they are and how much they contribute to the whole program. We’ll cover that area in Chapter 6, Memory Management.

			SlowMethod, therefore, consists of two parts, both with complexity O(n2). Added together, that would give us 2*n2, but as we ignore constant factors (that is, 2) in Big O notation, we can only say that the time complexity of SlowMethod is O(n2).

			So what can we say simply by looking at the code?

			
					The program probably runs in O(n2) time. It will take around 100 times longer to process 10,000 elements than 1,000 elements.

					There is a conversion from the integer to the string and back (Filter), which has a complexity of only O(n log n), but it would still be interesting to know how fast this code really is.

					There’s a time complexity hidden behind the SetLength call, which we know nothing about.

					We can guess that, most probably, ElementInDataDivides is the most time-consuming part of the code and any improvements in this method would probably help.

					Fixing the terrible idea of appending elements to an array with SetLength could probably speed up a program, too.

			

			As the code performance is not everything, I would also like to inform Mr. Smith about a few places where his code is less than satisfactory:

			
					The prompt How many numbers is misleading. A user would probably expect it to represent the number of numbers output, while the program actually wants to know how many numbers to test.

					Appending to TArray<T> in that way is not a good idea. Use TList<T> for temporary storage and call its ToArray method at the end. If you need TArray<T>, that is. You can also do all processing using TList<T>.

					SlowMethod has two distinctive parts – data generation, which is coded as a part of SlowMethod, and data filtering, which is extracted in its own method, Filter. It would be better if the first part is extracted into its own method, too.

					Console program? Really? Console programs are good for simple tests, but that is it. Learn VCL or FireMonkey, Mr. Smith!

			

			We can now try and optimize parts of the code (ElementInDataDivides seems to be a good target for that) or, better, we can do some measuring to confirm our suspicions with hard numbers.

			In a more complicated program (what we call real life), it would usually be much simpler to measure the program’s performance than to do such an analysis. This approach, however, proves to be a powerful tool if you are using it while designing code. Once you hear a little voice nagging about the time complexities all the time while you’re writing code, you’ll be on the way to becoming an excellent programmer.

			Summary

			This chapter provided a broad overview of the topics we’ll be dealing with in this book. We took a look at the very definition of performance. Next, we spent some time describing Big O notation for describing time and space complexity and we used it in a simple example. We learned how to analyze existing code and how to estimate its execution time. This enables us to locate potential problems without even executing the code.

			In the next chapter, I will look into the topic of profiling. We will see how we can get more detailed information about the program speed, which is essential before we can start optimizing the code.
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			Profiling the Code

			Now that we know what performance is and how to measure it, we can start speeding up our programs. This is, however, not an easy process. For starters, we must know which parts of the program are slowing us down, and that can sometimes be hard to determine.

			We can, of course, start by guessing. This will sometimes work, but it will often just result in wasted time and frustration. It turns out that it is usually hard to tell what will be a slow part of a complex program. Even if we start by guessing, it is good if we can then confirm our assumption before we start rewriting the code.

			We can do that by adding measurement code, which works great if a program is small or if we know which specific part we want to improve, but most of the time, it is better to use a specialized tool: a profiler.

			In this chapter, we’ll look into both approaches, manual profiling and using an automated tool.

			We will cover the following topics:

			
					Why is it better to measure than to guess?

					How to manually determine which part of the program is the slowest

					What tools can we use to find the slow parts of a program?

			

			Technical requirements

			All code in this chapter was written with Delphi 11.3 Alexandria. It does not use the latest additions to the language, so most of the code can still be executed on Delphi XE and newer versions. You can find all the examples on GitHub at https://github.com/PacktPublishing/Delphi-High-Performance---Second-Edition/tree/main/ch2.

			Don’t guess, measure!

			There is only one way to get a good picture of the fast and slow parts of a program—by measuring it. We can do it manually by inserting time-measuring calls in the code, or we can use specialized tools. We have a name for measuring—profiling—and we call specialized tools for measuring profilers.

			In the rest of this chapter, we’ll look at different techniques for measuring the execution speed. First, we will measure the now familiar program, SlowCode, with a simple software stopwatch, and then we’ll look at a few open source and commercial profilers.

			Before we start, I’d like to point out a few basic rules that apply to all profiling techniques:

			
					Always profile without the debugger. The debugger will slow the execution in unexpected places, and that will skew the results. If you are starting your program from the Delphi integrated development environment (IDE), just press Ctrl + Shift + F9 instead of F9.

					Try not to do anything else on the computer while profiling. Other programs will take the CPU away from the measured program, which will make it run slower.

					Take care that the program doesn’t wait for user action (data entry, button click) while profiling. This will completely skew the report.

					Repeat the tests a few times. Execution times will differ because Windows (and any other operating system (OS) that Delphi supports) will always execute other tasks besides running your program.

					All the preceding points especially hold true for multithreaded programs, which is an area explored in Chapters 7 to 10.

			

			Profiling with TStopwatch

			Delphi includes a helpful unit called System.Diagnostics, which implements a TStopwatch record. It allows us to measure time events with better precision than 1 millisecond and has a pretty exhaustive public interface, as shown in the following code fragment:

			
type
  TStopwatch = record
  public
    class function Create: TStopwatch; static;
    class function GetTimeStamp: Int64; static;
    procedure Reset;
    procedure Start;
    class function StartNew: TStopwatch; static;
    procedure Stop;
    property Elapsed: TTimeSpan read GetElapsed;
    property ElapsedMilliseconds: Int64 read
      GetElapsedMilliseconds;
    property ElapsedTicks: Int64 read GetElapsedTicks;
    class property Frequency: Int64 read FFrequency;
    class property IsHighResolution: Boolean read
      FIsHighResolution;
    property IsRunning: Boolean read FRunning;
  end;

			To use a stopwatch, you first have to create it. You can call TStopwatch.Create to create a new stopped stopwatch or TStopwatch.StartNew to create a newly started stopwatch. As TStopwatch is implemented as record, there’s no need to destroy a stopwatch object.

			When a stopwatch is started, it measures time. To start a stopwatch, call the Start method, and to stop it, call the Stop method. The IsRunning property will tell you whether the stopwatch is currently started. Call the Reset method to reset the stopwatch to zero.

			TStopwatch contains a few functions that return the currently measured time. The most precise of them is ElapsedTicks, but as there is no built-in (public) function to convert this into standard time units, this function is hard to use. My recommendation is to just use the ElapsedMilliseconds property, which will give you elapsed (measured) time in milliseconds.

			For a simple demo, this code will return 1,000 or a bit more:

			
function Measure1sec: int64;
var
  sw: TStopwatch;
begin
  sw := TStopwatch.StartNew;
  Sleep(1000);
  Result := sw.ElapsedMilliseconds;
end;

			Let’s now use this function to measure the SlowMethod method.

			First, you have to add the System.Diagnostics unit to the uses list:

			
uses
  System.SysUtils,
  System.Generics.Collections,
  System.Classes,
  System.Diagnostics;

			Next, you have to create this stopwatch inside SlowMethod, stop it at the end, and write out the elapsed time:

			
function SlowMethod(highBound: Integer): TArray<Integer>;
var
 // existing variables
 sw: TStopwatch;
begin
  sw := TStopwatch.StartNew;
  // existing code
  sw.Stop;
  Writeln('SlowMethod: ', sw.ElapsedMilliseconds, ' ms');
end;

			We can use this code to verify the theory that SlowCode has time complexity O(n2). To do this, we have to measure the execution times for different counts of processed numbers (different values entered at the How many numbers prompt).

			I did some testing for selected values from 10,000 to 1,000,000 and got the following numbers:

			
				
					
					
				
				
					
							
							Highest number

						
							
							Execution time [ms]

						
					

					
							
							10,000

						
							
							15

						
					

					
							
							25,000

						
							
							79

						
					

					
							
							50,000

						
							
							250

						
					

					
							
							75,000

						
							
							506

						
					

					
							
							100,000

						
							
							837

						
					

					
							
							250,000

						
							
							4,515

						
					

					
							
							500,000

						
							
							15,564

						
					

					
							
							750,000

						
							
							30,806

						
					

					
							
							1,000,000

						
							
							54,219

						
					

				
			

			Table 2.1 – Measured speed of the SlowCode program

			If you repeat the tests, you will, of course, measure different values, but the growth rate should be the same.

			For quick confirmation, I have plotted a scatter chart of this data in Excel and the result looks like a square function. To be more sure, I have added a power trendline, which created a function in the form of nc, where c was a constant that Excel calculated from the data. In the case of my specific measurements, this fitting function was y = 10-6 * x1.7751, which is not that far from x2:

			
				
					[image: Figure 2.1 – Curve fitting in Excel (left) and Wolfram Alpha (right)]
				

			

			Figure 2.1 – Curve fitting in Excel (left) and Wolfram Alpha (right)

			Next, I repeated this curve-fitting process on the wonderful Wolfram Alpha (www.wolframalpha.com), where you can find a regression calculator widget, a tool designed specifically for this task. I entered measurements into the widget, and it calculated a fitting function of 4.76372×10^-8 * x2 + 0.0064733 * x - 143.666. If we ignore all unimportant factors and constants, the only part left is x2. Another confirmation for our analysis!

			Now we know how the program behaves in global terms, but we still have no idea of which part of the code is the slowest. To find that out, we also have to measure the execution times of the ElementInDataDivides and Filter methods.
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