

 [image: B16762_MockupCover.png]

 Windows Server Automation with PowerShell Cookbook

 Fourth Edition

 Powerful ways to automate and manage Windows administrative tasks

 Thomas Lee

 [image:]

 BIRMINGHAM—MUMBAI

 Windows Server Automation with PowerShell Cookbook

 Fourth Edition

 Copyright © 2021 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Producer: Caitlin Meadows

 Acquisition Editor – Peer Reviews: Divya Mudaliar

 Project Editor: Parvathy Nair

 Content Development Editor: Lucy Wan

 Copy Editor: Safis Editor

 Technical Editor: Aditya Sawant

 Proofreader: Safis Editor

 Indexer: Rekha Nair

 Presentation Designer: Ganesh Bhadwalkar

 First published: March 2013

 Second edition: September 2017

 Third edition: February 2019

 Fourth edition: July 2021

 Production reference: 1290721

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-80056-845-7

 www.packt.com

 Foreword

 I was excited when Thomas Lee told me he was writing a new book.

 I was even more excited when he told me that it was about Windows Server 2022.

 I was even more excited when he told me that it was using PowerShell 7.

 Thomas Lee has been a fixture of the PowerShell community starting from the moment he disrupted my first presentation about it, shouting wildly: "Take my money! I'll buy it now!". He has watched and participated in every step of the PowerShell journey and has been an effective and articulate advocate for the user community. Thomas effectively communicates the needs of the community to Windows Server and PowerShell teams. Thomas also effectively communicates the new advances of Windows Server and PowerShell to the community. He lets them know both what is possible and how to achieve it.

 As part of his community advocacy, Thomas was forthright about the challenges that Windows administrators were having with PowerShell Core. PowerShell Core was a departure from Windows PowerShell. It moved from .NET Framework to .NET Core. The core benefit of .NET Core was that it was cross-platform – it ran on Linux and it was open source. The core issue with .NET Core was that it did not have all the features of .NET Framework. As such, PowerShell Core did not have all the features of Windows PowerShell. Because it did not have all the features, several partner teams did not support it.

 You know how some teenagers experience a growth spurt and have an awkward period? Core PowerShell was our awkward period. The ability to run anywhere was awesome, there were a bunch of new features, it was much faster, but the lack of critical mass support meant that it wasn't for everyone and every scenario.

 At the end of the day, no one cares about how you make the sausage – they just care about how it tastes. At some point, someone will tell the Herculean story of what was involved in migrating to .NET Core. It was massive and required a complete overhaul of our engineering and test systems. But that overhaul delivered us the gift of agility. And with that agility came increased customer focus and responsiveness. And because PowerShell was open source, the community was able to adapt the product to their needs and go even faster. I remember a video of Jeff Woolsey demonstrating a new capability and Thomas Lee tweeting out: "This is awesome. It kind of feels like PowerShell V1 all over again. SUPER excited." I responded, saying: "Yes, but with much better velocity."

 The virtuous cycle of agility, customer focus, and velocity allowed us to make rapid progress and close the gap in features with Windows PowerShell so that by the time we shipped V7, we decided to change the name to just "PowerShell". No qualifiers. No caveats. Just PowerShell.

 Now to be completely forthright, there are still some things that Windows PowerShell does that PowerShell V7 does not. Based upon low usage and community feedback, we dropped a set of features like Workflow. I was confident that these would not get in the way of managing Windows Server, but I always knew that Thomas Lee would be a reality check on that.

 Given that Thomas uses PowerShell V7 as the basis for this book on managing Windows Server, I can rest easy.

 Before I go, let me reiterate PowerShell's focus on making customers successful. We recently got feedback that we had become a bottleneck and were slowing down community contributions to the code base. We modified our governance, restructured the code with new projects to allow more parallel development, and added more people from the community to the process. We anticipate that that will further accelerate the agility, customer focus, and velocity cycle.

 PowerShell is all about making you successful.

 Have fun scripting!

 Jeffrey Snover

 Microsoft Technical Fellow

 June 2021

 Contributors

 About the author

 Thomas Lee is a consultant/trainer/writer from England and has been in the IT business since the late 1960s. After graduating from Carnegie Mellon University, Thomas joined ComShare, where he was a systems programmer building the Commander II time-sharing operating system, a forerunner of today's cloud computing paradigm. In the mid-1970s, he moved to ICL to work on the VME/K operating system. After a sabbatical in 1980/81, he joined what is today known as Accenture, leaving in 1988 to run his own consulting and training business, which is still active today.

 Thomas holds numerous Microsoft certifications, including MCSE (one of the first in the world) and later versions, MCT (25 years), and was awarded Microsoft's MVP award 17 times. He lives today in a cottage in the English countryside with his family, a nice wine cellar, and a huge collection of live recordings by The Grateful Dead and The Jerry Garcia band.

 I'd first like to thank Jeffrey Snover of Microsoft for the invention of PowerShell. I was lucky enough to be in the room the very first time he presented what was then called Monad. His enthusiasm was infectious, and nearly 20 years later I am still excited. And, of course, no book on PowerShell would be complete without acknowledging the great work done by the PowerShell team, including Joey Aiello, Steve Lee, Jim Truher, and many more. The team has consistently listened to the community, found ways to make PowerShell better, and has delivered release after release of solid, well written code. When you write a book, there is a large publishing team behind you without whom this book would just be a dream. This is even more relevant as this book was written during the Covid19 pandemic. Coping with the results of that has been a real challenge for all of us. A huge thank you has to go to the Packt team: Caitlin Meadows (a truly outstanding editor) and all the folks she brought to the party. Thanks too to Parvathy Nair and Lucy Wan, two dedicated editors who turned my badly written gibberish into decent technical English, and to Aditya Sawant, who helped with proofs.

 Thanks to our most excellent tech reviewer, Joshua King. His reviews were always helpful and useful. He uncovered issues I had initially missed, and his many suggestions contributed to a better book. I look forward to working with him (and this whole team) again.As each recipe evolved, I would sometimes hit problems. I got a lot of help from the Spiceworks community. Their PowerShell forum is a great source of information and encouragement. If you have problems with PowerShell, this is a great place to get a solution.And finally, I have to thank my wonderful wife, Susan, and our amazing daughter, Rebecca. My wife has been patient as things progressed, she put up with my bad moods when progress was not as smooth as desirable, and kept me sane when all around me was craziness. And my daughter's smile could not help but brighten even the darkest days.

 About the reviewer

 Josh King is a Microsoft MVP and Infrastructure Operations Engineer at Chocolatey Software. He has a long history working within Windows and VMware environments and has a passion for all things PowerShell and automation.

 Josh was an author of The PowerShell Conference Book Volume 2 and Volume 3.

 You can find Josh on Twitter, @WindosNZ, or his blog at https://toastit.dev/.

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Installing and Configuring PowerShell 7

 	Introduction

 	Installing PowerShell 7

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using the PowerShell 7 console

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring PowerShell 7 installation artifacts

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Building PowerShell 7 profile files

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Installing VS Code

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Installing the Cascadia Code font

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring PSReadLine

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Introducing PowerShell 7

 	Introduction

 	Exploring new operators

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring parallel processing with ForEach-Object

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Improvements in ForEach and ForEach-Object

 	Getting ready

 	How to do it...

 	How it works…

 	There's more...

 	Improvements in Test-Connection

 	Getting ready

 	How to do it...

 	How it works…

 	There's more...

 	Using Select-String

 	Getting ready

 	How to do it...

 	How it works…

 	There's more...

 	Exploring the error view and Get-Error

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring experimental features

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring Compatibility with Windows PowerShell

 	Introduction

 	Module compatibility

 	Incompatible modules

 	Exploring compatibility with Windows PowerShell

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using the Windows PowerShell compatibility solution

 	Getting ready

 	How to do it…

 	How it works...

 	There's more...

 	Exploring compatibility solution limitations

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring the module deny list

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Importing format XML

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Leveraging compatibility

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using PowerShell 7 in the Enterprise

 	Introduction

 	Installing RSAT tools on Windows Server

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring package management

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring PowerShellGet and the PS Gallery

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating a local PowerShell repository

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Establishing a script signing environment

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Working with shortcuts and the PSShortcut module

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Working with archive files

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring .NET

 	Introduction

 	Exploring .NET assemblies

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Examining .NET classes

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Leveraging .NET methods

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating a C# extension

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating a PowerShell cmdlet

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Active Directory

 	Introduction

 	Systems used in this chapter

 	Installing an AD forest root domain

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Testing an AD installation

 	Getting ready

 	How to do it...

 	How it works...

 	There's more…

 	Installing a replica domain controller

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Installing a child domain

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating and managing AD users and groups

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing AD computers

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Adding users to AD using a CSV file

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating Group Policy objects

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Reporting on AD replication

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Reporting on AD computers

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Reporting on AD users

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Networking in the Enterprise

 	Introduction

 	Configuring IP addressing

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Testing network connectivity

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Installing DHCP

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Configuring DHCP scopes and options

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using DHCP

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing DHCP failover and load balancing

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Deploying DNS in the Enterprise

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Configuring DNS forwarding

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing DNS zones and resource records

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing Enterprise Security

 	Introduction

 	Implementing Just Enough Administration (JEA)

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Examining Applications and Services Logs

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Discovering logon events in the event log

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Deploying PowerShell group policies

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using PowerShell Script Block Logging

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Configuring AD password policies

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Windows Defender Antivirus

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Storage

 	Introduction

 	Managing physical disks and volumes

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing filesystems

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring providers and the FileSystem provider

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Storage Replica

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Deploying Storage Spaces

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Shared Data

 	Introduction

 	Managing NTFS file and folder permissions

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Setting up and securing an SMB file server

 	Getting ready

 	How to do it…

 	How it works…

 	There's more...

 	Creating and securing SMB shares

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Accessing SMB shares

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating an iSCSI target

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using an iSCSI target

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing FSRM quotas

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing FSRM reporting

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing FSRM file screening

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Printing

 	Introduction

 	Installing and sharing printers

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Publishing a printer

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Changing the spooler directory

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Changing printer drivers

 	Getting ready

 	How to do it...

 	How it works...

 	There's more…

 	Printing a test page

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing printer security

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating a printer pool

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Hyper-V

 	Introduction

 	Installing Hyper-V inside Windows Server

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	See also

 	Creating a Hyper-V VM

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using PowerShell Direct

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using Hyper-V VM groups

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Configuring VM hardware

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Configuring VM networking

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing nested virtualization

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing VM state

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing VM and storage movement

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing VM replication

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing VM checkpoints

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing Azure

 	Introduction

 	Getting started using Azure with PowerShell

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating Azure resources

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring the Azure storage account

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating an Azure SMB file share

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating an Azure website

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Creating an Azure Virtual Machine

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Troubleshooting with PowerShell

 	Introduction

 	Using PowerShell Script Analyzer

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using Best Practices Analyzer

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Network troubleshooting

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Checking network connectivity using Get-NetView

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring PowerShell script debugging

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing with Windows Management Instrumentation

 	Introduction

 	WMI architecture

 	Exploring WMI in Windows

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring WMI namespaces

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Exploring WMI classes

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Obtaining local and remote WMI objects

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Using WMI methods

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Managing WMI events

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Implementing permanent WMI eventing

 	Getting ready

 	How to do it...

 	How it works...

 	There's more...

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 PowerShell was first introduced to the world at the Professional Developers Conference in Los Angeles in 2003 by Jeffrey Snover. Code-named Monad, it represented a complete revolution in management. A white paper written around that time, The Monad Manifesto (refer to http://www.jsnover.com/blog/2011/10/01/monad-manifesto/), remains an amazing analysis of the problem at the time, that of managing large numbers of Windows systems. A key takeaway is that the GUI does not scale, whereas PowerShell does.

 PowerShell has transformed the management of complex, network-based Windows infrastructure, and, increasingly, non-Windows infrastructure. Knowledge of PowerShell and how to get the most from PowerShell is now obligatory for any IT professional. The popular adage continues to be true: learn PowerShell or learn golf.

 Windows PowerShell was developed on Windows for Windows administrators. PowerShell 7, the open-source successor, is also available for Mac and most of the more popular Linux distributions. This book, however, concentrates on PowerShell within a Windows environment.

 This book takes you through the use of PowerShell in a variety of scenarios, using many of the rich set of features included in Windows Server 2022 and 2019. This preface provides you with an introduction to what is in the book, along with some tips on how to get the most out of it.

 Who this book is for

 This book is aimed at IT professionals, including system administrators, system engineers, architects, and consultants who need to understand PowerShell 7 to simplify and automate their daily tasks. The recipes in this book have been tested on the latest versions of Windows Server.

 What this book covers

 Chapter 1, Installing and Configuring PowerShell 7, shows you how you can install and configure both PowerShell 7 and VS Code, which replaces the Windows PowerShell Integrated Scripting Environment (ISE), as well as how to install a new font, Cascadia Code. This chapter also examines the PowerShell 7 environment, including the PSReadLine module.

 Chapter 2, Introducing PowerShell 7, looks at what's new in PowerShell 7. This chapter examines the new features you can use with PowerShell 7, including a number of new operators and improvements in parallel processing. The chapter also looks at how PowerShell 7 formats and manages error messages.

 Chapter 3, Exploring Compatibility with Windows PowerShell, explores PowerShell 7's compatibility with Windows PowerShell. PowerShell 7 is based on the open-source .NET, which is largely, but not fully, compatible with the older .NET Framework. This means some features of Windows PowerShell do not work natively within PowerShell 7, including many of the Windows PowerShell modules that come with Windows Server. The chapter examines the compatibility mechanism adopted by the PowerShell developers to enable older Windows PowerShell modules to function within PowerShell 7 and to close the gap between what you can do with Windows PowerShell and what you can do with PowerShell 7.

 Chapter 4, Using PowerShell 7 in the Enterprise, looks at how you can use various PowerShell 7 features that might be more common within larger enterprises. These include the Remote Server Administration Tools (RSAT), package management and the PowerShell Gallery, and creating a local module repository. The chapter also looks at PowerShell script signing, using shortcuts, and working with archive (.zip) files.

 Chapter 5, Exploring .NET, examines .NET, which provides the foundation for PowerShell 7. The chapter looks at .NET assemblies, classes, and methods, and concludes by demonstrating how you can create simple C#-based PowerShell extensions and full cmdlets.

 Chapter 6, Managing Active Directory, examines how to install, manage, and leverage Active Directory, including installing domains and child domains, managing AD objects, and leveraging Group Policy. The chapter also examines how you can use PowerShell to report on your AD environment.

 Chapter 7, Managing Networking in the Enterprise, shows you how to manage Windows networking with PowerShell. Networks are today central to almost every organization and this chapter looks at a variety of network-related tasks, including looking at new ways to do old things with PowerShell, setting up DNS, DHCP, and DHCP failover and load balancing.

 Chapter 8, Implementing Enterprise Security, looks at security aspects within the context of an enterprise environment. The chapter looks at Just Enough Administration (JEA), which limits the actions an administrator can perform remotely. It also looks at the event log, PowerShell 7's script block logging, setting PowerShell 7-related group policies, and configuring a fine-grained AD password policy. The chapter concludes by looking at the Windows Defender Antivirus product built into Windows Server.

 Chapter 9, Managing Storage, looks at managing storage in Windows Server, including locally attached devices and Windows Storage Spaces. The chapter also looks at managing Storage Replica, a feature of Windows Server 2022.

 Chapter 10, Managing Shared Data, examines different ways to share data and manage your shared data with Windows Server and PowerShell. This includes managing NTFS permissions, creating and securing SMB shares, and setting up and using iSCSI. The chapter concludes by looking at File Server Resource Manager (FSRM), a feature of Windows Server, and managing FSRM quotas, file screening, and reporting.

 Chapter 11, Managing Printing, shows you how to manage printers, printer queues, and printer drivers as well as how to set up a printer pool. You also examine how to print a test page.

 Chapter 12, Managing Hyper-V, demonstrates the use of Hyper-V. This chapter shows you how to build and deploy VMs with Hyper-V. This includes nested Hyper-V, and running a Hyper-V VM inside another Hyper-V VM, which is useful for a number of scenarios.

 Chapter 13, Managing Azure, looks at managing IaaS and PaaS resources in Azure using PowerShell. To test the recipes in this chapter, you need access to Azure. This chapter describes Azure Storage and how to set up a Virtual Machine, an Azure website, and an SMB3 file share.

 Chapter 14, Troubleshooting with PowerShell, looks at a number of aspects of both reactive and proactive troubleshooting. This includes using the PowerShell script debugger, getting events from the event log, and using the Best Practices Analyzer contained in Windows Server.

 Chapter 15, Managing with Windows Management Instrumentation, examines Windows Management Instrumentation (WMI) and enables you to investigate WMI namespaces, classes, and class occurrences. You retrieve information from WMI classes, update WMI using WMI methods, and manage WMI events including WMI permanent eventing.

 To get the most out of this book

 I designed and wrote this book based on some assumptions and with some constraints. Please read this section to understand how I intended the book to be used and what I have assumed about you. This should help you to get the most from this book.

 The first assumption I made in writing this book is that you know the very basics of PowerShell. For that reason, this book is not a PowerShell tutorial. The recipes in this book make use of a wide range of PowerShell features, including WMI, Remoting, AD, and so on, but you need to know the basics of PowerShell. The book was developed using Windows 10 and both Windows Server 2019 and the emerging Windows Server 2022.

 The second, related, assumption is that you have a reasonable background in Windows infrastructure, including AD, networking, and storage. The recipes in each chapter provide an overview of the various technologies, and I've tried to provide good links for more information on the topics in this book. The recipes are designed to show you the basics of how to manage aspects of Windows Server and how you might adapt them for your environment.

 You start your exploration by installing and configuring PowerShell 7 and VS Code and creating Hyper-V VMs to test out each chapter's recipes. I built and tested the recipes in this book step by step (i.e. not running the entire recipe as a single script file). If you run a recipe as a single step, some of the output may not be what you see here, due to how PowerShell formats objects.

 Once you have any recipe working, try to re-factor the recipe's code into your own reusable functions. In some cases, we build simple functions as a guide to richer scripts you could build. Once you have working and useful functions, incorporate them into organizational or personal modules and reuse the code.

 As any author knows, writing PowerShell scripts for publication in a book is a layout and production nightmare. To reduce the issues specifically with line width and line wrapping, I have made extensive use of methods that ensure the command line width fits in the chapters in this book without wrapping. Many recipes use hash tables, property spatting, and other devices to ensure that every line of every recipe is 73 characters or less and that there are no unintended line breaks. I hope there are not too many issues with layout!

 Many of the cmdlets, commands, and object methods used in this book produce output that may not be all that helpful or useful, particularly in production. Some cmdlets generate output that would fill many pages of this book but with little added value. For this reason, many recipes pipe cmdlet output to Out-Null. Feel free to remove this where you want to see more details. I have also adjusted the output in many cases to avoid wasted white space.

 Thus, if you test a recipe, you may see that the output is laid out a bit differently, but it should contain the same information. Finally, remember that the specific output you see may be different based on your environment and the specific values you use in each step.

 To write this book, I have used a large VM farm consisting of over 12 Windows Server 2022 hosts and Windows 10 clients. My main development host was a well-configured Windows 10 system (96 GB RAM, 2 x 6 core Xeon processors, and fast SSDs). All the hosts used in this book are a combination of some physical hardware (running almost entirely on Windows 10 and a large set of VMs) as described in the recipe.

 To assist in writing this book, I created a set of scripts that built the Hyper-V VMs that I used to develop this book. These scripts are published at https://github.com/doctordns/ReskitBuildScripts. I have also published some details of the network of VMs created by using these scripts, complete with host names and IP addresses, at the same URL. The full set of VMs, at the end of this writing, took up around 600 GB of storage. Fortunately, storage is cheap! The GitHub repository has more details on the scripts and how to run them. If you have any issues with the scripts, please file an issue on GitHub and I can assist.

 PowerShell 7 provides great feature coverage with respect to being able to manage the functions and features of Windows Server 2022 using PowerShell. As with Windows PowerShell, you have considerable flexibility as to what commands you use in your scripts. While PowerShell cmdlets are generally your first choice, in some cases, you need to dip down into .NET, or into WMI, to get to objects, properties, and methods that no existing PowerShell command provides. And if that is not enough, you can develop your own .NET classes and full PowerShell 7 cmdlets.

 An important aspect of the recipes in this book is the use of third-party modules obtained from the PowerShell Gallery. There is a rich and vibrant PowerShell community that has created a substantial amount of functionality for you to use. The PowerShell Gallery, a repository provided by Microsoft, enables you to download and use these modules. The NTFSSecurity module, for example, makes it simple to manage the Access Control List (ACL) on NTFS files and folders.

 All the code provided in this book has been tested. It worked when I tested it, and it did what it says (at least during the writing stage). I have taken some liberties with respect to the layout and formatting to cater for the book's production and printing process, but you should get the same results. That said, the book production process is very complex and it is possible that errors can creep in during the production stages. So if you find a step in any recipe that fails for you, file an issue on my GitHub repository for this book (see below). For generic issues, please post issues to the Spiceworks PowerShell forum.

 In writing the recipes, I have used full cmdlet names with all parameter names spelled out in full. This makes the text a bit longer, but hopefully easier to read and understand.

 In writing this book, I set out to create content around a number of features of Windows Server 2022. In order to publish the book, it was necessary to avoid going too deep into every Windows feature. I have had to decide which features (and commands) to show and which to not cover, since every chapter could easily have become a small book. To paraphrase Jeffrey Snover, to ship is to choose. I hope I chose well.

 Some recipes in this book rely on you having run other recipes in prior chapters. These related recipes worked well when we wrote and tested them and hopefully work for you as well. If you have problems with any of the recipes, then raise issues on my GitHub repository.

 Finally, there is a fine line between PowerShell and a Windows feature. To use PowerShell to manage a Windows feature, you need to understand the Windows feature itself. The chapters provide short overviews of the Windows Server features and I have provided links to help you get more information. And as ever, Bing and Google are your best friends.

 Download the example code files and VM build scripts

 I have published every recipe (and a bit more) to a public GitHub repository: https://github.com/PacktPublishing/Windows-Server-Automation-with-PowerShell-7.1-Cookbook-Fourth-Edition. There is a README.md file at the top of the repository introducing what is in the repo. Within the scripts folder, you can find all the recipes within this book.

 Should you find any issues with the recipes in this repository, please file an issue at https://github.com/PacktPublishing/Windows-Server-Automation-with-PowerShell-7.1-Cookbook-Fourth-Edition/issues and I can assist.

 This book makes use of a farm of Hyper-V VMs that you can use to replicate the recipes. I have created a set of VM build scripts you can download from my GitHub repository at https://github.com/doctordns/ReskitBuildScripts. To use these scripts, you need to obtain an ISO image of Windows Server 2022 to serve as a base image. You can get that from https://www.microsoft.com/evalcenter/evaluate-windows-server-2022-preview/ or via your Visual Studio or other subscription. You use the ISO image to create a "reference disk" – then for each VM, the scripts create a unique VM based on the reference disk. This VM is a brand-new install based on unattended XML used to pre-configure each VM. In theory, you could create these VMs in Azure, but I have not tested that. You can read more about how to use the build scripts from the README.md document in the repository.

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781800568457_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; "To establish a link shortcut, you can use the Wscript.Shell COM object."

 A block of code is set as follows:

 "On Host [$(hostname)]"
"Total features available [{0}]" -f $Features.count
"Total features installed [{0}]" -f $FeaturesI.count
"Total RSAT features available [{0}]" -f $RSATF.count
"Total RSAT features installed [{0}]" -f $RSATFI.count

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: "Signing a script is simple once you have a digital certificate issued by a Certificate Authority (CA)."

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit http://www.packtpub.com/submit-errata, select your book, click on the Errata Submission Form link, and enter the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Reviews

 Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

 For more information about Packt, please visit packtpub.com.

			Share your thoughts

			Once you've read Windows Server Automation with PowerShell Cookbook, Fourth Edition, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

 1

 Installing and Configuring PowerShell 7

 This chapter covers the following recipes:

 	Installing PowerShell 7

 	Using the PowerShell 7 console

 	Exploring PowerShell 7 installation artifacts

 	Building PowerShell 7 profile files

 	Installing VS Code

 	Installing the Cascadia Code font

 	Exploring PSReadLine

 Introduction

 PowerShell 7 represents the latest step in the development of PowerShell. PowerShell, first introduced to the public in 2003, was released formally as Windows PowerShell v1 in 2006. Over the next decade, Microsoft released multiple versions, ending with PowerShell 5.1. During the development of Windows PowerShell, the product moved from being an add-in to Windows to an integrated feature. Microsoft plans to support Windows PowerShell 5.1 for a long time, but no new features are likely.

 The PowerShell development team began working on an open-source version of PowerShell based on the open-source version of .NET Core. The first three versions, PowerShell Core 6.0, 6.1, and 6.2, represented a proof of concept – you could run the core functions and features of PowerShell across the Windows, Mac, and Linux platforms. But they were quite limited in terms of supporting the rich needs of the IT pro community.

 With the release of PowerShell 7.0 came improved parity with Windows PowerShell. There were a few modules that did not work with PowerShell 7, and a few more that work via a compatibility mechanism described in Chapter 3, Exploring Compatibility with Windows PowerShell. PowerShell 7.0 shipped in 2019 and has been followed by version 7.1. This book uses the term "PowerShell 7" to include both PowerShell 7.0 and 7.1.

 Once you have installed PowerShell 7, you can run it and use it just as you used the Windows PowerShell console. The command you run to start PowerShell 7 is now pwsh.exe (versus powershell.exe for Windows PowerShell). PowerShell 7 also uses different profile file locations from Windows PowerShell. You can customize your PowerShell 7 profiles to make use of the new PowerShell 7 features. You can also use different profile files for Windows PowerShell and PowerShell 7.

 The Windows PowerShell Integrated Scripting Environment (ISE) is a tool you use with PowerShell. The ISE, however, is not supported with PowerShell 7. To replace it, use Visual Studio Code (VS Code), an open-source editing project that provides all the features of the ISE and a great deal more.

 Microsoft also developed a new font, Cascadia Code, to coincide with the launch of VS Code. This font is a nice improvement over Courier or other mono-width fonts. All screenshots of working code in this book use this new font.

 PSReadLine is a PowerShell module designed to provide color-coding of PowerShell scripts in the PowerShell 7 console. The module, included with PowerShell 7 by default, makes editing at the command line easier and more on par with the features available in Linux shells.

 Installing PowerShell 7

 PowerShell 7 is not installed in Windows by default, at least not at the time of writing. The PowerShell team has made PowerShell 7.1 available from the Microsoft Store, which is useful to install PowerShell 7.1 or later on Windows 10 systems. As the Microsoft Store is not overly relevant to Windows Server installations, you can install PowerShell by using a script, Install-PowerShell.ps1, which you download from the internet, as shown in this recipe. You can also use this recipe on Windows 10 hosts.

 Getting ready

 This recipe uses SRV1, a Windows Server workgroup host. There are no features of applications loaded on this server (yet).

 How to do it...

 	Setting an execution policy for Windows PowerShell (in a new Windows PowerShell console)
 Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force

 	Installing the latest versions of NuGet and PowerShellGet
 Install-PackageProvider Nuget -MinimumVersion 2.8.5.201 -Force |
 Out-Null
Install-Module -Name PowerShellGet -Force -AllowClobber

 	Ensuring the C:\Foo folder exists
 $LFHT = @{
 ItemType = 'Directory'
 ErrorAction = 'SilentlyContinue' # should it already exist
}
New-Item -Path C:\Foo @LFHT | Out-Null

 	Downloading the PowerShell 7 installation script
 Set-Location C:\Foo
$URI = 'https://aka.ms/install-powershell.ps1'
Invoke-RestMethod -Uri $URI |
 Out-File -FilePath C:\Foo\Install-PowerShell.ps1

 	Viewing the installation script help
 Get-Help -Name C:\Foo\Install-PowerShell.ps1

 	Installing PowerShell 7
 $EXTHT = @{
 UseMSI = $true
 Quiet = $true
 AddExplorerContextMenu = $true
 EnablePSRemoting = $true
}
C:\Foo\Install-PowerShell.ps1 @EXTHT | Out-Null

 	For the Adventurous – installing the preview and daily builds as well
 C:\Foo\Install-PowerShell.ps1 -Preview -Destination C:\PWSHPreview |
 Out-Null
C:\Foo\Install-PowerShell.ps1 -Daily -Destination C:\PWSHDailBuild |
 Out-Null

 	Creating Windows PowerShell default profiles
 $URI = 'https://raw.githubusercontent.com/doctordns/PACKT-PS7/master/' +
 '/scripts/goodies/Microsoft.PowerShell_Profile.ps1'
$ProfileFile = $Profile.CurrentUserCurrentHost
New-Item $ProfileFile -Force -WarningAction SilentlyContinue |
 Out-Null
(Invoke-WebRequest -Uri $URI -UseBasicParsing).Content |
 Out-File -FilePath $ProfileFile
$ProfilePath = Split-Path -Path $ProfileFile
$ChildPath = 'Microsoft.PowerShell_profile.ps1'
$ConsoleProfile = Join-Path -Path $ProfilePath -ChildPath $ChildPath
(Invoke-WebRequest -Uri $URI -UseBasicParsing).Content |
 Out-File -FilePath $ConsoleProfile

 	Checking the versions of PowerShell 7 loaded
 Get-ChildItem -Path C:\pwsh.exe -Recurse -ErrorAction SilentlyContinue

 How it works...

 In step 1, you open a new Windows PowerShell console and set the PowerShell execution policy to unrestricted, which simplifies using scripts to configure hosts. In production, you may wish to set PowerShell's execution policy to be more restrictive. But note that an execution policy is not truly a security mechanism – it just slows down an inexperienced administrator.

 For a good explanation of PowerShell's Security Guiding Principles, see https://devblogs.microsoft.com/powershell/powershells-security-guiding-principles/.

 The PowerShell Gallery is a repository of PowerShell modules and scripts and is an essential resource for the IT pro. This book makes use of several modules from the PowerShell Gallery. In step 2, you update both the NuGet package provider (to version 2.8.5.201 or later) and an updated version of the PowerShellGet module.

 Throughout this book, you'll use the C:\Foo folder to hold various files that you use in conjunction with the recipes. In step 3, you ensure the folder exists.

 PowerShell 7 is not installed by default, at present, in Windows (or macOS or Linux), although this could change. To enable you to install PowerShell 7 in Windows, you retrieve an installation script from GitHub and store that in the C:\Foo folder. In step 4, you use a shortcut URL that points to GitHub and then use Invoke-RestMethod to download the file. Note that steps 1 through 4 produce no output.

 In step 5, you view the help information contained in the help file, which produces the following output:

 [image:]
 Figure 1.1: Viewing installation script help

 Note that after installing PowerShell 7, the first time you run Get-Help you are prompted to download help text (which is not shown in this figure).

 In step 6, you use the installation script and install PowerShell 7. The commands use an MSI, which you then install silently. The MSI updates the system execution path to add the PowerShell 7 installation folder. The code retrieves the latest supported version of PowerShell 7, and you can view the actual filename in the following output:

 [image:]
 Figure 1.2: Installing PowerShell 7

 PowerShell 7 is a work in progress. Every day, the PowerShell team builds updated versions of PowerShell and releases previews of the next major release. The preview builds are mostly stable and allow you to try out new features that are coming in the next major release. The daily build allows you to view progress on a specific bug or feature. You may find it useful to install both of these (and ensure you keep them up to date as time goes by).

 In step 7, you install the daily build and the latest preview build, which looks like this:

 [image:]
 Figure 1.3: Installing the preview and daily builds

 PowerShell uses profile files to enable you to configure PowerShell each time you run it (whether in the PowerShell console or as part of VS Code or the ISE). In step 8, you download a sample PowerShell profile script and save it locally. Note that the profile file you create in step 8 is for Windows PowerShell only.

 The executable name for PowerShell 7 is pwsh.exe. In step 9, you view the versions of this file as follows:

 [image:]
 Figure 1.4: Checking PowerShell 7 versions loaded

 As you can see, there are three versions of PowerShell 7 installed on SRV1: the latest full release, the latest preview, and the build of the day.

 There's more...

 In step 1, you open a new Windows PowerShell console. Make sure you run the console as the local administrator.

 In step 4, you use a shortened URL to download the Install-PowerShell.ps1 script. When you use Invoke-RestMethod, PowerShell discovers the underlying target URL for the script. The short URL allows Microsoft and the PowerShell team to publish a well-known URL and then have the flexibility to move the target location should that be necessary. The target URL, at the time of writing, is https://raw.githubusercontent.com/PowerShell/PowerShell/master/tools/install-powershell.ps1.

 In step 7, you install both the latest daily build and the latest preview versions. The specific file versions you see are going to be different from the output shown here, at least for the preview versions!

 Using the PowerShell 7 console

 With PowerShell 7, the name of the PowerShell executable is now pwsh.exe, as you saw in the previous recipe. After installing PowerShell 7 in Windows, you can start the PowerShell 7 console by clicking Start and typing pwsh.exe, then hitting Return. The PowerShell MSI installer does not create a Start panel or taskbar shortcut.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7.

 How to do it...

 	Running the PowerShell 7 consoleFrom the Windows desktop in SRV1, click on the Windows key, then type pwsh, followed by the Enter key.

 	Viewing the PowerShell version
 $PSVersionTable

 	Viewing the $Host variable
 $Host

 	Looking at the PowerShell process
 Get-Process -Id $Pid |
 Format-Custom MainModule -Depth 1

 	Looking at resource usage statistics
 Get-Process -Id $Pid |
 Format-List CPU,*Memory*

 	Updating the PowerShell help
 $Before = Get-Help -Name about_*
Update-Help -Force | Out-Null
$After = Get-Help -Name about_*
$Delta = $After.Count - $Before.Count
"{0} Conceptual Help Files Added" -f $Delta

 	How many commands are available?
 Get-Command |
 Group-Object -Property CommandType

 How it works...

 In step 1, you start the PowerShell 7 console on SRV1. The console should look like this:

 [image:]
 Figure 1.5: The PowerShell 7 console

 In step 2, you view the specific version of PowerShell by looking at the built-in variable $PSVersionTable, which looks like this:

 [image:]
 Figure 1.6: Viewing the PowerShell version

 In step 3, you examine the $Host variable to determine details about the PowerShell 7 host (the PowerShell console), which looks like this:

 [image:]
 Figure 1.7: Viewing the $Host variable

 As you can see, in this case, the current culture is EN-GB. You may see a different value depending on which specific version of Windows Server you are using.

 In step 4, you use Get-Process to look at the details of the PowerShell process, which looks like this:

 [image:]
 Figure 1.8: Looking at the PowerShell process details

 In this figure, you can see the path to the PowerShell 7 executable. This value changes depending on whether you are running the release version or the daily/preview releases.

 You can see, in step 5, details of resource usage of the pwsh.exe process running on the SRV1 host:

 [image:]
 Figure 1.9: Looking at the resource usage statistics of pwsh.exe

 The values of each of the performance counters are likely to vary, and you may see different values.

 By default, PowerShell 7, like Windows PowerShell, ships with minimum help files. You can, as you can see in step 6, use the Update-Help command to download updated PowerShell 7 help content, like this:

 [image:]
 Figure 1.10: Updating PowerShell help

 As you can see from the output, not all help files were updated. In this case, the ConfigDefender module does not, at present, have updated help information. Also note that although the UK English versions of help details may be missing, there are US English versions that you can install that may be useful. There is no material difference between the UK and US texts.

 Commands in PowerShell include functions, cmdlets, and aliases. In step 7, you examine how many of each type of command is available by default, like this:

 [image:]
 Figure 1.11: Examining the number of each type of command available

 There's more...

 In step 1, you open the PowerShell console for the version of PowerShell you installed in the Installing PowerShell 7 recipe. With the release of PowerShell 7.1, the version number you would see is 7.1.0. By the time you read this book, that version number may have advanced. To ensure you have the latest released version of PowerShell 7, re-run the Install-PowerShell.ps1 script you downloaded in the Installing PowerShell 7 recipe.

 Also, in step 1, you can see the output generated by the Write-Host statements in the profile file you set up in Installing PowerShell 7. You can remove these statements to reduce the amount of output you see each time you start up PowerShell.

 In step 4, you use the variable $PID, which contains the Windows process identifier of the PowerShell 7 console process. The actual value of $PID changes each time you run PowerShell, but the value always contains the process ID of the current console process.

 In step 6, you can see an error in the PSReadLine module's help information (Figure 1.10). The developers of this module have, in later versions, renamed this module to PSReadLine (capitalizing the L in Line). However, help URLs are, for some reason, case-sensitive. You can fix this by renaming the module on disk and capitalizing the folder name.

 In step 7, you saw that you had 1786 commands available. This number changes as you add more features (and their accompanying modules) or download and install modules from repositories such as the PowerShell Gallery.

 Exploring PowerShell 7 installation artifacts

 In PowerShell 7, certain objects added by the PowerShell 7 installer (and PowerShell 7) differ from those used by Windows PowerShell.

 Getting ready

 This recipe uses SRV1 after you have installed PowerShell 7. In this recipe, you use the PowerShell 7 console to run the steps.

 How to do it...

 	Checking the version table for the PowerShell 7 console
 $PSVersionTable

 	Examining the PowerShell 7 installation folder
 Get-Childitem -Path $env:ProgramFiles\PowerShell\7 -Recurse |
 Measure-Object -Property Length -Sum

 	Viewing the PowerShell 7 configuration JSON file
 Get-ChildItem -Path $env:ProgramFiles\PowerShell\7\powershell*.json |
 Get-Content

 	Checking the initial Execution Policy for PowerShell 7
 Get-ExecutionPolicy

 	Viewing the module folders
 $I = 0
$ModPath = $env:PSModulePath -split ';'
$ModPath |
 Foreach-Object {
 "[{0:N0}] {1}" -f $I++, $_
 }

 	Checking the modules
 $TotalCommands = 0
Foreach ($Path in $ModPath){
 Try { $Modules = Get-ChildItem -Path $Path -Directory -ErrorAction Stop
 "Checking Module Path: [$Path]"
 }
 Catch [System.Management.Automation.ItemNotFoundException] {
 "Module path [$path] DOES NOT EXIST ON $(hostname)"
 }
 $CmdsInPath = 0
 Foreach ($Module in $Modules) {
 $Cmds = Get-Command -Module ($Module.name)
 $TotalCommands += $Cmds.Count
 }
}

 	Viewing the total number of commands and modules
 $Mods = (Get-Module * -ListAvailable | Measure-Object).count
"{0} modules providing {1} commands" -f $Mods,$TotalCommands

 How it works...

 In step 1, you examine the $PSVersionTable variable to view the version information for PowerShell 7, which looks like this:

 [image:]
 Figure 1.12: Checking the version information for PowerShell 7

 The PowerShell 7 installation program installs PowerShell 7 into a different folder (by default) from that used by Windows PowerShell. In step 2, you see a summary of the files installed into the PowerShell 7 installation folder as follows:

 [image:]
 Figure 1.13: Examining the installation folder
 PowerShell 7 stores configuration values in a JSON file in the PowerShell 7 installation folder. In step 3, you view the contents of this file:

 [image:]
 Figure 1.14: Viewing the JSON configuration file

 In step 4, you view the execution policy for PowerShell 7, as follows:

 [image:]
 Figure 1.15: Checking the execution policy for PowerShell 7

 As with Windows PowerShell, PowerShell 7 loads commands from modules. PowerShell uses the $PSModulePath variable to determine which file store folders PowerShell 7 should use to find these modules. Viewing the contents of this variable, and discovering the folders, in step 5, looks like this:

 [image:]
 Figure 1.16: Viewing the module folders

 With those module folders defined (by default), you can check how many commands exist in each folder, in step 6, the output of which looks like this:

 [image:]
 Figure 1.17: Checking how many commands exist in each module folder

 In step 7, you can view the results to see how many commands exist in each of the modules in each module path. The output looks like this:

 [image:]
 Figure 1.18: Viewing the total number of modules and commands

 There's more...

 In step 1, you viewed the PowerShell version table. Depending on when you read this book, the version numbers you see may be later than shown here. You would see this when the PowerShell team releases an updated version of PowerShell.

 In step 4, you viewed PowerShell 7's execution policy. Each time PowerShell 7 starts up, it reads the JSON file to obtain the value of the execution policy. You can use the Set-Execution policy to reset the policy immediately, or change the value in the JSON file and restart the PowerShell 7 console.

 In step 5, you viewed the default folders that PowerShell 7 uses to search for a module (by default). The first folder is your personal modules, followed by PowerShell 7, and then the Windows PowerShell modules. We cover the Windows PowerShell modules and Windows PowerShell compatibility in more detail in Chapter 2, Introducing PowerShell 7.

 Building PowerShell 7 profile files

 In Windows PowerShell and PowerShell 7, profile files are PowerShell scripts that PowerShell runs each time you start a new instance of PowerShell (whether the console, ISE, or VS Code). These files enable you to pre-configure PowerShell 7. You can add variables, PowerShell PSDrives, functions, and more using profiles. As part of this book, you download and install initial profile files based on samples that you can download from GitHub.

 This recipe downloads and installs the profile files for the PowerShell 7 console.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7.

 How to do it...

 	Discovering the profile filenames
 $ProfileFiles = $PROFILE | Get-Member -MemberType NoteProperty
$ProfileFiles | Format-Table -Property Name, Definition

 	Checking for the existence of each PowerShell profile file
 Foreach ($ProfileFile in $ProfileFiles){
 "Testing $($ProfileFile.Name)"
 $ProfilePath = $ProfileFile.Definition.split('=')[1]
 If (Test-Path $ProfilePath){
 "$($ProfileFile.Name) DOES EXIST"
 "At $ProfilePath"
 }
 Else {
 "$($ProfileFile.Name) DOES NOT EXIST"
 }
 ""
}

 	Displaying the Current User/Current Host profile
 $CUCHProfile = $PROFILE.CurrentUserCurrentHost
"Current User/Current Host profile path: [$CUCHPROFILE]"

 	Creating a Current User/Current Host profile for the PowerShell 7 console
 $URI = 'https://raw.githubusercontent.com/doctordns/PACKT-PS7/master/' +
 'scripts/goodies/Microsoft.PowerShell_Profile.ps1'
New-Item $CUCHProfile -Force -WarningAction SilentlyContinue |
 Out-Null
(Invoke-WebRequest -Uri $URI).Content |
 Out-File -FilePath $CUCHProfile

 	Exiting the PowerShell 7 console
 Exit

 	Restarting the PowerShell 7 console and viewing the profile output at startup
 Get-ChildItem -Path $Profile

 How it works...

 In step 1, you discover the names of each of the four profile files (for the PowerShell 7 console), then view their name and location (that is, the definition), which looks like this:

 [image:]
 Figure 1.19: Discovering the profile filenames

 In step 2, you check to see which, if any, of the profile files exist, which looks like this:

 [image:]
 Figure 1.20: Checking for the existence of PowerShell profile files

 In step 3, you obtain and display the filename of the Current User/Current Host profile file, which looks like this:

 [image:]
 Figure 1.21: Discovering the Current User/Current Host profile file

 In step 4, you create an initial Current User/Current Host profile file. This file is part of the GitHub repository that supports this book. In step 5, you exit the current PowerShell 7 console host. These two steps create no output.

 In step 6, you start a new PowerShell profile. This time, as you can see here, the profile file exists, runs, and customizes the console:

 [image:]
 Figure 1.22: The profile file in action

 There's more...

 In step 4, you download a sample profile file from GitHub. This sample profile file contains customizations for the PowerShell console configuration, including changing the default starting folder (to C:\Foo) and creating some aliases, PowerShell drives, and a credential object. These represent sample content you might consider including in your console profile file. Note that VS Code, which you install in the next recipe, uses a separate Current User/Current Host profile file, which enables you to customize PowerShell at the console and in VS Code differently.

 Installing VS Code

 The Windows PowerShell ISE was a great tool that Microsoft first introduced with Windows PowerShell v2 (and vastly improved with v3). This tool has reached feature completeness, and Microsoft has no plans for further development.

 In its place, however, is Visual Studio Code, or VS Code. This open-source tool provides an extensive range of features for IT pros and others. For IT professionals, this should be your editor of choice. While there is a learning curve (as for any new product), VS Code contains all the features you find in the ISE and more.

 VS Code, and the available extensions, are works in progress. Each new release brings additional features which can be highly valuable. A recent addition from Draw.io, for example, is the ability to create diagrams directly in VS Code. Take a look at this post for more details on this diagram tool: https://tfl09.blogspot.com/2020/05/over-weekend-i-saw-tweet-announcing-new.html.

 There are a large number of other extensions you might be able to use, depending on your workload. For more details on VS Code, see https://code.visualstudio.com/.

 For details of the many VS Code extensions, you can visit https://code.visualstudio.com/docs/editor/extension-marketplace.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7 and have created a console profile file.

 How to do it...

 	Downloading the VS Code installation script from the PowerShell Gallery
 $VSCPATH = 'C:\Foo'
Save-Script -Name Install-VSCode -Path $VSCPATH
Set-Location -Path $VSCPATH

 	Running the installation script and adding in some popular extensions
 $Extensions = 'Streetsidesoftware.code-spell-checker',
 'yzhang.markdown-all-in-one',
 'hediet.vscode-drawio'
$InstallHT = @{
 BuildEdition = 'Stable-System'
 AdditionalExtensions = $Extensions
 LaunchWhenDone = $true
}
.\Install-VSCode.ps1 @InstallHT

 	Exiting VS CodeClose the VS Code window

 	Restarting VS Code as an administratorClick on the Windows key and type code, which brings up the VS Code tile in the Windows Start panel. Then, right click the VS Code tile and select Run as Administrator to start VS Code as an administrator.

 	Opening a new VS Code terminal windowInside VS Code, type Ctrl + Shift + `.

 	Creating a Current User/Current Host profile for VS Code
 $SAMPLE =
 'https://raw.githubusercontent.com/doctordns/PACKT-PS7/master/' +
 'scripts/goodies/Microsoft.VSCode_profile.ps1'
(Invoke-WebRequest -Uri $Sample).Content |
 Out-File $Profile

 	Updating the user settings for VS Code
 $JSON = @'
{
 "workbench.colorTheme": "PowerShell ISE",
 "powershell.codeFormatting.useCorrectCasing": true,
 "files.autoSave": "onWindowChange",
 "files.defaultLanguage": "powershell",
 "editor.fontFamily": "'Cascadia Code',Consolas,'Courier New'",
 "workbench.editor.highlightModifiedTabs": true,
 "window.zoomLevel": 1
}
'@
$JHT = ConvertFrom-Json -InputObject $JSON -AsHashtable
$PWSH = "C:\\Program Files\\PowerShell\\7\\pwsh.exe"
$JHT += @{
 "terminal.integrated.shell.windows" = "$PWSH"
}
$Path = $Env:APPDATA
$CP = '\Code\User\Settings.json'
$Settings = Join-Path $Path -ChildPath $CP
$JHT |
 ConvertTo-Json |
 Out-File -FilePath $Settings

 	Creating a shortcut to VS Code
 $SourceFileLocation = "$env:ProgramFiles\Microsoft VS Code\Code.exe"
$ShortcutLocation = "C:\foo\vscode.lnk"
Create a new wscript.shell object
$WScriptShell = New-Object -ComObject WScript.Shell
$Shortcut = $WScriptShell.CreateShortcut($ShortcutLocation)
$Shortcut.TargetPath = $SourceFileLocation
#Save the Shortcut to the TargetPath
$Shortcut.Save()

 	Creating a shortcut to PowerShell 7
 $SourceFileLocation = "$env:ProgramFiles\PowerShell\7\pwsh.exe"
$ShortcutLocation = 'C:\Foo\pwsh.lnk'
Create a new wscript.shell object
$WScriptShell = New-Object -ComObject WScript.Shell
$Shortcut = $WScriptShell.CreateShortcut($ShortcutLocation)
$Shortcut.TargetPath = $SourceFileLocation
Save the Shortcut to the TargetPath
$Shortcut.Save()

 	Building an updated layout XML
 $XML = @'
<?xml version="1.0" encoding="utf-8"?>
<LayoutModificationTemplate
 xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
 xmlns:defaultlayout=
 "http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
 xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
 xmlns:taskbar="http://schemas.microsoft.com/Start/2014/TaskbarLayout"
 Version="1">
<CustomTaskbarLayoutCollection>
<defaultlayout:TaskbarLayout>
<taskbar:TaskbarPinList>
 <taskbar:DesktopApp DesktopApplicationLinkPath="C:\Foo\vscode.lnk" />
 <taskbar:DesktopApp DesktopApplicationLinkPath="C:\Foo\pwsh.lnk" />
</taskbar:TaskbarPinList>
</defaultlayout:TaskbarLayout>
</CustomTaskbarLayoutCollection>
</LayoutModificationTemplate>
'@
$XML | Out-File -FilePath C:\Foo\Layout.Xml

 	Importing the start layout XML file
 Import-StartLayout -LayoutPath C:\Foo\Layout.Xml -MountPath C:\

 	Logging of
 logoff.exe

 	Log back in to Windows and observe the taskbar

 	Run the PowerShell console from the shortcut

 	Run VS Code from the new taskbar shortcut and observe the profile file running

 How it works...

 In step 1, you download the VS Code installation script from the PowerShell Gallery. This step produces no output.

 Then, in step 2, you run the installation script and add in three specific extensions. Running this step in the PowerShell 7 console looks like this:

 [image:]
 Figure 1.23: Running the installation script and adding some extensions

 Once VS Studio has started, you will see the initial opening window, which looks like this:

 [image:]
 Figure 1.24: The VS Code Welcome window

 In step 3, you close this window. Then, in step 4, you run VS Code as an administrator. In step 5, you open a new VS Code Terminal and run PowerShell 7, which now looks like this:

 [image:]
 Figure 1.25: Running PowerShell 7 in VS Code
 In step 6, you create a VS Code sample profile file. The VS Code PowerShell extension uses this profile file when you open a .PS1 file. This step generates no output.

 In step 7, you update several VS Code runtime options. In step 8, you create a shortcut to VS Code, and in step 9, you create a shortcut to the PowerShell 7 console. You use these later in this recipe to create a shortcut on your Windows taskbar.

 In step 10, you update the XML that describes the Windows taskbar to add the shortcuts to VS Code and the PowerShell console you created previously. In step 11, you import the updated task pane description back into Windows. These steps produce no output as such.

 Next, in step 12, you log off from Windows. In step 13, you re-login and note the updated taskbar, as you can see here:

 [image:]
 Figure 1.26: Updated taskbar with shortcuts

 In step 14, you open a PowerShell 7 console, which looks like this:

 [image:]
 Figure 1.27: PowerShell 7 console (from shortcut)

 In step 15, you open VS Code, which looks like this:

 [image:]
 Figure 1.28: VS Code (from shortcut)
 There's more...

 In step 2, you install VS Code and three additional VS Code extensions. The Streetsidesoftware.code-spell-checker extension provides spell-checking for your scripts and other files. The yzhang.markdown-all-in-one extension supports the use of Markdown. This extension is useful if, for example, you are writing documentation in GitHub or updating the existing public PowerShell 7 help information. The hediet.vscode-drawio extension enables you to create rich diagrams directly in VS Code. Visit the VS Code Marketplace for details on these and other extensions.

 In step 4, you ensure you are running VS Code as an administrator. Some of the code requires this and fails if you are not running PowerShell (inside VS Code) as an admin.

 In step 5, you open a terminal inside VS Code. In VS Code, the "terminal" is initially a Windows PowerShell console. You can see in the output the results of running the profile file for Windows PowerShell. This terminal is the one you see inside VS Code by default.

 In step 7, you update and save some updates to the VS Code settings. Note that in this step, you tell VS Code where to find the version of PowerShell you wish to run. You can, should you choose, change this to run a preview version of PowerShell or even the daily build.

 Note that VS Code has, in effect, two PowerShell profile files at play. When you open VS Code on its own, you get the terminal you see in step 5 – this is the default terminal. The PowerShell VS Code runs a separate terminal whenever you open a .PS1 file. In that case, VS Code runs the VS Code-specific profile you set in step 6.

 In step 8 and step 9, you create shortcuts to VS Code and the PowerShell 7 console. In step 10, you update the layout of the Windows taskbar to include the two shortcuts. Unfortunately, you have to log off (as you do in step 12) before logging back in to Windows where you can observe and use the two shortcuts.

 Installing the Cascadia Code font

 As part of the launch of VS Code, Microsoft also created a new and free font that you can download and use both at the PowerShell 7 console and inside VS Code. This recipe shows how you can download the font, install it, and set this font to be the default in VS Code.

 Getting ready

 You run this recipe on SRV1 after you have installed both PowerShell 7 and VS Code.

 How to do it...

 	Getting the download locations for the Cascadia Code font
 $CascadiaFont = 'Cascadia.ttf' # font file name
$CascadiaRelURL = 'https://github.com/microsoft/cascadia-code/releases'
$CascadiaRelease = Invoke-WebRequest -Uri $CascadiaRelURL # Get all
$CascadiaPath = "https://github.com" + ($CascadiaRelease.Links.href |
 Where-Object { $_ -match "($CascadiaFont)" } |
 Select-Object -First 1)
$CascadiaFile = "C:\Foo\$CascadiaFont"

 	Downloading the Cascadia Code font file
 Invoke-WebRequest -Uri $CascadiaPath -OutFile $CascadiaFile

 	Installing the Cascadia Code font
 $FontShellApp = New-Object -Com Shell.Application
$FontShellNamespace = $FontShellApp.Namespace(0x14)
$FontShellNamespace.CopyHere($CascadiaFile, 0x10)

 	Restarting VS CodeClick on the shortcut in the taskbar

 How it works...

 In step 1, you discover the latest version of the Cascadia Code font, and in step 2, you download this font.

 In step 3, you install the font into Windows. Since Windows does not provide any cmdlets to perform the font installation, you rely on the older Windows Shell.Application COM object.

 In step 4, you restart VS Code and note that the new font now looks like this:

 [image:]
 Figure 1.29: Looking at the new font

 There's more...

 Like so many things in customizing PowerShell 7, you have a wide choice of fonts to use with VS Code. The Cascadia Code font is a good, clear font and many like it. You can always change it if you do not like it.

 Exploring PSReadLine

 PSReadLine is a PowerShell module that provides additional console editing features within both PowerShell 7 and Windows PowerShell. The module provides a command-line editing experience that is on par with the best of the Linux command shells (such as Bash).

 When you type into a PowerShell console, PSReadLine intercepts your keystrokes to provide syntax coloring, simple syntax error notification, and a great deal more. PSReadLine enables you to customize your environment to suit your personal preferences. Some key features of the module include:

 	Syntax coloring of the command-line entries

 	Multi-line editing

 	History management

 	Customizable key bindings

 	Highly customizable

 For an overview of PSReadLine, see https://docs.microsoft.com/powershell/module/psreadline/about/about_psreadline. And for more details, you can view the PSReadLine GitHub README file: https://github.com/PowerShell/PSReadLine/blob/master/README.md.

 An important issue surrounds the naming of this module. The original name of the module was PSReadline. At some point, the module's developers changed the name of the module to PSReadLine (capitalizing the L character in the module name).

 The PSReadLine module ships natively with PowerShell 7. At startup, in both the console and VS Code, PowerShell imports PSReadLine so it is ready for you to use. You can also use PSReadLine in Windows PowerShell. To simplify the updating of this module's help, consider renaming the module to capitalize the L in PSReadLine.

 The PSReadLine module is a work in progress. Microsoft incorporated an early version of this module within Windows PowerShell v3. Windows PowerShell 5.1 (and the ISE) inside Windows Server ships with PSReadLine v2. If you are still using earlier versions of Windows PowerShell, you can download and utilize the latest version of PSReadLine.

 The module has improved and, with the module's v2 release, some changes were made that are not backward-compatible. Many blog articles, for example, use the older syntax for Set-PSReadLineOption, which fails with version 2 (and later) of the module. You may still see the old syntax if you use your search engine to discover examples. Likewise, some of the examples in this recipe fail should you run them utilizing PSReadline v1 (complete with the old module name's spelling).

 Getting ready

 This recipe uses SRV1 after you have installed PowerShell 7, VS Code, and the Cascadia Code font (and customized your environment).

 How to do it...

 	Getting the commands in the PSReadLine module
 Get-Command -Module PSReadLine

 	Getting the first 10 PSReadLine key handlers
 Get-PSReadLineKeyHandler |
 Select-Object -First 10 |
 Sort-Object -Property Key |
 Format-Table -Property Key, Function, Description

 	Counting the unbound key handlers
 $Unbound = (Get-PSReadLineKeyHandler -Unbound).count
"$Unbound unbound key handlers"

 	Getting the PSReadLine options
 Get-PSReadLineOption

 	Determining the VS Code theme name
 $Path = $Env:APPDATA
$CP = '\Code\User\Settings.json'
$JsonConfig = Join-Path $Path -ChildPath $CP
$ConfigJSON = Get-Content $JsonConfig
$Theme = $ConfigJson |
 ConvertFrom-Json |
 Select-Object -ExpandProperty 'workbench.colorTheme'

 	Changing the color scheme if the theme name is Visual Studio Light
 If ($Theme -eq 'Visual Studio Light') {
 Set-PSReadLineOption -Colors @{
 Member = "`e[33m"
 Number = "`e[34m"
 Parameter = "`e[35m"
 Command = "`e[34m"
 }
}

 How it works...

 In step 1, you view the commands in the PSReadLine module, which looks like this:

 [image:]
 Figure 1.30: Viewing commands in the PSReadLine module

 In step 2, you display the first 10 PSReadLine key handlers currently in use, which looks like this:

 [image:]
 Figure 1.31: Displaying the first 10 PSReadLine key handlers

 PSReadLine provides over 160 internal functions to which you can bind a key combination. In step 3, you discover how many functions are currently unbound, which looks like this:

 [image:]
 Figure 1.32: Discovering the count of unbound key handlers

 In step 4, you view the PSReadLine options as you can see here:

 [image:]
 Figure 1.33: Getting the PSReadLine options

 In step 5 and step 6, you determine the current VS Code theme name and update the colors used by PSReadLine for better clarity. These two steps produce no output, although you should see the colors of specific PowerShell syntax tokens change (run Get-PSReadLineOption to see the changes).

 There's more...

 In step 1, you view the commands inside the PSReadLine module. The PSConsoleHostReadLine function is the entry point to this module's functionality. When the PowerShell console starts, it loads this module and invokes the PSConsoleHostReadLine function.

 One small downside to PSReadLine is that it does not work well with all Windows screen reader programs. For accessibility reasons, if the PowerShell console detects you are using any screen reader program, the console startup process does not load PSReadLine. You can always load PSReadLine manually either in the console or by updating your startup profile(s).

 In step 2, you view the key handlers currently used by PSReadLine. Each key handler maps a keystroke combination (for example, Ctrl + L) to one of over 160 internal PSReadLine functions. By default, Ctrl + L maps to the PSReadLine ClearScreen function – when you type that key sequence, PSReadLine clears the screen in the console.

 In step 5 and step 6, you detect the VS Code theme name and adjust the color scheme to match your preferences. To some degree, the PSReadLine and VS Code color themes can result in hard-to-read color combinations. If that is the case, you can persist the specific settings into your VS Code profile file and change the color scheme to meet your tastes.

 2

 Introducing PowerShell 7

 This chapter covers the following recipes:

 	Exploring new operators

 	Exploring parallel processing with ForEach-Object

 	Exploring Improvements in Foreach and ForEach-Object

 	Improvements in Test-Connection

 	Using Select-String

 	Exploring the error view and Get-Error

 	Exploring experimental features

 Introduction

 In Chapter 1, Installing and Configuring PowerShell 7.1, you installed and configured PowerShell 7, along with VS Code and a new font. In this chapter, we look at PowerShell 7 and how it differs from Windows PowerShell. The recipes in this chapter illustrate some of the important new features that come with PowerShell 7.

 Now that PowerShell is cross-platform, it has a new, expanded audience, one with a background in Linux shells such as Bash. With PowerShell 7, the PowerShell team added several new operators that improved parity with other shells and made life that little bit easier for IT pros.

 With the move to open source, the PowerShell code was open to inspection by the community. Many talented developers were able to make improvements to performance and functionality. One example is how PowerShell performs iteration using ForEach and ForEach-Object. In Windows PowerShell, the ForEach syntax item and the Foreach-Object command allowed you to process collections of objects. With Windows PowerShell, each iteration through a collection was serial, which could result in long script runtimes. PowerShell 7 introduces an improvement in the ForEach-Object command that enables you to run iterations in parallel. This review has led to a reduction in the overhead of using these popular language features, thereby speeding up production scripts.

 Another improvement is the revised Test-Connection, a command you use to test a network connection with a remote system. Test-Connection, in PowerShell 7, not only does more, but is faster than with Windows PowerShell.

 Error reporting in Windows PowerShell was excellent: clear and generally actionable error messages with details of exactly where the error occurred. In PowerShell 7, you now get, by default, a concise view of an error without all the extra text that was often of little value. As always, you can revert to less concise messages if you choose. In the Exploring the error view and Get-Error recipe, you see how error reporting (in Windows PowerShell) becomes better with PowerShell 7.

 In the final recipe of the chapter, we take a look at some of the experimental features that can be enabled in PowerShell 7.

 Exploring new operators

 Operators are symbols or combinations of keystrokes that PowerShell recognizes and assigns some meaning to. PowerShell uses the + operator to mean addition, either arithmetic addition or string addition/concatenation. Most of the PowerShell operators were defined with Windows PowerShell V1.

 PowerShell 7 now implements some new operators, including the following:

 	Pipeline chain operators: || and &&

 	Null-coalescing operator: ??

 	Null-coalescing assignment operator: ??=

 	Experimental null conditional member access operators: ?. and ?[]

 	Background processing operator: &

 	Ternary operator: ? <if-true> : <if-false>

 You see examples of these operators in this recipe.

 Getting ready

 This recipe uses SRV1, a Windows Server 2020 host. You have installed and configured PowerShell 7 and VS Code. You run this, and all remaining recipes in this book, in either a PowerShell 7 console or VS Code.

 How to do it...

 	Using PowerShell 7 to check results traditionally
 Write-Output 'Something that succeeds'
if ($?) {Write-Output 'It worked'}

 	Checking results with the pipeline operator &&
 Write-Output 'Something that succeeds' && Write-Output 'It worked'

 	Using the pipeline chain operator ||
 Write-Output 'Something that succeeds' ||
 Write-Output 'You do not see this message'

 	Defining a simple function
 function Install-CascadiaPLFont{
 Write-Host 'Installing Cascadia PL font...'
}

 	Using the || operator
 $OldErrorAction = $ErrorActionPreference
$ErrorActionPreference = 'SilentlyContinue'
Get-ChildItem -Path C:\FOO\CASCADIAPL.TTF ||
 Install-CascadiaPLFont
$ErrorActionPreference = $OldErrorAction

 	Creating a function to test null handling
 Function Test-NCO {
 if ($args -eq '42') {
 Return 'Test-NCO returned a result'
 }
}

 	Testing null results traditionally
 $Result1 = Test-NCO # no parameter
if ($null -eq $Result1) {
 'Function returned no value'
} else {
 $Result1
}
$Result2 = Test-NCO 42 # using a parameter
if ($null -eq $Result2) {
 'Function returned no value'
} else {
 $Result2
}

 	Testing using the null-coalescing operator ??
 $Result3 = Test-NCO
$Result3 ?? 'Function returned no value'
$Result4 = Test-NCO 42
$Result4 ?? 'This is not output, but result is'

 	Demonstrating the null conditional assignment operator
 $Result5 = Test-NCO
$Result5 ?? 'Result is null'
$Result5 ??= Test-NCO 42
$Result5

 	Running a method on a null object traditionally
 $BitService.Stop()

 	Using the null conditional operator for a method
 ${BitService}?.Stop()

 	Testing null property name access
 $x = $null
${x}?.Propname
$x = @{Propname=42}
${x}?.Propname

 	Testing array member access of a null object
 $y = $null
${y}?[0]
$y = 1,2,3
${y}?[0]

 	Using the background processing operator &
 Get-CimClass -ClassName Win32_Bios &

 	Waiting for the job to complete
 $JobId = (Get-Job | Select-Object -Last 1).Id
Wait-Job -id $JobId

 	Viewing the output
 $Results = Receive-Job -Id $JobId
$Results | Format-Table

 	Creating an object without using the ternary operator
 $A = 42; $B = (42,4242) | Get-Random
$RandomTest = ($true, $false) | Get-Random
if ($A -eq $B) {
 $Property1 = $true
} else {
 $Property1 = $false
}
if ($RandomTest) {
 $Property2 = "Hello"
} else {
 $Property2 = "Goodbye"
}
[PSCustomObject]@{
 "Property1" = $Property1
 "Property2" = $Property2
}

 	Creating an object using the ternary operator
 [PSCustomObject]@{
 "Property1" = (($A -eq $B) ? $true : $false)
 "Property2" = (($RandomTest) ? "Hello" : "Goodbye")
}

 How it works...

 In step 1, you write output, which succeeds. Then you test the value of $? to determine whether that previous step did, in fact, succeed. The output is as follows:

 [image:]
 Figure 2.1: Checking results traditionally

 In step 2, you use the && operator to check that a preceding command finished without an error. The output looks like this:

 [image:]
 Figure 2.2: Checking results with the pipeline operator

 The pipeline chain operator, ||, tells PowerShell to run the commands after the operator if the preceding command fails (in effect, the opposite to &&). In step 3, you see the operator in use, with output like this:

 [image:]
 Figure 2.3: Using the pipeline chain operator

 In step 4, you define a function. Defining the function produces no output. This function writes output to simulate the installation of the Cascadia Code PL font.

 In step 5, you check to see whether the TTF file exists, and if not, you call the Install-CascadiaPLFont function to simulate installing the font. By piping the output from Get-ChildItem to Out-Null, you avoid the actual output from Get-ChildItem, and if the file does not exist, you call the Install-CascadiaPLFont function. The output of this snippet looks like this:

 [image:]
 Figure 2.4: Using the || operator and installing the Cascadia font

 To illustrate the handling of null results from a function, in step 6, you create a function that either returns nothing (if you call the function with no parameters) or a string value (if you call it specifying a parameter). This function illustrates how you can handle a function that returns null. This step produces no output.

 In step 7, you illustrate the traditional handling of a function that returns null. You call the function, first without a parameter, that returns no result and then with a value that does return a value. You then test to see whether the function returned an actual value in each case, which looks like this:

 [image:]
 Figure 2.5: Testing null results traditionally

 When you use the null-coalescing operator (??) between two operands, the operator returns the value of its left-hand operand if it isn't null; otherwise, it evaluates the right-hand operand and returns the results. In step 8, you call the Test-NCO function and check whether the function returns a value, which looks like this:

 [image:]
 Figure 2.6: Testing using the null-coalescing operator

 You use the null conditional assignment operator, ??=, to assign a value to a variable if that variable is currently null, as you can see in step 9, the output from which looks like this:

 [image:]

OEBPS/Images/B16762_02_04.png

OEBPS/Images/B16762_01_04.png

OEBPS/Images/B16762_01_12.png

OEBPS/Images/B16762_01_13.png

OEBPS/Images/Information_Box_Icon.png

OEBPS/Images/B16762_01_21.png

OEBPS/Images/B16762_01_30.png

OEBPS/Images/B16762_01_22.png

OEBPS/Images/B16762_01_14.png

OEBPS/Images/B16762_01_31.png

OEBPS/Images/B16762_01_05.png

OEBPS/Images/B16762_02_05.png

OEBPS/Images/B16762_01_15.png

OEBPS/Images/B16762_01_02.png

OEBPS/Images/B16762_01_28.png

OEBPS/Images/B16762_02_06.png

OEBPS/Images/Image35143.jpg

OEBPS/Images/B16762_01_32.png

OEBPS/Images/B16762_01_16.png

OEBPS/Images/B16762_01_03.png

OEBPS/Images/B16762_01_29.png

OEBPS/Images/B16762_02_07.png

OEBPS/Images/B16762_01_20.png

OEBPS/Images/quote.png

OEBPS/Images/B16762_01_33.png

OEBPS/Images/B16762_01_09.png

OEBPS/Images/B16762_01_26.png

OEBPS/Images/B16762_01_25.png

OEBPS/Images/B16762_01_17.png

OEBPS/Images/B16762_01_08.png

OEBPS/Images/B16762_01_27.png

OEBPS/Images/B16762_01_18.png

OEBPS/Images/B16762_01_01.png

OEBPS/Images/B16762_02_01.png

OEBPS/Images/B16762_01_10.png

OEBPS/Images/B16762_01_23.png

OEBPS/Images/B16762_01_06.png

OEBPS/Images/lightbulb.png

OEBPS/Images/B16762_02_02.png

OEBPS/Images/B16762_MockupCover.png

OEBPS/Images/B16762_01_19.png

OEBPS/Images/B16762_02_03.png

OEBPS/Images/B16762_01_11.png

OEBPS/Images/B16762_01_24.png

OEBPS/Images/B16762_01_07.png

