

 [image: Android System Programming]

 Title Page

Android System Programming

Porting, customizing, and debugging Android HAL

Roger Ye

BIRMINGHAM - MUMBAI

 Copyright

Android System Programming

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1290517

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-536-0

www.packtpub.com

 Credits

	
Author

Roger Ye

	
Copy Editor

Safis Editing

	
Reviewers

Bin Chen

Chih-Wei Huang

Shen Liu

Nanik Tolaram

	
Project Coordinator

Ritika Manoj

	
Commissioning Editor

Amarabha Banerjee

	
Proofreader

Safis Editing

	
Acquisition Editor

Shweta Pant

	
Indexer

Mariammal Chettiyar

	
Content Development Editor

Arun Nadar

	
Production Coordinator

Nilesh Mohite

	
Technical Editor

Prajakta Mhatre

	

 About the Author

Roger Ye has worked in the area of embedded system programming for more than 10 years. He has worked on system programming for mobile devices, home gateways, and telecommunication systems for various companies, such as Motorola, Emerson, and Intersil.

Most recently, he has worked as an engineering manager, leading a team of Android engineers to develop mobile security applications at Intel Security. With extensive knowledge and experience in the areas of embedded systems and mobile device development, he published a book called Embedded Programming with Android, Addison-Wesley, in 2015.

I would like to thank my dearest wife, Bo Quan, and my lovely daughter, Yuxin Ye, for enduring me to spend significant time on this book over the weekends. They have been very encouraging and always give me support to work on the things that I am interested in.

 About the Reviewers

Bin Chen is a senior engineer from Linaro. He has worked on various Android-based products since 2010: TV, STB, Galaxy Tab, Nexus Player, and Google Project Ara, in that order, and now AOSP 96Boards. He occasionally blogs and speaks about all things Android. He lives in Sydney, Australia.

Chih-Wei Huang is a developer and promoter of free software who lives in Taiwan. He is famous for his work in the VoIP and internationalization and localization fields in Greater China.

Huang graduated from National Taiwan University (NTU) in 1993 with a bachelor's degree in physics, and attained a master's degree in the electrical engineering department of NTU in 2000. Huang currently works as a chief engineer of Tsinghua Tongfang Co., Ltd.

for the OPENTHOS project. He is one of the founding members of the Software Liberty Association of Taiwan (SLAT).

Chih-Wei Huang is the founder and coordinator of the Chinese Linux Documentation Project (CLDP). He is also the second coordinator of the Chinese Linux Extensions (CLE)

and a core developer of GNU Gatekeeper (from 2001 to 2003).

He is a contributor to pyDict, OpenH323, Asterisk, GStreamer, and more. He is working on a way to leverage the ASUS Eee PC with the power of the free software community and aims to provide a complete solution for Android on the x86 platform. The Eee PC, VirtualBox, and QEMU have been tested and are OK.

Chih-Wei Huang and Yi Sun started the Android-x86 open source project in 2009. The project aims to bring Android to the x86 platform.

 About the Reviewers

Shen Liu is a senior engineer, working at Intel China. He used to work at McAfee LLC, Broadcom Corporation, and Huawei Technologies. He has over 10 years of work experience on Linux/Android and embedded systems, in different roles. He had taken manager, architect, and engineer roles during his career. He is mainly responsible for the Android framework, but is not limited to it, and he has a lot of passion for software design. On top of that, he loves reading technical books.

Nanik Tolaram works as a senior Android platform engineer for BlocksGlobal in Australia, where he is responsible for developing Screener (screener.digital) and Lumin (mylumin.org). He is passionate about Android and is very active within both the local and international Android developer communities--from talks and teaching to writing articles for ODROID open source magazine (magazine.odroid.com). In his spare time, he loves to tinker with electronics and study human psychology and behavior. He lives in Sydney, Australia, with his lovely wife and two beautiful boys.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at www.amazon.com/dp/178712536X.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

	 Preface
	 Virtual hardware platforms
 	 Android version used in this book
 	 What this book covers
 	 What you need for this book
 	 Who this book is for
 	 Conventions
 	 Reader feedback
 	 Customer support
	 Downloading the example code
 	 Errata
 	 Piracy
 	 Questions

 	 Introduction to Android System Programming
	 What is system programming?
 	 What is the scope of this book?
 	 Overview of the Android system
	 Kernel
 	 HAL
 	 Android system services
 	 Binder IPC
 	 Application framework
 	 Recovery

 	 The third-party open source projects derived from AOSP
	 LineageOS (CyanogenMod)
 	 Android-x86
 	 CWM/CMR/TWRP

 	 Strategy of integration
 	 Virtual hardware reference platforms
	 Introduction to the x86-based Android emulator
 	 Introduction to ranchu
 	 VirtualBox-based Android emulators

 	 Summary

 	 Setting Up the Development Environment
	 Summary of Android versions
 	 Installing Android SDK and setting up an Android Virtual Device
	 Creating AVD in an older version of SDK
 	 Creating AVD in the latest version of SDK
 	 Testing the goldfish emulator
 	 Testing ranchu emulator

 	 The AOSP build environment and the Android emulator build
	 The AOSP build environment
	 Installing the required packages
 	 Installing Open JDK 7 and 8
 	 Downloading the AOSP source
 	 Installing repo
 	 Initializing a repo client and downloading the AOSP source tree

 	 Building AOSP Android emulator images
 	 Testing AOSP images

 	 Creating your own repository mirror
	 Repo and manifest
 	 Using a local mirror for AOSP
 	 Creating your own mirror of GitHub
 	 Fetching Git repositories outside GitHub
 	 Creating your own manifest for client download

 	 Summary

 	 Discovering Kernel, HAL, and Virtual Hardware
	 What is inside the AOSP?
 	 Android emulator HAL
	 Calling sequence
 	 Goldfish lights HAL
 	 The system service and hardware manager

 	 Android emulator kernel and hardware
	 Android emulator hardware
	 Goldfish platform bus
 	 QEMU pipe device
 	 Goldfish audio device
 	 Goldfish serial port

 	 Goldfish kernel
	 QEMU pipe

 	 Summary

 	 Customizing the Android Emulator
	 Why customize the Android emulator
 	 Understanding build layers
 	 Build variants
 	 Creating a new x86emu device
	 Checking out from the AOSP
 	 Checking out from a local mirror
 	 Creating x86emu device
 	 AndroidProducts.mk
 	 BoardConfig.mk
 	 device.mk

 	 Building and testing x86emu
	 Building x86emu
 	 Testing x86emu
 	 Integrating with Eclipse

 	 Summary

 	 Enabling the ARM Translator and Introducing Native Bridge
	 Introducing Native Bridge
	 Setting up Native Bridge as part of the ART initialization
 	 Pre-initializing Native Bridge
 	 Initializing Native Bridge
 	 Loading a native library

 	 Integrating Houdini to the x86emu device
	 Changing the configuration of the x86emu build
 	 Extending the x86emu device
	 Changes to BoardConfig.mk
 	 Changes to x86emu_x86.mk
 	 Changes to device.mk

 	 Using the Android-x86 implementation
	 Analyzing libnb.so
 	 Using binfmt_misc

 	 Building and testing
	 Testing the command-line application
 	 Testing the Android JNI application

 	 Summary

 	 Debugging the Boot Up Process Using a Customized ramdisk
	 Analyzing the Android start up process
	 Bootloader and the kernel
 	 Analyzing the init process and ramdisk
	 Actions
 	 Services
 	 Device-specific actions and services

 	 Source code and manifest changes
 	 The Android-x86 start up process
	 The first-stage boot using initrd.img
	 Inside initrd.img
 	 Inside install.img

 	 Building x86emu with initrd.img
 	 Creating a filesystem image
 	 Kernel changes
 	 Booting a disk image on the Android emulator
 	 Summary

 	 Enabling Wi-Fi on the Android Emulator
	 Wi-Fi on Android
	 The Wi-Fi architecture
 	 QEMU networking and wpa_supplicant in Android

 	 Adding Wi-Fi to the emulator
	 Enabling wpa_supplicant in BoardConfig.mk
 	 Providing a proper wpa_supplicant configuration
 	 Creating services in init scripts
	 Initializing network interface eth1
 	 Starting up wpa_supplicant

 	 Building the source code
	 Getting the source code
 	 Enabling boot with initrd.img

 	 Testing Wi-Fi on an emulator
	 Booting an Android emulator using initrd.img
 	 Booting an Android emulator using ramdisk.img
 	 Debugging Wi-Fi start up processes

 	 Summary

 	 Creating Your Own Device on VirtualBox
	 HAL of x86vbox
	 The manifest for x86vbox

 	 Creating a new x86vbox device
	 Product definition Makefile of x86vbox
 	 Board configuration of x86vbox
 	 Common x86 devices
 	 Getting the source code and building the x86vbox device

 	 Boot up process and device initialization
	 Device initialization before Android start-up
 	 HAL initialization during the Android start-up

 	 Summary

 	 Booting Up x86vbox Using PXE/NFS
	 Setting up a PXE boot environment
	 Preparing PXE Boot ROM
	 Downloading and building the LAN Boot ROM
 	 Fixing up the ROM image
 	 Configuring the virtual machine to use the LAN Boot ROM

 	 Setting up the PXE boot environment

 	 Configuring and testing the PXE boot
	 Setting up the virtual machine
 	 Using VirtualBox internal PXE booting with NAT
 	 Configuring pxelinux.cfg
	 pxelinux.cfg/default

 	 Setting up a serial port for debugging

 	 NFS filesystem
	 Preparing the kernel
 	 Setting up the NFS server

 	 Configuring the PXE boot menu
	 Booting to NFS installation
 	 Booting from a hard disk
 	 Booting to recovery

 	 Summary

 	 Enabling Graphics
	 Introduction to the Android graphics architecture
 	 Delving into graphics HAL
	 Loading the Gralloc module
 	 Initializing GPU
 	 Initializing framebuffer
 	 Allocating and releasing the graphic buffer
	 Allocating from framebuffer
 	 Allocating from system memory
 	 Releasing graphic buffers

 	 Rendering framebuffer

 	 Graphics HAL of the Android emulator
	 Overview of hardware GLES emulation
 	 Initializing GPU0 and FB0 in GLES emulation
 	 GPU0 device implementation
 	 FB0 device implementation

 	 Summary

 	 Enabling VirtualBox-Specific Hardware Interfaces
	 OpenGL ES and graphics hardware initialization
	 Loading OpenGL ES libraries
	 Analyzing the loading process
 	 Loading the driver
 	 Creating the rendering engine

 	 The uvesafb framebuffer driver
	 What is uvesafb?
 	 Testing the uvesafb framebuffer driver
 	 Initializing uvesafb in x86vbox

 	 Integrating VirtualBox Guest Additions
	 Building VirtualBox Guest Additions
 	 Integrating vboxsf
 	 Integrating vboxvideo
 	 Building and testing images with VirtualBox Guest Additions

 	 Summary

 	 Introducing Recovery
	 Recovery introduction
	 Android device partitions

 	 Analyzing recovery
	 BCB
 	 Cache partition
 	 Main flow of recovery
 	 Retrieving arguments from BCB and cache files
 	 Factory data reset
 	 OTA update

 	 Building recovery for x86vbox
	 Building configuration
 	 Changes to x86vbox
 	 Changes to recovery
 	 Changes to newinstaller
 	 Testing recovery

 	 Summary

 	 Creating OTA Packages
	 What is inside an OTA package
	 Updater
 	 The updater script
 	 Edify functions
	 Built-in functions
 	 Installation functions
 	 Block image functions
 	 Device extensions

 	 Preparing an OTA package for x86vbox
 	 Removing dependencies on /system
	 Hardware initialization in recovery
 	 Minimum execution environment in recovery

 	 Building and testing
 	 Summary

 	 Customizing and Debugging Recovery
	 Debugging and testing native Android applications
	 Debugging with GDB
 	 Integration with Eclipse

 	 Extending recovery and the updater
	 Extending recovery
 	 Extending the updater
 	 Extending the Python module
 	 Building and testing the extended recovery and updater

 	 Supporting the third-party recovery packages
	 Xposed recovery package
 	 Opening GApps

 	 Summary

 Preface

Android is the most popular mobile operating system in the world. Since 2013, Android has around 80% market share worldwide, while the second largest mobile operating system, iOS, has less than 20% market share. Due to the popularity of Android, there are many books about Android programming in the market. Most of them are targeted at Android application developers, which are the largest community in the world of Android development.

There is also another group of people working on the layer beneath the Android framework. Many people call them Android system developers. Comparing to Android application developers, Android system developers use the C/C++ languages, or even assembly language, to develop system services or device drivers. The scope and the definition of Android system development is much more vague than comparing to Android application development. For Android application development, the development environment and tools are very clear: the Android SDK and Android Studio from Google should be used and the programming language is Java.

For Android system development, we may use the Android NDK to develop Android system services or native applications. Many people refer to development based on the Android Open Source Project (AOSP) as Android system development. Nevertheless, Android system development encompasses the activities that produces native applications, services, or device drivers for a particular hardware platform. It closer to the hardware and the operating system, whereas Android application development is more general and hardware-independent.

Due to the hardware and operating system dependencies, it is more difficult to teach Android system programming than Android application programming. From the number of books in the market, we can see this. It is much easier to teach Android application development using specific examples. The readers of application programming books can follow the examples and can test them on most available Android devices. However, most Android system programming book can only talk about general concepts or ideas. When the authors want to use examples, they must pertain to a particular hardware platform and Android version. This makes it difficult for readers to repeat the same process.

 Virtual hardware platforms

To make the discussion more general and overcome the issue of specific hardware platforms, I use virtual hardware platforms to demonstrate the work at the Android system level.

Before this book, I made an attempt to use a virtual hardware platform to explain how we can learn embedded system programming using an Android emulator in my previous book, Embedded Programming with Android. It seems many readers liked the idea, because they can explore the code examples much more easily on a virtual hardware platform that is available for everyone.

 Android version used in this book

Android is still changing at a very fast pace. When I completed the book Embedded Programming with Android, we were still using Android 5 (Lollipop), and Android 6 (Marshmallow) was on the way to market with preview releases. Now while I am working on this book, Android 7 devices are available on the market and the next release of Android 8 has been announced with preview releases. We will use Android 7 (Nougat) to build all source code used in this book.

 What this book covers

In this book, we discuss the Android system programming practices. We will use two projects (x86emu and x86vbox) to teach essential knowledge of Android system programming. The book is split into includes two parts.

The first part of this book talks about how to customize, extend, and port an Android system. We will use an Android emulator as the virtual hardware platform to demonstrate how to customize and extend an Android system. You will learn how to integrate an ARM translator (Houdini) into the Intel x86-based emulator and how to add Wi-Fi support to an Android emulator. We will use an x86emu device to learn these topics. After that, we will learn how to port an Android system to a new platform using VirtualBox. You will learn how to boot Android in the PXE/NFS environment, how to enable the graphics system, and how to integrate VirtualBox Guest Additions into the Android system. We will use x86vbox device to learn these topics.

In the second part of this book, we will learn how to update or patch a released system using recovery. In this part, we will provide a general introduction to recovery first. After that, we will explore how to build recovery for x86vbox device. With recovery for x86vbox device, we will demonstrate how to flash an update package to change the system image. We will use examples such as the Gapps and xposed recovery packages to demonstrate how to update an Android system image using third-party recovery packages.

Chapter 1, Introduction to Android System Programming, covers a general introduction of Android system programming. It also explains the scope of this book.

Chapter 2, Setting Up the Development Environment, provides details of the development environment setup for AOSP programming. After we set up the development environment, we will build an Android emulator image to test our setup. Other than the environment setup, we specifically discuss how to create your own source code mirror of AOSP from GitHub to help your quickly switch between different configurations.

Chapter 3, Discovering Kernel, HAL, and Virtual Hardware, covers an introduction to the Linux kernel, Hardware Abstraction Layer, and virtual hardware. In this chapter, we look at all the layers in the Android system software stack related to porting. We also take a in-depth look at the internals of the virtual hardware that we are going to use in this book.

Chapter 4, Customizing the Android Emulator, covers the development of a new device, x86emu. We will learn how to customize and extend this device in the next few chapters.

Chapter 5, Enabling the ARM Translator and Introducing Native Bridge, explores a new feature introduced in Android 5--Native Bridge. Since we created an x86-based device, x86emu, we have to integrate the ARM translator module (Houdini) into our device so that most ARM-native applications can run on it.

Chapter 6, Debugging the Boot Up Process Using a Customized ramdisk, introduces an advanced debugging skill to troubleshoot issues during the boot up stage. The famous Android-x86 project uses a special ramdisk to start the boot up process. It helps to troubleshoot device driver and init process issues very easily.

Chapter 7, Enabling Wi-Fi on the Android Emulator, presents details of how to enable Wi-Fi on our Android emulator. The Android emulator only supports an emulated 3G data connection, but many applications are aware of data and the Wi-Fi connection. We demonstrate how to enable Wi-Fi in the Android emulator in this chapter.

Chapter 8, Creating Your Own Device on VirtualBox, explores how to port Android on VirtualBox by introducing a new device x86vbox. The x86emu device is used to demonstrate how to customize an existing implementation, while x86vbox is used to demonstrate how to port Android to a new hardware platform.

Chapter 9, Booting Up x86vbox Using PXE/NFS, explains how to boot up Android on VirtualBox using PXE/NFS. Since VirtualBox is a general virtual hardware, the first problem that we meet is we need a bootloader to boot the system. We will use the PXE/NFS boot to solve this issue. This is an advanced debugging skills which can be used in your own project.

 To discuss a more advanced case about the PXE/NFS setup using an external DHCP/TFTP server running in the host-only network environment, I have written an article, which you can find at https://www.packtpub.com/books/content/booting-android-system-using-pxenfs.

Chapter 10, Enabling Graphics, covers the Android graphic system. We introduce the Android graphics architecture and how to enable it on the x86vbox device.

Chapter 11, Enabling VirtualBox-Specific Hardware Interfaces, explains how to integrate the device drivers in VirtualBox Guest Additions into the Android system.

Chapter 12, Introducing Recovery, provides an introduction to recovery. We will learn how to customize and port recovery to a new hardware platform by building a recovery for the x86vbox device.

Chapter 13, Creating OTA Packages, covers the scripting language used by recovery: Edify. We will learn how to build and test OTA updates.

Chapter 14, Customizing and Debugging Recovery, expands on the concepts we learned about recovery and OTA packages. We will customize both recovery and updater for x86vbox device. We will test third-party OTA packages from Gapps and Xposed using our own recovery.

 What you need for this book

To read this book, you should have essential knowledge of embedded operating systems and C/C++ programming language.

 Who this book is for

Before we talk about who should read this book, we should ask who are the people that usually do Android system programming in the real world? There are potentially quite a lot. Here, I can give a few general categories. Firstly, there are a large number of engineers at Google working on the Android system itself, since Android is a product from Google. Google usually work with silicon vendors to enable Android on various hardware platforms.

There are many engineers at silicon chip companies, such as Qualcomm, MTK, or Intel to enable Android on their platform. They develop HAL layer components or device drivers to enable hardware platforms. The hardware platforms are usually called reference platforms, which are provided to OEM/ODM to build the actual products. Then, the engineers at OEM/ODM companies usually customize the reference platform hardware and software to add unique features to their products. All these engineers form the major groups working on system-level programming. Thus, if you are working in any of these areas, you may want to read this book.

Besides the previously mentioned categories, it is also possible that you are a developer working for an embedded system company. You may work on projects such as embedded system for automobile, video surveillance, or smart home. Many of these systems use Android nowadays. One of the fastest growing areas in embedded systems is Internet of Things (IoT) devices. Google announced Brillo as the operating system for IoT devices. Brillo is a simplified embedded operating system based on Android. The source code of Brillo is also included in the AOSP. This book is also relevant to people who use Brillo.

For Android application developers, system-level knowledge can help you to resolve complex issues as well. If you are working on projects that involve new hardware features, you may want to extend your knowledge to the system level.

This book is also useful for people teaching Android system programming or embedded system programming. There is plenty of source code in this book that can be used to form your own lesson plans.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The general Android kernel source code is in the kernel/common folder , which looks very much like the Vanilla kernel."

A block of code is set as follows:

static struct hw_module_methods_t lights_module_methods = {
 .open = open_lights,
};

Any command-line input or output is written as follows:

$ ls
Light.java LightsManager.java LightsService.java

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "We should set the launch type to Standard Create Process Launcher."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Android-System-Programming. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 Introduction to Android System Programming

This book is about Android system programming. In this chapter, we will start with a discussion on system programming and the scope of Android system programming (to give a high-level view of this book). After that, we will look at the Android system architecture. From the architecture, we can see the layers that we will focus on in this book. We will also talk about the virtual hardware platforms and third-party open source projects that we will use in this book. In summary, we will cover the following topics in this chapter:

	Introduction to Android system programming

	Overview of the Android system architecture

	Introduction to the third-party projects used in this book

	Introduction to virtual hardware platforms

 What is system programming?

When we talk about what system programming is, we can start with the definition of system programming in Wikipedia:

"System programming (or systems programming) is the activity of programming system software. The primary distinguishing characteristic of systems programming when compared to application programming is that application programming aims to produce software which provides services to the user (e.g. word processor), whereas systems programming aims to produce software and software platforms which provide services to other software, are performance constrained, or both (e.g. operating systems, computational science applications, game engines and AAA video games, industrial automation, and software as a service applications). "

From the preceding definition, we can see that when we talk about system programming we actually deal with the building blocks of the computer system itself. We may depict the system architecture and how it looks like inside the system. As an example, we can refer to system programming books for Windows or Linux. The book Linux System Programming published by O'Reilly Media, Inc. includes topics about file I/O, process management, memory management, interrupt handling, and so on. There is another book called Windows System Programming published by Addison-Wesley Professional that includes very similar topics to its Linux counterpart.

You may expect similar content in this book for Android, but you will find that the topics in this book are quite different from the classic system programming book. First of all, it doesn't really make sense to have a system programming book for Android talk about file I/O, process management, or memory management, because the Linux System Programming book can cover almost the same topics for Android (Android uses Linux kernels and device driver models).

When you want to explore kernel space system programming, you can read books such as Linux Device Drivers by O'Reilly or Essential Linux Device Drivers from Prentice Hall. When you want to explore user space system programming, you can read the book that I mentioned before, Linux System Programming by O'Reilly. Then you may wonder, Do we need an Android System Programming book in this case? To answer this question, it depends on how we look at system programming for Android. Or in other words, it depends on which angle we look at Android System Programming from. We can tell people different things about the same world from different perspectives. In that sense, we may need more than one book to talk about Android system programming.

To talk about Android system programming, we can talk about it theoretically or practically. In this book, we will do it practically with a few actual projects and hands-on examples. Our focus will be how to customize the Android system and how to port it to a new platform.

 What is the scope of this book?

As we know, there are two kinds of programming for Android: application programming and system programming.

Usually, it is hard to draw a line between system programming and application programming, especially for C language-based operating systems, such as Linux and all kinds of Unix system. With the Android framework, the application layer is separated nicely from the rest of the system. You may know that Android application programming uses the Java language and Android system programming using Java, C/C++, or assembly languages. To make it simple, we can treat everything other than application programming in the Android world as the scope of system programming. In this sense, the Android framework is also in the scope of system programming.

From the perspective of the audiences of this book, they may want to learn more about the layers they may touch on in their project work. The Android framework is a layer that will be changed by Google only in most cases. From this point of view, we won't spend too much time talking about the framework itself. Instead, we will focus on how to port the system including the Android framework from the standard platforms in Android Open Source Project (AOSP) to other platforms. We will focus on the layers that need to be changed during the porting process in this book.

After we have done the porting work, a new Android system will be available. One thing that we need to do for the new system is deliver the changes for the new system to the end users from time to time. It could be a major system update or bug fixing. This is supported by over-the-air (OTA) updates in Android. This is also one of the topics in this book.

Traditionally, all Unix programming was system-level programming. Unix or Linux programming is built around three cornerstones, which are system calls, the C library, and the C compiler. This is true for Android system programming as well. On top of the system calls and C library, Android has an additional layer of abstraction for the Android application level. This is the Android framework and Java virtual machine.

In that sense, most Android applications are built using Android SDK and Java language. You may be wondering whether it is possible to do Android application development using C/C++ or even do system level programming using Java. Yes, all these are possible. Besides Android SDK, we can also develop native applications using Android NDK. There are also a lot of Android framework components developed using the Java language. We can even develop Android applications using C# with Visual Studio (Xamarin). However, we won't go to that kind of complexity in this book. We will focus on the layers below the application framework. Again, the focus will be on customizing and extending the existing system or porting the entire system to a new hardware platform.

The reason why we will focus on the porting of Android systems and the customization of Android systems is because these are what most people working on the Android system level will do. After Google releases a new version of Android, silicon vendors need to port the new version to their reference platform. When OEM/ODM companies get the reference platform, they have to customize the reference platform to their products. The customization includes the build of the initial system itself and the deployment of the updates to the deployed system. In the first part of this book, we will discuss the porting of Android systems. In the second part of this book, we will discuss how to update the existing system.

If we consider the architecture of Android in the right-hand side of the following figure, we can see that most porting work will focus on the Kernel and Hardware Abstraction Layer (HAL) in the Android system architecture. This is true for other Android derivatives as well. The knowledge and concepts in this book can apply to Android wearables and Brillo as well. The left-hand side of the following figure, it shows the architecture diagram of Brillo. Brillo is the IoT operating system from Google for IoT devices. It is a simpler and smaller version of Android for IoT devices. However, the porting layer is still the same as Android.

Comparison of Android and Brillo system architecture

The Brillo/Weave architecture diagram on the left-hand side is created by referring to the presentation by Bruce Beare, from OpenIoT Summit. Thanks, Bruce Beare for the great presentation and video on YouTube, which gives a very comprehensive introduction to the Brillo/Weave architecture.

 Overview of the Android system

As we can see from the architecture diagram, the architecture layers of Android include Application Framework, Android System Services, HAL, and Kernel. Binder IPC is used as a mechanism for inter-process communication. We will cover each of them in this section. Since recovery is also part of the system programming scope, we will also give an overview of recovery in this section.

You can find more information about key porting layers and system architecture internals at the following Google website:

http://source.android.com/devices/index.html

 Kernel

As we know, Android uses the Linux kernel. Linux was developed by Linus Torvalds in 1991. The current Linux kernel is maintained by the Linux Kernel Organization Inc. The latest mainline kernel releases can be found at https://www.kernel.org.

Android uses a slightly customized Linux kernel. The following is a concise list of the changes to the Linux kernel:

	ashmem (Android Shared Memory): A file-based shared memory system to user space

	Binder: An interprocess communication (IPC) and remote procedure call (RPC) system

	logger: A high-speed in-kernel logging mechanism optimized for writes

	paranoid networking: A mechanism to restrict network I/O to certain processes

	pmem (physical memory): A driver for mapping large chunks of physical memory into user space

	Viking Killer: A replacement OOM killer that implements Android's "kill least recently used process" logic under low-memory conditions

	wakelocks: Android's unique power management solution, in which the default state of the device is sleep and explicit action is required (via a wakelock) to prevent that

Most of the changes were implemented as device drivers with little or no changes necessary to the core kernel code. The only significant subsystem-spanning change is wakelocks.

There are many Android patches accepted by the mainline Linux kernel today. The mainline kernel can even boot up Android directly. There is a blog from Linaro about how to boot Nexus 7 running a mainline kernel. If you want to try it, you can find the instructions at https://wiki.linaro.org/LMG/Kernel/FormFactorEnablement.

If a Linux device driver is available for a hardware device, it usually can work on Android as well. The development of device drivers is the same as the development of a typical Linux device driver. If you want to find out the merges on the mainline kernel related to Android, you can check the kernel release notes at https://kernelnewbies.org/LinuxVersions.

The Android kernel source code is usually provided by SoC vendors, such as Qualcomm or MTK. The kernel source code for Google devices can be found at https://android.googlesource.com/kernel/.

Google devices use SoC from various vendors so that you can find kernel source code from different vendors here. For example, the kernel source of QualComm SoC is under kernel/msm and the kernel source of Mediatek is under kernel/mediatek. The general Android kernel source code is in the folder kernel/common, which looks much like the Vanilla kernel.

The default build of AOSP is for various devices from Google, such as Nexus or Pixel. It started to include some reference boards from silicon vendors as well recently, such as hikey-linaro, and so on. If you need a vendor-specific Android kernel for your reference platform, you should get the kernel source code from your platform vendors.

There are also open source communities maintaining Android kernels. For example, the kernel for the ARM architecture can be found at Linaro for many reference boards. For Intel x86 architecture, you can find various versions of kernels in the Android-x86 project. As you can see from the following Linaro Linux Kernel status website, the linaro-android tree is a forward port of the out-of-tree AOSP patches. It provides a preview of what Google's next AOSP kernel/common.git tree "might" look like.

The Linaro Android kernel tree can be found at https://android.git.linaro.org/gitweb/kernel/linaro-android.git.
The status of this kernel tree can be seen at https://wiki.linaro.org/LMG/Kernel/Upstreaming.

 HAL

HAL defines a standard interface for hardware vendors to implement and allows Android to be agnostic about lower-level driver implementations. HAL allows you to implement functionality without affecting or modifying the higher level system. HAL implementations are packaged into module (.so) files and loaded by the Android system at the appropriate time. This is one of the focuses for porting Android systems to a new platform. We will discover more about HAL in Chapter 3, Discovering Kernel, HAL, and Virtual Hardware. Throughout this book, I will give a very detailed analysis of the HAL layer for various hardware interfaces.

 Android system services

Functionality exposed by application framework APIs communicates with system services to access the underlying hardware. There are two groups of services that application developers may interact mostly with. They are system (services such as window manager and notification manager) and media (services involved in playing and recording media). These are the services that provide application interfaces as part of the Android framework.

Besides these services, there are also native services supporting these system services, such as SurfaceFlinger, netd, logcatd, rild, and so on. Many of them are very similar to Linux daemons that you may find in a Linux distribution. In a complicated hardware module, such as graphic, both system services and native services need to access HAL in order to provide the framework API to the application layer. We will talk about system services when we debug the init process in Chapter 6, Enabling Wi-Fi on the Android Emulator to Chapter 9, Booting Up x86vbox Using PXE/NFS.

 Binder IPC

The Binder IPC mechanism allows the application framework to cross process boundaries and call into the Android system services code. This enables high-level framework APIs to interact with Android system services. An Android application usually runs in its own process space. It doesn't have the ability to access system resources or the underlying hardware directly. It has to talk to system services through Binder IPC to access the system resource. Since applications and system services run in different processes, the Binder IPC provides a mechanism for this purpose.

The Binder IPC proxies are the channel by which the application framework can access system services in different process spaces. It does not mean it is a layer between the application framework and system services. Binder IPC is the inter-process communication mechanism that can be used by any process that wants to talk to another process. For example, system services can use Binder IPC to talk to each other as well.

 Application framework

The application framework provides APIs to the applications. It is used most often by application developers. After an interface is invoked by the applications, application frameworks talk to the system services through the Binder IPC mechanism. An Android application framework is not just a set of libraries for the application developers to use. It provides much more than that.

The break-through technology that the Android application framework brought to the developer community is a very nice separation between application layers and system layers. As we know Android application development uses the Java language and Android applications run in an environment similar to the Java virtual machine. In this kind of setup, the application layer is separated from the system layer very clearly.

The Android application framework also provides a unique programming model together with a tight integration with the integrated development environment (IDE) from Google. With this programming model and related tools, Android developers can work on application development with great efficiency and productivity. All these are key reasons why Android has gained so much traction in the mobile device world.

I have given an overall introduction to all the layers in the previous Android system architecture diagram. As I mentioned about the scope of Android system programming before, we can consider all programming in Android systems as within the scope of system programming other than application programming. With this concept in mind, we actually missed one piece in the previous architecture diagram, which is recovery.

 Recovery

In this chapter, we want to have a brief look at recovery as well, since we have three chapters about it in the second part of this book.

Recovery is a tool that can be used to upgrade or reinstall Android systems. It is part of the AOSP source code. The source code for recovery can be found at $AOSP/bootable/recovery.

The unique point about recovery compared to the other parts of Android is that it is a self-contained system by itself. We can look at recovery using the following diagram, and compare it to the Android and Brillo architectures that we talked about before:

Recovery is a separate system from Android that shares the same kernel with the Android system that it supports. We can treat it as a mini operating system or an embedded application that we can find in many embedded devices. It is a dedicated application running on top of the same Linux kernel as Android and it performs a single task, which is to update the current Android system.

When the system boots to recovery mode, it boots from a dedicated partition in the flash. This partition includes the recovery image that includes a Linux kernel and a special ramdisk image. If we look at Nexus 5 partitions, we will see the following list:

parted /dev/block/mmcblk0
parted /dev/block/mmcblk0
GNU Parted 1.8.8.1.179-aef3
Using /dev/block/mmcblk0
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
print
print
Model: MMC SEM32G (sd/mmc)
Disk /dev/block/mmcblk0: 31.3GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
 1 524kB 67.6MB 67.1MB fat16 modem
 2 67.6MB 68.7MB 1049kB sbl1
 3 68.7MB 69.2MB 524kB rpm
 4 69.2MB 69.7MB 524kB tz
 5 69.7MB 70.3MB 524kB sdi
 6 70.3MB 70.8MB 524kB aboot
7 70.8MB 72.9MB 2097kB pad
8 72.9MB 73.9MB 1049kB sbl1b
9 73.9MB 74.4MB 524kB tzb
10 74.4MB 75.0MB 524kB rpmb
11 75.0MB 75.5MB 524kB abootb
12 75.5MB 78.6MB 3146kB modemst1
13 78.6MB 81.8MB 3146kB modemst2
14 81.8MB 82.3MB 524kB metadata
15 82.3MB 99.1MB 16.8MB misc
16 99.1MB 116MB 16.8MB ext4 persist
17 116MB 119MB 3146kB imgdata
18 119MB 142MB 23.1MB laf
19 142MB 165MB 23.1MB boot

20 165MB 188MB 23.1MB recovery

21 188MB 191MB 3146kB fsg
22 191MB 192MB 524kB fsc
23 192MB 192MB 524kB ssd
24 192MB 193MB 524kB DDR
25 193MB 1267MB 1074MB ext4 system
26 1267MB 1298MB 31.5MB crypto
27 1298MB 2032MB 734MB ext4 cache
28 2032MB 31.3GB 29.2GB ext4 userdata
29 31.3GB 31.3GB 5632B grow

The list includes 29 partitions and recovery partition is one of them. The recovery ramdisk of recovery, it has a similar directory structure to the normal ramdisk. In the init script of recovery ramdisk, init starts the recovery program and it is the main process of the recovery mode. The recovery itself is the same as other native daemons in the Android system. The programming for recovery is part of the scope of Android system programming. The programming language and debug method for recovery is also the same as native Android applications. We will discuss this in more depth in the second part of this book.

 The third-party open source projects derived from AOSP

As we know, AOSP source code is the major source that we can start to work with in system-level programming. Various silicon vendors usually work with Google to enable their reference platforms. This is a huge effort and they won't publish everything to the world except for their customers. This brings a limitation to the open source world. Since the AOSP source code is mainly for Google devices, such as emulator, Nexus, or Pixel series, there is no problem for developers who use Nexus devices as hardware reference platforms. How about other devices? Manufacturers may release the kernel source code for their devices, but nothing else. In the open source world, several third-party organizations provide solutions for this situation. We will have a brief look at the ones that we used in this book in the following sections.

 LineageOS (CyanogenMod)

LineageOS is a community providing aftermarket firmware distribution for many popular Android devices. It is the successor to the highly popular CyanogenMod. If you cannot build the ROM for your devices from AOSP source code, you may look at LineageOS source code. Because there are many devices supported by LineageOS, many major third-party ROM images are built on top of its predecessor CyanogenMod. From the famous MIUI in China to the latest OnePlus device, they all use CyanogenMod source code as the base start from. The major contributions of LineageOS/CyanogenMod to the open source world are the adaptation of the Linux kernel and HAL to various Android devices.

The source code of LineageOS is maintained in GitHub and you can find it at https://github.com/LineageOS.

To build LineageOS source code for your device, the overall build process is similar to the AOSP build. The key difference is the large number of devices supported by LineageOS. For each device, there is a web page to give information about how to build for a device. We use Nexus 5 as an example. You can go to the following page for detailed information:

https://wiki.lineageos.org/devices/hammerhead

In the information page, you can find information about how to download the ROM image, how to install the image, and how to build the image. There is a build guide for devices and we can find the build guide for Nexus 5 at https://wiki.lineageos.org/devices/hammerhead/build.

To build LineageOS for Nexus 5, the two key elements are Kernel and Device. The Kernel includes the Linux kernel and Nexus 5-specific device drivers, while the Device includes the major part of the device-specific HAL code. The naming convention for both the Kernel and Device folder is android_kernel/device_{manufacturer}_{code name}.

The code name for Nexus 5 is hammerhead and the manufacturer is lge, which is LG.

We can find the following two Git repositories for Kernel and Device:

https://github.com/LineageOS/android_kernel_lge_hammerhead
https://github.com/LineageOS/android_device_lge_hammerhead

Other than the Kernel and Device, other important information is the LineageOS version. You may find it on the same device information page. For Nexus 5, the versions that can be used are 11, 12, 12.1, 13, and 14.1. You may be wondering how to match LineageOS versions to AOSP versions.

The information can be found at the following two pages at Wikipedia about CyanogenMod and LineageOS:

https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://en.wikipedia.org/wiki/LineageOS#Version_history

The LineageOS/CyanogenMod and AOSP versions supported for Nexus 5 are CM11 (Android 4.4), CM 12 (Android 5.0), CM 12.1 (Android 5.1), CM 13 (Android 6.0), and CM 14.1 (Android 7.1.1).

You will not be able to access the links related to CyanogenMod while you read this book, since the infrastructure behind CyanogenMod has been shut down recently. You can read the following post to find out more:

https://plus.google.com/+CyanogenMod/posts/RYBfQ9rTjEH

Nevertheless, the idea from the preceding configuration is that the key pieces of code to differentiate one device from another are the Kernel and Device. It is possible to share the rest of the code across devices. This is one of the goals for the projects in this book. We try to keep the changes for different hardware platforms within the Kernel and the Device, while keeping the rest of the AOSP source code untouched. This is not 100% possible, but we can try to do it as much as possible. The benefit is that we can keep our code separated from AOSP code and it is much easier to update to a new AOSP version.

 Android-x86

While LineageOS/CyanogenMod provides excellent support for a large number of Android devices, many of these devices are ARM-based devices from various silicon vendors, such as Qualcomm, Samsung, MTK, and so on. Similarly, there is an open source community for Intel-based Android devices as well. This is another famous open source project, Android-x86. Even though the number of Intel x86-based Android devices on the market cannot compare to the number of ARM-based devices, there is another market using the Intel x86 Android build extensively. This is the Android emulator market. For commercial Android emulator products, you can find AMI DuOS, Genymotion, Andy, and so on.

The project Android-x86 uses a very different approach to support various Intel x86-based devices compared to LineageOS/CyanogenMod. Its goal is to provide Board Support Package (BSP) for any Intel x86 devices. It is similar to how you install Microsoft Windows or Linux on your PC. You have only one copy of the release and you can install it on any Intel PCs. There is no special build of Windows or Linux for each different PC or laptop.

To achieve this goal on Android, Android-x86 customized the Android boot up process significantly. There are two stages of boot up process in Android-x86. The first stage is booting up a minimal Linux environment using a special ramdisk--initrd.img. After the system can boot up to this Linux environment, it starts the second stage through the chroot or switch_root command. In this stage, it will boot up the actual Android system.

This is a very smart way to resolve the new challenge using existing technology. Essentially, we try to resolve the problem in two steps. In the first stage of the boot up process, since both Windows and Linux can boot on Intel x86 PCs without a dedicated build, you should be able to boot Linux on an Intel device without too much effort. This is exactly what the first stage of Android-x86 boot up does. After the minimal Linux system can run properly, this means the minimum set of hardware devices is initialized and you are able to debug or boot the rest of the system using this minimal Linux environment. In the second stage, a common Android image for Intel x86 can be started with limited hardware initialization. This approach can be used in the debugging of hardware devices as well. We will show how we can do the same thing on the Android emulator in this book.

The official website of the Android-x86 project is http://www.android-x86.org/. You can find the information about the Android-x86 project there. To build Android-x86, it is a little tricky to get the source code. The original source code was hosted at http://git.android-x86.org and it was maintained by volunteers from Taiwan Linux User Group (TLUG). It was valid for several years. However, it ceased to work from April 2015.

You can always find the latest status from the Google discussion group at https://groups.google.com/forum/#!forum/android-x86. There is an official announcement about the issue of git.android-x86.org at the discussion group from the maintainer Chih-Wei Huang. Later, the hosting was moved to SourceForge for a short period. However, issues retrieving source code from SourceForge have been reported again since July 2016. Currently, the source code is hosted at OSDN and you can search the announcement from Chih-Wei Huang on September 8, 2016 at the Android-x86 discussion group. Since most open source projects are maintained by volunteers, they may be up and down from time to time. It is always good to keep your own mirror of the projects that you work on. We will discuss this issue in this book as well so that you can have full control of your own work.

We know that many open source projects are related to each other and this is true for both Android-x86 and LineageOS/CyanogenMod as well. Starting from January 2016, Jaap Jan Meijer did the initial porting of CyanogenMod to Android-x86 and this makes CyanogenMod available on most Intel devices. If you are interested in this topic, you can search for CM porting plan in the Android-x86 discussion group.

 CWM/CMR/TWRP

As a part of system-level programming, we introduced recovery in the previous section. The original recovery from AOSP only supports very limited functionalities so there are many third-party recovery projects.

ClockworkMod recovery (CWM) is one of the famous open source recovery projects, written by Koushik Dutta. Even though many people still use ClockworkMod recovery now, this project ceased development some time ago.

Another recovery project is CyanogenMod recovery (CMR). CMR is maintained by the CyanogenMod team and it is quite similar to ClockworkMod recovery.

TWRP or TeamWin Recovery Project is another very widely used custom recovery. It is fully touch-driven and has one of the most complete feature sets available. TWRP is the default recovery of OmniROM and its source code is hosted in GitHub as part of OmniROM at https://github.com/omnirom/android_bootable_recovery/.

 Strategy of integration

In the preceding sections, we talked about Android architecture, AOSP, and third-party open source projects for Android. The software industry has been there for decades. There are so many existing source codes that can be reused and the need to create something from scratch is very rare. The porting and customization for a new platform is basically art of integration.

In this book, we will use the AOSP source code as the foundation and try to build everything on top of it. However, we may not be able to rely on AOSP source code only. In fact, we want to demonstrate how to support a platform that is not supported by AOSP. How are we going to do this? Do we create something from scratch? The answer is no. We will demonstrate how we can integrate all existing projects together to create a new platform. That's the reason why we discuss third-party open source projects.

In our case, VirtualBox is not supported by AOSP and we are going to enable it using AOSP and Android-x86. We need to use projects from both AOSP and Android-x86 to build a system for VirtualBox. However, our goal is to create a new build system for VirtualBox with minimal changes to the AOSP source code tree. This is also the goal of many other projects based on AOSP.

Based on the previous understanding, we have four categories of projects in our integration process:

	The original unmodified AOSP projects: In these kinds of projects, we will use AOSP projects without any changes.

	The third-party projects: In this category, the projects are added by the third-party projects and are not part of AOSP, so there are no changes involved as well.

	Projects modified by both AOSP and one of the third-party projects: This is complicated. We need to review the third-party changes and decide whether we want to include them in our system or not.

	Projects modified by multiple open source projects and AOSP: This is the most complicated case that we should avoid to integrate or change.

It is very easy to understand that we should try to reuse projects in category 1 and 2 as much as possible. The challenges and major work will be in category 3, while we should try to avoid category 4 whenever possible.

 Virtual hardware reference platforms

The new Android releases usually come with two reference platforms. Developers can test the new Android releases on Android emulator first. This can be very useful in the preview stages. After the official release, the Google hardware platforms, such as Nexus or Pixel, usually become the devices for developers. The emulator and Nexus/Pixel builds are the earliest builds available in AOSP.

In this book, we will use Android emulator as the virtual hardware reference platform for our topics. Since the Android emulator build is already available in AOSP, you may wonder what we can do with it. Actually, we can customize an existing platform by adding new features to it. This is what OEM/ODM companies usually do using a reference platform from a silicon vendor. With Android emulator, we will demonstrate how to create a new device so that we can customize it. If you know any commercial emulator products, such as Genymotion and AMI DuOS, then you may know what features these products added to the emulator. We will extend Android emulator in a very similar way.

After we explore the topics about the customization of a new device, we will explore more advanced topics about porting. The major work with porting is the changes to the kernel and HAL. To discuss advanced topics about porting and debugging, we will also use VirtualBox as another virtual hardware reference platform. Even though VirtualBox has been used by many commercial emulator products, such as Genymotion, AMI DuOS, Leapdroid, and so on, it is not supported by AOSP directly. Most Android emulators for the PC are based on VirtualBox and they are designed for gamers to run Android games. In this book, we will learn how to create a similar build using various open source resources.

 Introduction to the x86-based Android emulator

Android emulator has been changed dramatically as well in Android 4, 5, 6, and 7. Before Android 5, Android emulator was built on a virtual hardware reference board called goldfish.

The hardware specification of the goldfish virtual hardware platform can be found in the AOSP source tree at $AOSP/platform/external/qemu/docs/GOLDFISH-VIRTUAL-HARDWARE.TXT. In this book, we will refer to the AOSP root directory as $AOSP.

The goldfish virtual hardware platform was built on QEMU 1.x to emulate ARM devices on the x86 environment. The x86 host environments could be a Windows, Linux, or macOS X computer. Since the target device architecture is emulated using QEMU, the performance is poor. The emulator is very slow and difficult to use for application developers. However, QEMU is actively developed on the x86 architecture and widely used together with various virtualization technologies, such as VT-x, AMD-V, and so on.

Since Android 4.x, Intel developed an x86-based Android emulator using KVM on Linux and Intel HAXM for Windows and macOS X. With the introduction of virtualization technology to the emulator, the Intel x86-based emulator is much faster than the emulated one for the ARM or MIPS architecture. For the sake of Android application developers, Google officially integrated the Intel x86-based Android emulator to Android SDK. The Intel x86-based Android emulator has become the recommended choice for developers to test their Android applications.

 Introduction to ranchu

With the introduction of Android 5 (Lollipop), the 64-bit hardware architecture is available for both ARM and Intel platforms. However, 64-bit hardware devices for Android were still under development at that time. The only choice for developers was to get a hardware reference platform from silicon vendors.

To help developers test their applications on 64-bit architecture, the engineers at Linaro did an excellent job enabling a virtual hardware platform on QEMU to test ARMv8-A 64-bit architecture. They gave this virtual hardware platform a code name, ranchu. You may refer to the blog at Linaro by Alex Bennée at https://www.linaro.org/blog/core-dump/running-64bit-android-l-qemu/.

This change was adopted by Google later and was used as the hardware reference platform for the next generation of Android emulators. If you install the Android SDK images, you can see two kernel images starting from Android 5. The kernel image kernel-qemu is the image to be used with the goldfish virtual hardware platform and the image kernel-ranchu is the image to be used with the ranchu virtual hardware platform.

To respond to this change, both Intel and MIPS worked on their architectures to support their 64-bit hardware emulation in ranchu. You can refer to the group discussions at https://groups.google.com/forum/#!topic/android-emulator-dev/dltBnUW_HzU.

The ranchu hardware platform is based on a newer QEMU version and the architecture is changed to have less dependency on Google modification and goldfish-specific devices. For example, it uses virtio-block devices to emulate the NAND and SD card. This has the potential of providing much better performance and also makes it possible to utilize the features provided by the latest QEMU code base. The ranchu kernel is built on a new version in the android-goldfish-3.10 branch, while the latest goldfish kernel is in the android-goldfish-3.4 branch. You can notice this difference by running your Android virtual device using different kernels from Android SDK.

 VirtualBox-based Android emulators

With the ever evolving nature of virtualization technology, there are many commercial Android emulator products developed on the market as well. You may have heard of some of them such as Genymotion, AMIDuOS, Andy, BlueStacks, and so on. Many of them are built using VirtualBox from Oracle, such as Genymotion, AMIDuOS, and Andy. The reason that VirtualBox is used instead of other solutions such as VMware is because VirtualBox is an open source solution.

To achieve the best performance and user experience, both host and target need to be customized in the commercial emulator products. Besides Android emulator, we will also use VirtualBox as the virtual hardware platform to demonstrate how to port Android to a new platform. The reason that we need another virtual hardware platform in this book is because Android emulator is already supported in AOSP. We will use Android emulator as a platform to teach how to extend and customize an existing platform. While VirtualBox is not supported in AOSP, it can be used as a target platform to teach how to port Android to a new platform. Even though Android has been ported to VirtualBox by Genymotion, AMI, and others, none of them are open source products.

 Summary

In this chapter, we discussed what Android system programming is and the scope involved in system-level programming in this book. After that, we took an overview of the Android system architecture and talked about the layers that we will focus on in this book. We also discussed the virtual hardware platforms that we use in this book. In this book, we use the code from various third-party projects, so we also took a brief overview of each of them in this chapter. In the next chapter, we will start to learn about the development environment setup for Android system programming. This includes both development tools and the source code repository setup.

 Setting Up the Development Environment

After the introduction about system programming in the last chapter, we need to set up a development environment first before we can go further. We need to know how to build and test Android Open Source Project (AOSP) while we explore various Android system programming topics in this book. We will cover the following topics in this chapter:

	Installing the Android SDK and setting up an Android Virtual Device

	Setting up the AOSP build environment and building a testing image

	Creating your own source code repository mirror

 Summary of Android versions

Since we will use Android emulator as one of the virtual hardware platforms, we need to use one particular Android version throughout this book. At the time of writing, the latest Android version is Android 7 (Nougat). We will use Android 7 throughout the book. I started work on this book with Android 6, so the source code for Android 6 is also available in my GitHub repository at https://github.com/shugaoye.

From the first release to Android 7, both the development environment and the AOSP source code have been changed a lot. We will have a brief look at various Android versions first before we talk about the development environment setup.

To set up the AOSP build environment, there are two things that you need to pay special attention to the host environment and Java SDK. Even though the recommended host environment is Ubuntu running on Intel architecture, the hardware architecture and Ubuntu versions have changed from release to release. You can always refer to the following URL at Google for the latest AOSP build environment setup:

https://source.android.com/source/index.html

For Gingerbread (2.3.x) and above, a 64-bit build environment is required. For older versions, the build environment is 32-bit systems.

The Ubuntu versions used range from Ubuntu 10.04 to 14.04, but for each release there is a recommended Ubuntu version. If it is a new setup, it is suggested to use the recommended Ubuntu version to make the job easier. However, there are no hard requirements here. You should be able to use any Ubuntu version higher than the recommended Ubuntu version. There are also many articles about how to set up the AOSP build using a different Linux distribution such as RedHat or Debain.

Oracle JDK was used to build AOSP until Lollipop. From Lollipop and the above, OpenJDK was used instead of Oracle JDK.

The following table summarizes all Android releases, required hosts, and JDK environments until Nougat; you can refer to it for full details.

AOSP releases:

	
Nickname

	
AOSP

	
SDK API level

	
Host

	
JDK

	
OS/Ubuntu

	
Goldfish

	
Ranchu

	
Cupcake

	
1.5

	
3

	
x86

	
Oracle JDK 5

	
10.04

	
x

	

	
Donut

	
1.6

	
4

	
x86

	
Oracle JDK 5

	
10.04

	
x

	

	
Eclair

	
2.0/2.1

	
5

	
x86

	
Oracle JDK 5

	
10.04

	
x

	

	
Eclair

	
2.0.1

	
6

	
x86

	
Oracle JDK 5

	
10.04

	
x

	

	
Eclair

	
2.1

	
7

	
x86

	
Oracle JDK 5

	
10.04

	
x

	

	
Froyo

	
2.2

	
8

	
x86

	
Oracle JDK 5

	
10.04

	
x

	

	
Gingerbread

	
2.3.1

	
9

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Gingerbread

	
2.3.3

	
10

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Honeycomb

	
3.0

	
11

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Honeycomb

	
3.1

	
12

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Honeycomb

	
3.2

	
13

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Ice Cream Sandwich

	
4.0

	
14

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Ice Cream Sandwich

	
4.0.3

	
15

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Jelly Bean

	
4.1.2

	
16

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Jelly Bean

	
4.2.2

	
17

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
Jelly Bean

	
4.3.1

	
18

	
x64

	
Oracle JDK 6

	
12.04

	
x

	

	
KitKat

	
4.4.2

	
19

	
x64

	
Oracle JDK 6

	
12.04

	
x

	
x

	
KitKat

	
4.4W.2

	
20

	
x64

	
Oracle JDK 6

	
12.04

	
x

	
x

	
Lollipop

	
5.0.1

	
21

	
x64

	
Open JDK 7

	
12.04

	
x

	
x

	
Lollipop

	
5.1.1

	
22

	
x64

	
Open JDK 7

	
12.04

	
x

	
x

	
Mashmallow

	
6.0

	
23

	
x64

	
Open JDK 7

	
14.04

	
x

	
x

	
Nougat

	
7.0.x

	
24

	
x64

	
Open JDK 8

	
14.04

	
x

	
x

	
Nougat

	
7.1.1

	
25

	
x64

	
Open JDK 8

	
14.04

	
x

	
x

From the preceding table, you can see that the ranchu emulator is supported by KitKat and the others. If you install and download the system image of Kitkat or the others on Android SDK, you should be able to find two kernel files, kernel-qemu and kernel-ranchu.

There are two API levels in the Nougat releases. Android 7.0.0 and 7.1.0 are API level 24. Android 7.1.1 and 7.1.2 are API level 25. All source code in this book can support up to API level 25.

The code name of the original Android emulator is goldfish. It is based on an older version of QEMU. A new Android emulator version was released based on QEMU 2.x in 2016. The code name of this new emulator is ranchu. It is supported by KitKat and the others.

 Installing Android SDK and setting up an Android Virtual Device

Ideally, if you have an AOSP build environment, you can build everything including Android SDK from scratch. However, it is much more convenient to have an Android SDK installation to help with virtual device creation or running emulator images.

You can always download the latest Android SDK from the following website:

https://developer.android.com/index.html

The host environment that we use in this book is Ubuntu 14.04. Download the Android SDK for Linux and decompress it to a folder in your Home directory.

The tools in Android SDK have been changed since API level 25. You may use an older version of Android SDK or the latest Android SDK so I gave the instructions for both cases here.

 Creating AVD in an older version of SDK

For the older version of SDK, such as android-sdk_r24.4.1-linux.tgz, it includes all necessary components and we can use it after decompression. We can find the following contents after decompressing:

$ ls android-sdk-linux
add-ons platforms SDK Readme.txt temp
build-tools platform-tools system-images tools

You can add the platform-tools and tools directory to your PATH environment variable.

We will use a virtual device based on API level 25 in this book to test our image.

To create a virtual device, we can launch Android Virtual Device (AVD) Manager using the following command, as shown in the following screenshot:

$ android avd

AVD Manager

Click the Create... button in AVD Manager and create a new virtual device named a25x86 with the following configuration, as shown in the following screenshot:

	Android 7.1.1 - API level 25

	1024 MB RAM

	400 MB SD card

	400 MB internal storage

	Display size at 480 x 800: hdpi

Android Virtual Device a25x86

 Creating AVD in the latest version of SDK

For the newer versions, there is only SDK command-line tools available for download. For example, if you download the command-line tools for r25, such as tools_r25.2.3-linux.zip, you can find the tools folder only. In this case, you need to use Android SDK Manager at tools/bin/sdkmanager to download the rest of SDK components. To download the rest of SDK components, you can use the following command:

$ sdkmanager --update

If you use the latest version of Android SDK, you may get the following error message, if you follow the previous instructions:

OEBPS/assets/tip-small.png

OEBPS/assets/info-small.png

OEBPS/assets/Packt-Logo-beacon.png

OEBPS/assets/Mapt_logo.jpg

OEBPS/assets/image_01_002.png

OEBPS/assets/cover.png

OEBPS/assets/6099_01_01.png

OEBPS/assets/image_02_001.png

OEBPS/assets/image_02_002.png

