
        
            [image: Learn PowerShell Core 6.0]
        
    
        

            
            
                
Learn PowerShell Core 6.0





 

 



Automate and control administrative tasks using DevOps principles



 

 

 

 

 

 

 

 

 

 

 

David das Neves

Jan-Hendrik Peters

 

 

 

 

 

 

 

 

 

 





BIRMINGHAM - MUMBAI



            

            
        
    
        

            
            
                


            

            
        
    
        

                            
                    Learn PowerShell Core 6.0

                
            
            
                
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha

Acquisition Editor: Rohit Rajkumar

Content Development Editor: Ronn Kurien

Technical Editor: Prachi Sawant

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Mariammal Chettiyar

Graphics: Tom Scaria

Production Coordinator: Shraddha Falebhai

First published: July 2018

Production reference: 1250718

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-898-6

www.packtpub.com



            

            
        
    
        

            
            
                
 









































To my wife, Jojo, for supporting me through my hard journey over the past few years

and for making this book and my career possible.

—David das Neves

To my wife, Elsa, for supporting me throughout my career.

To the brilliant minds that created PowerShell, for giving me endless joy and for enabling me to get a great job.

—Jan-Hendrik Peters



            

            
        
    
        

            
            
                
 



mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.



            

            
        
    
        

                            
                    Why subscribe?

                
            
            
                

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals



	
Improve your learning with Skill Plans built especially for you



	
Get a free eBook or video every month



	
Mapt is fully searchable



	
Copy and paste, print, and bookmark content







            

            
        
    
        

                            
                    PacktPub.com

                
            
            
                
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks. 



            

            
        
    
        

                            
                    Contributors

                
            
            
                


            

            
        
    
        

                            
                    About the authors

                
            
            
                
David das Neves is a former software developer who has worked for Microsoft and works now as a Cloud Program Manager at Google. In his daily work he primarily helps enterprise customers to leverage the power of the Google Cloud Platform and to help them transform their businesses. Besides his work, he writes books and blog articles, organizes user groups, and speaks at conferences and other events all over the world.

He is very integrated in the PowerShell community, and he organizes the PowerShell user groups in Germany and Munich and speaks frequently at PowerShell conferences.

 

 

Jan-Hendrik Peters is an automation and DevOps professional by day and a developer for the AutomatedLab framework by night.

After working at an international retailer automating distributed POS support systems, he started working as a Premier Field Engineer for Microsoft Germany, where he helps customers automate their infrastructure on-premises and in the cloud.

When he is not working, he likes to spend his time brewing his own beer, curing his own bacon, and generally doing manual labor.



            

            
        
    
        

                            
                    About the reviewer

                
            
            
                
Friedrich Weinmann helps companies with IT automation and code management tasks. He is an expert in PowerShell and knows his way around most Microsoft products.

He is actively engaged in the PowerShell community, running a user group, contributing to open source projects, maintaining several major projects himself, and speaking at other user groups and international conferences.

 

 

 

 

 



            

            
        
    
        

                            
                    Packt is searching for authors like you

                
            
            
                
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.



            

            
        
    
        
            
                Table of Contents

            

            
                
                    	
            Title Page
    
    


	
            Copyright and Credits
    
    	
            Learn PowerShell Core 6.0
    
    






	
            Dedication
    
    


	
            Packt Upsell
    
    	
            Why subscribe?
    
    


	
            PacktPub.com
    
    






	
            Contributors
    
    	
            About the authors
    
    


	
            About the reviewer
    
    


	
            Packt is searching for authors like you
    
    






	
            Preface
    
    	
            Who this book is for
    
    


	
            What this book covers
    
    


	
            To get the most out of this book
    
    	
            Download the example code files
    
    


	
            Download the color images
    
    


	
            Conventions used
    
    






	
            Get in touch
    
    	
            Reviews
    
    










	
            Current PowerShell Versions
    
    	
            Technical requirements
    
    


	
            Historical background
    
    


	
            Overview of different versions of Powershell
    
    	
            PowerShell Editions&#xA0;
    
    






	
            Windows PowerShell 5.1
    
    


	
            PowerShell Core 6
    
    


	
            PowerShell Open Source
    
    	
            Downloading the source code
    
    


	
            Developing and contributing
    
    






	
            The goals of PowerShell Core 6
    
    	
            Dependencies and support
    
    


	
            Compatibility
    
    


	
            Cross-platform remoting
    
    






	
            Azure Cloud Shell
    
    	
            Features of PowerShell in Cloud Shell
    
    






	
            Future of PowerShell
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            PowerShell ISE Versus VSCode
    
    	
            Introduction to currently available tools
    
    	
            Recap
    
    






	
            PowerShell ISE
    
    


	
            Visual Studio Code
    
    	
            Introduction
    
    


	
            Download
    
    


	
            Installation
    
    


	
            First start
    
    


	
            Basics
    
    






	
            ISE versus VSCode
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Basic Coding Techniques
    
    	
            Comments
    
    


	
            Regions
    
    


	
            Types
    
    


	
            Variables
    
    


	
            Commands and parameters
    
    	
            Approved verb list
    
    






	
            PSDrives and PSProviders
    
    


	
            PowerShell's scripting language
    
    	
            Script blocks
    
    


	
            Operators
    
    	
            Pipeline operator
    
    


	
            Type operators
    
    


	
            Arithmetic operators
    
    


	
            Assignment operators
    
    


	
            Comparison operators&#xA0;
    
    


	
            Logical operators
    
    


	
            Split and join operators
    
    


	
            Bitwise logical operators
    
    


	
            Replace operator
    
    


	
            Unary operators
    
    






	
            Language constructs
    
    	
            Indentation
    
    


	
            If...ElseIf, and Else
    
    


	
            Switch
    
    


	
            Loops
    
    


	
            for loop
    
    


	
            do loop
    
    


	
            while loop
    
    


	
            foreach loop
    
    


	
            break and continue loops
    
    










	
            Error handling
    
    	
            Non-terminating
    
    


	
            Terminating errors
    
    






	
            Remoting
    
    	
            Types of remoting
    
    






	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Advanced Coding Techniques
    
    	
            Technical requirements
    
    


	
            Working with credentials
    
    


	
            Working with external utilities
    
    


	
            Pipeline and performance
    
    	
            Performance
    
    


	
            Parallel execution
    
    






	
            Working with APIs
    
    	
            Creating a REST endpoint
    
    	
            Create
    
    


	
            Read
    
    


	
            Update
    
    


	
            Delete
    
    






	
            Interacting with a RESTful API
    
    






	
            Working with events
    
    	
            Object events
    
    


	
            WMI events
    
    


	
            Engine events
    
    


	
            Remote events
    
    






	
            Custom formatting
    
    


	
            Custom type extensions
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Writing Reusable Code
    
    	
            Best practice guidelines
    
    	
            Code layout
    
    	
            Brace placement
    
    


	
            Naming conventions
    
    


	
            Aliases and parameter names
    
    


	
            Readability
    
    


	
            Function design
    
    






	
            Output
    
    	
            Cmdlet output
    
    


	
            Conveying messages
    
    






	
            Compatibility
    
    


	
            Comments
    
    


	
            Header or disclaimer
    
    






	
            Functions
    
    	
            Script blocks
    
    


	
            Function declaration
    
    


	
            The parameter attribute
    
    	
            Parameter sets
    
    


	
            Pipeline input
    
    






	
            Cmdlet binding attribute
    
    


	
            Scopes
    
    	
            Dot-sourcing code
    
    










	
            Help files
    
    	
            Help-driven development
    
    






	
            Code signing
    
    	
            Possible solutions
    
    	
            Digital certificates
    
    


	
            Public key Infrastructure
    
    


	
            Self-signed certificates for testing
    
    






	
            Preventing changes and execution
    
    


	
            Proving that changes were made
    
    






	
            Modules
    
    	
            Module architecture
    
    


	
            Combining multiple functions
    
    	
            The module manifest
    
    






	
            Managing complexity
    
    


	
            Deployment and upgrade
    
    






	
            Version control
    
    	
            Changelog
    
    


	
            Recovery
    
    	
            Revert
    
    


	
            Checkout
    
    


	
            Reset
    
    






	
            Branching
    
    


	
            Merging
    
    


	
            Possible solutions
    
    	
            TFS
    
    


	
            Git
    
    


	
            SVN
    
    










	
            PSScriptAnalyzer
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Working with Data
    
    	
            Registry
    
    


	
            Files
    
    


	
            CSV
    
    


	
            XML
    
    


	
            CLIXML
    
    


	
            JSON
    
    


	
            Classes&#xA0;
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Understanding PowerShell Security
    
    	
            Current situation around PowerShell
    
    


	
            Is PowerShell a vulnerability?
    
    


	
            Principle of Least Privilege
    
    


	
            The community
    
    


	
            Version 5
    
    


	
            Evergreen
    
    


	
            Secure coding
    
    


	
            Remoting
    
    	
            Double hop&#xA0;
    
    






	
            ExecutionPolicy
    
    	
            Bypassing the ExecutionPolicy
    
    






	
            Executing PowerShell without PowerShell.exe
    
    


	
            Constrained language mode
    
    


	
            &#xA0;AppLocker
    
    	
            How the Constrained Language Mode is enforced
    
    


	
            Windows Defender Application Control
    
    






	
            Obfuscation
    
    


	
            Logging
    
    


	
            AMSI
    
    


	
            Prioritizing technical security controls
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Just Enough Administration
    
    	
            Technical overview
    
    


	
            Session authoring
    
    


	
            Role capabilities
    
    	
            Merging role capabilities
    
    	
            Cmdlet visible in one role
    
    


	
            Cmdlet visible in multiple roles
    
    


	
            Validation is used in one role
    
    


	
            Validation is used in multiple roles
    
    


	
            ValidateSet and ValidatePattern are mixed
    
    










	
            Session configurations
    
    	
            Language mode and session type
    
    


	
            Transcripts
    
    


	
            Accounts
    
    	
            Connecting users
    
    


	
            Virtual account
    
    


	
            Group-managed service account
    
    






	
            User drive
    
    






	
            Deploying session configurations
    
    	
            Individual activation
    
    


	
            Distributed activation
    
    


	
            Desired State Configuration
    
    






	
            Use cases
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            DevOps with PowerShell
    
    	
            What is DevOps?
    
    	
            WinOps
    
    


	
            DevSecOps
    
    






	
            Why DevOps
    
    	
            Traceability
    
    


	
            Reliability
    
    


	
            Speed
    
    






	
            Test-driven development
    
    


	
            Continuous integration
    
    


	
            Continuous deployment
    
    


	
            Challenges of DevOps
    
    


	
            The value of PowerShell
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Creating Your Own PowerShell Repository
    
    	
            Package management
    
    	
            Centralization
    
    


	
            Interacting with repositories
    
    






	
            Knowledge management
    
    	
            Documentation with PlatyPS
    
    






	
            PowerShell repository
    
    	
            Setup
    
    


	
            Modules
    
    


	
            Signing
    
    


	
            Version control
    
    


	
            PowerShellGet
    
    






	
            Execution
    
    	
            Dedicated user
    
    


	
            JEA
    
    






	
            Deploying and upgrading
    
    	
            PowerShellGet
    
    


	
            End user updates
    
    


	
            Automatic updates
    
    


	
            JEA servers
    
    






	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            VSCode and PowerShell Release Pipelines
    
    	
            Configuration
    
    	
            Interface
    
    






	
            Extensibility
    
    


	
            Preparing for a release pipeline
    
    


	
            Working with different hosts
    
    


	
            Plaster
    
    	
            Creating templates
    
    


	
            Packaging templates
    
    






	
            PSScriptAnalyzer
    
    


	
            Pester
    
    	
            Mock
    
    	
            Mock .NET calls
    
    






	
            Describe
    
    


	
            Context
    
    


	
            It
    
    


	
            Running tests
    
    






	
            Git
    
    	
            Centralized workflow
    
    


	
            Forking workflow
    
    






	
            CI tools
    
    


	
            Bringing it all together
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            PowerShell Desired State Configuration
    
    	
            Introducing DSC
    
    	
            Why Desired State Configuration?
    
    


	
            Configurations
    
    






	
            Local Configuration Manager &#x2013; LCM
    
    


	
            Push
    
    	
            When to use
    
    






	
            Pull
    
    	
            When to use
    
    






	
            Security
    
    


	
            Resources
    
    	
            Built-in resources
    
    


	
            Community
    
    


	
            Custom
    
    


	
            Composite
    
    






	
            DSC Core
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Working with Windows
    
    	
            Retrieving the latest PowerShell version
    
    


	
            WMI CIM
    
    


	
            Delivery Optimization
    
    


	
            Retrieving all log events and files for update issues
    
    


	
            Turning off energy-saving mechanisms
    
    


	
            Verifying installed updates
    
    


	
            Working with apps
    
    


	
            EventLog
    
    


	
            ETL parsing
    
    


	
            Convert-PPTX to PDF
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Working with Azure
    
    	
            Azure 101
    
    	
            Resource groups
    
    


	
            Tags
    
    


	
            Resources
    
    






	
            PowerShell in Azure Cloud Shell
    
    	
            The Azure drive
    
    






	
            Resource group deployment
    
    	
            Finding templates
    
    


	
            Resources
    
    


	
            Parameters and variables
    
    


	
            Functions in templates
    
    






	
            Individual deployments
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Connecting to Microsoft Online Services
    
    	
            Office 365
    
    


	
            Exchange Online
    
    	
            Using some cmdlets
    
    






	
            SharePoint Online
    
    


	
            Microsoft Teams
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            Working with SCCM and SQL Server
    
    	
            System Center Configuration Manager
    
    	
            Logging
    
    


	
            PowerShell App Deployment Toolkit
    
    






	
            SQL Server
    
    	
            Working with the SqlServer module
    
    	
            The SQL Provider
    
    


	
            Connecting to SQL instances
    
    


	
            Running manual queries
    
    


	
            Working with availability groups
    
    


	
            Masterkeys, encryption, and credentials
    
    






	
            Working with the dbatools module
    
    	
            Discovering SQL instances
    
    


	
            Connecting to SQL instances &#x2013; the SqlInstance parameter
    
    


	
            Running manual queries
    
    


	
            PowerShell to SQL
    
    


	
            Navigating the module
    
    


	
            Backup, restore, and test
    
    


	
            Deploying maintenance insight tools
    
    


	
            Migrations made easy
    
    






	
            Working with the Reporting Services module
    
    	
            Connecting to the Reporting Services server
    
    	
            Administrating the service
    
    


	
            Managing the data in the service
    
    






	
            Working with content
    
    	
            Navigating the structure
    
    


	
            Exporting content
    
    


	
            Importing content
    
    






	
            Configuring SSRS servers
    
    






	
            Working with the dbachecks module
    
    	
            Configuration
    
    


	
            Feel the power
    
    










	
            Summary
    
    


	
            Questions
    
    






	
            PowerShell Deep Dives
    
    	
            Creating XAML GUIs with PSGUI
    
    


	
            Scalable DSC&#xA0;configuration
    
    	
            The problem
    
    


	
            The setup
    
    


	
            Configuration data
    
    


	
            Configurations
    
    


	
            Build
    
    






	
            ConvertFrom-String
    
    


	
            LINQ
    
    


	
            OpenFileDialog
    
    


	
            Username to Security Identifier (SID)
    
    


	
            SHiPS
    
    


	
            PSDefaultParameterValues and PSBoundParameters
    
    	
            PSDefaultParameterValues
    
    


	
            PSBoundParameters
    
    






	
            ConvertTo-Breakpoint
    
    


	
            Summary
    
    


	
            Questions
    
    


	
            Further reading
    
    






	
            PowerShell ISE Hotkeys
    
    	
            Keyboard shortcuts for editing text
    
    	
            Keyboard shortcuts for running scripts
    
    


	
            Keyboard shortcuts for customizing the view
    
    


	
            Keyboard shortcuts for debugging scripts
    
    


	
            Keyboard shortcuts for Windows PowerShell tabs
    
    


	
            Keyboard shortcuts for starting and exiting
    
    






	
            References
    
    


	
            VSCode Hotkeys
    
    	
            Default keyboard shortcuts
    
    	
            Basic editing
    
    


	
            Rich languages editing
    
    


	
            Navigation
    
    


	
            Editor/Window management
    
    


	
            File management
    
    


	
            Display
    
    


	
            Search
    
    


	
            Preferences
    
    


	
            Debug
    
    


	
            Tasks
    
    


	
            Extensions
    
    










	
            References
    
    






	
            Assessments
    
    	
            Chapter 1
    
    


	
            Chapter 2
    
    


	
            Chapter 3
    
    


	
            Chapter 4
    
    


	
            Chapter 5
    
    


	
            Chapter 6
    
    


	
            Chapter 7
    
    


	
            Chapter 8
    
    


	
            Chapter 9
    
    


	
            Chapter 10
    
    


	
            Chapter 11
    
    


	
            Chapter 12
    
    


	
            Chapter 13
    
    


	
            Chapter 14
    
    


	
            Chapter 15
    
    


	
            Chapter 16
    
    


	
            Chapter 17
    
    






	
            Other Books You May Enjoy
    
    	
            Leave a review - let other readers know what you think
    
    








                
            

            
        
    


        

                            
                    Preface

                
            
            
                
The book you are currently reading is the collaborative effort of David and Jan-Hendrik and represents the accumulated knowledge of the authors use of PowerShell in corporate environments, ranging from medium-sized businesses to large international organizations. We will examine the past, present, and future of PowerShell and guide you through your journey of becoming a DevOps and security-minded PowerShell professional through dedicated chapters on security, DevOps, advanced scripting techniques, and accessing cloud resources.



            

            
        
    
        

                            
                    Who this book is for

                
            
            
                
This book is intended for IT professionals and developers who have already taken their first steps with PowerShell and now want to unlock their full potential. IT professionals and developers looking to automate simple to complex tasks will find this book useful as well. But even seasoned PowerShell users will find worthwhile information, as we deep-dive into many different topics throughout the book, such as performance and security.



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Current PowerShell Versions, introduces Windows PowerShell and PowerShell Core and gives you a general overview of the past, present, and future of PowerShell.

Chapter 2, PowerShell ISE Versus VSCode, compares the different editors that are capable of editing and executing PowerShell code. We compare PowerShell ISE and VSCode comprehensively; VSCode is the de facto successor to PowerShell ISE.

Chapter 3, Basic Coding Techniques, goes over the basics of PowerShell scripting, such as cmdlets, using the pipeline, and PowerShell's type system. We will look into different language keywords and operators to get you going.

Chapter 4, Advanced Coding Techniques, extends your knowledge by examining the performance of pipeline operations, enabling you to interact with web services and giving you full control of the formatting and type system that is built into PowerShell.

Chapter 5, Writing Reusable Code, introduces you to a set of best practices when developing code and demonstrates the use of functions and modules. We will start looking at version control systems and digitally signed code as well.

Chapter 6, Working with Data, shows you how to work with different kinds of data in PowerShell, from accessing the registry to developing a class and using JSON in your scripts.

Chapter 7, Understanding PowerShell Security, is an in-depth primer on security in PowerShell and the multitude of options that attackers and defenders have to make use of.

Chapter 8, Just Enough Administration, dives into a new feature of Windows PowerShell called Just Enough Administration, in order to apply role-based access control (RBAC) to products that do not have their own RBAC solution in place.

Chapter 9, DevOps with PowerShell, is short introduction to DevOps that focuses on what PowerShell can do to support DevOps scenarios with integrated unit testing and flexibility in a release pipeline.

Chapter 10, Creating Your Own PowerShell Repository, focuses on the package management capabilities of PowerShell by building a NuGet gallery from scratch and showing you how to work with external and internal package sources.

Chapter 11, VSCode and PowerShell Release Pipelines, concentrates on using PowerShell in a CI/CD context with a release pipeline for your code. We show you additional concepts around the pipeline, such as unit testing and source code management, as well as some helpful PowerShell modules.

Chapter 12, PowerShell Desired State Configuration, introduces you to a feature of Windows PowerShell that helps you greatly in following DevOps principles by giving you a way of defining infrastructure as code. We will examine the key components of DSC to prepare you for the deep dive in Chapter 17, PowerShell Deep Dives.

Chapter 13, Working with Windows, concentrates on the components of PowerShell that Windows administrators can leverage to maintain, troubleshoot, and tune their Windows operating system.

Chapter 14, Working with Azure, shows you the capabilities of PowerShell in a cloud context. We will look at how you can use PowerShell with Azure in DevOps and traditional IT scenarios alike.

Chapter 15, Connecting to Microsoft Online Services, goes one step further than the previous chapter and shows you how to connect to other hosted services, such as MSOL, as well, introducing you to Office 365, SharePoint Online, Exchange Online, and Microsoft Teams.

Chapter 16, Working with SCCM and SQL Server, introduces you to the ways of working with System Center Configuration Manager and SQL Server with PowerShell. We will not only dive into the built-in modules, but will also showcase great community-driven modules.

Chapter 17, PowerShell Deep Dives, concentrates on several scenarios that are either seldom used or that are not well documented, such as using DSC in a corporate environment, developing user interfaces in PowerShell, and improved debugging experiences.



            

            
        
    



        

                            
                    To get the most out of this book

                
            
            
                
To get the most out of this book we assume the following prerequisites:


	Basic understanding of structural and procedural programming

	Basic understanding of object-oriented programming

	A machine capable of running PowerShell Core

	For some examples that are inherently related to Windows, a machine capable of running Windows PowerShell, for example, Windows Server 2016 or Windows 10



To follow along with advanced exercises that require access to one or more servers, we also recommend you install and use the AutomatedLab framework. Instructions can be found at https://github.com/automatedlab/automatedlab and in the software and hardware list in this book. AutomatedLab allows you to easily deploy lab infrastructures with several automatically configured services, such as Active Directory Domain Services, Certificate Services, SQL, and much more.



            

            
        
    
        

                            
                    Download the example code files

                
            
            
                
You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:


	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.



Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learn-PowerShell-Core-6.0. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



            

            
        
    
        

                            
                    Download the color images

                
            
            
                
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/LearnPowerShellCore6_ColorImages.pdf.



            

            
        
    
        

                            
                    Conventions used

                
            
            
                
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In the next screenshot, we are coding in the test.ps1 file."

A block of code is set as follows:

function UsesPipeline
{
    param
    (
        [Parameter(ValueFromPipeline)]
        [string]
        $PipedObject
    )

Any command-line input or output is written as follows:

git clone --recursive https://github.com/PowerShell/PowerShell.git





Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Now, install the extension by pressing Install, which you can find on the top right-hand side."

Warnings or important notes appear like this.

Tips and tricks appear like this.



            

            
        
    
        

                            
                    Get in touch

                
            
            
                
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.





            

            
        
    
        

                            
                    Reviews

                
            
            
                
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.



            

            
        
    
        

                            
                    Current PowerShell Versions

                
            
            
                
Before we start with the first chapter, we will very briefly discuss the content of this book and its aims. As you know, there are many PowerShell books out there, which also deliver very rich content. But it has been our experience that some topics are missing in most of them. In addition, we recognized new topics, especially coming with the new PowerShell Core v6, but also by addressing more and more security topics and targeting enterprise environments.

Therefore, we want to introduce PowerShell in terms of all of the topics targeting enterprise companies, such as PowerShell Security, Centralization, Release Pipelines, Just Enough Administration (JEA), and more, but also in terms of completely new topics arising from PowerShell Core 6 and the new editing tool, Visual Studio Code. The intention, overall, is to deliver a solid PowerShell book that is a useful resource for beginners, but is also packed full of completely new and reworked content, which even PowerShell professionals might benefit from.

Today, we have a broad number of PowerShell versions available, starting with PowerShell 1 up to the Windows PowerShell 5.1, PowerShell Core 6, and even the PowerShell in Azure Cloud Shell. Most enterprise companies primarily work with PowerShell versions starting from 2 up to 5.1. But, what PowerShell version should you use, and how can each of them be installed and made available? This is what the first chapter is about; its aim is to give you some background information and a good overview of all currently available PowerShell versions, how to install them, and how to use them.

These are the topics we'll be covering in this chapter:


	Historical background

	Overview of different versions of PowerShell

	Windows PowerShell 5.1

	Upgrading to the latest PowerShell version in Windows environments

	PowerShell Core v6

	Differences between Windows PowerShell and PowerShell Core v6

	PowerShell open source

	Goals of PowerShell Core v6

	PowerShell in Azure Cloud Shell

	Future of Windows PowerShell

	How to contribute to the open source project





            

            
        
    
        

                            
                    Technical requirements

                
            
            
                
Most of the examples shown in this book are executed with Windows PowerShell 5.1. You can work with this latest Windows PowerShell version either by just using a Windows 10 machine, or by upgrading the PowerShell version of your current Windows environment. This is described later in this chapter, in the Windows PowerShell 5.1 section.

The following operating systems will be supported: Windows 7 Service Pack 1, Windows 8.1, Windows 10, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016.

The code for the book can be found at https://github.com/PacktPublishing/Learn-PowerShell-Core-6.0. It includes a folder for each chapter and additional installation instructions.

Some examples use PowerShell Core 6. You can download and install the latest PowerShell Core version at https://github.com/PowerShell/PowerShell/releases.



            

            
        
    
        

                            
                    Historical background

                
            
            
                
Let's start with some historical background. In the year 2002, Jeffrey Snover, the inventor of PowerShell itself, described the Monad Manifesto. Its first public beta release was on June 17, 2005. Monad was described as the next-generation platform for administrative automation, and it leveraged the .NET platform, providing excellent value propositions for application developers, application testers, power users, administrators, and Graphical User Interface (GUI) users:


	Administrators should program faster and more easily—this was provided by having a unified parser and taking over many standard tasks

	Monad should be object-oriented and always accept and return .NET Framework objects and not just text

	It should be possible to execute scripts remotely on many computers

	It should be possible to use GUIs



Afterwards, on April 25, 2006, Monad was renamed Windows PowerShell, and Release Candidate 1 of PowerShell version 1 was released at the same time.

On November 14, 2006, it was announced at TechEd Barcelona, Release Candidate 2 of PowerShell version 1 was finally released to the web for Windows XP SP2, Windows Server 2003 SP1, and Windows Vista.

Version 1.0 is obsolete today.

Starting with version 2, PowerShell was shipped with Microsoft operating systems. Therefore, it is integrated in Windows 7 and Windows Server 2008 R2, and was released for Windows XP with Service Pack 3, Windows Server 2003 with Service Pack 2, and Windows Vista with Service Pack 1.

PowerShell version 2 brought the first substantial change to the PowerShell API, and around 240 additional cmdlets. The creation of new cmdlets was simplified; they could also be written as scripts and combined to modules. PowerShell remoting was made available using WS-Management, and the updateable help, as well as job scheduling, has been introduced.

Starting with this version also, its reputation improved and its number of users increased. One reason for this is the release of the PowerShell Integrated Scripting Environment (ISE), a graphical interface with built-in console:





It is still commonly used today, and we will take a closer look at the available and recommended tools out there in the next chapter.

The next big step was achieved with PowerShell version 3, which is integrated with Windows 8 and Windows Server 2012. It is also available for Windows 7 SP1, Windows Server 2008 SP1, and Windows Server 2008 R2 SP1. It was shipped with Windows Management Framework 3.

Windows Management Instrumentation (WMI) is the infrastructure for management data and operations on Windows-based operating systems.

Open Data Protocol (OData) is an open protocol to allow the creation and consumption of queryable and interoperable RESTful APIs. The Common Information Model (CIM) is an extensible, object-oriented data model. The CIM can be used in combination with the WMI to create classes to manage an enterprise.

Big advantages of version 3 were improved code-writing techniques, such as IntelliSense, and automatic module detection. In addition, the number of cmdlets increased again, and PowerShell continued to gain more popularity. It also introduced major component upgrades and, very notably, the PSReadline integration feature, which enabled Jason Shirk's PSReadline module, which has been part of the core user experience since PS5. The AST was made available, allowing highly complex language parsing and paving the way for several major modules, including the PSScriptAnalyzer module.

The next version, PowerShell version 4.0, is integrated with Windows 8.1 and Windows Server 2012 R2, and has also been made available for Windows 7 SP1, Windows Server 2008 R2 SP1, and Windows Server 2012. Its biggest achievements are the Desired State Configuration, and some scripting enhancements, such as the new syntaxes for Where and ForEach.

Not long ago, PowerShell version 5 was released to the web on February 24, 2016, and is integrated with Windows Management Framework 5.0. The support of Chocolatey's repository-based package management was accomplished with new integrated cmdlets. To appeal to developers and administrators alike, classes such as .NET classes were added as well. Additionally, many improvements on DSC were introduced, such as the authoring of DSC resources using PowerShell classes. This version is a major milestone, with various new features and language extensions.

And lastly, PowerShell version 5.1 was released on August 2, 2016, and is integrated with the Windows 10 Anniversary Update and Windows Server 2016, and is also shipped within the Windows Management Framework 5.1. There is also a UserVoice open for this version, where feedback can be shared: https://windowsserver.uservoice.com/forums/301869-powershell.

Up until now, the versions are all primarily targeted to the Windows operating system, and therefore are called Windows PowerShell. But today, PowerShell is moving in a completely different direction, which started with making PowerShell open source (https://azure.microsoft.com/en-us/blog/powershell-is-open-sourced-and-is-available-on-linux/) on August 18, 2016. It was a substantial change, not only making the code open source, but also making PowerShell platform-independent and allowing the community to collaborate on and be involved in upcoming new features.

Shortly after, Windows Server 2016 was released, which brought us the Nano Server. The PowerShell version has also been divided in terms of the editions. Until then, every PowerShell release had been an edition of the Desktop, which can be retrieved (explained in Chapter 3, Basic Coding Techniques) from the $PSVersionTable variable (available after PowerShell version 2):






The PSEdition property contains either the value Desktop or Core, and can be retrieved from every PowerShell version. In addition, you can also see the currently used PowerShell version in the PSVersion property. The PSCompatibleVersions property includes all PowerShell versions that should be compatible, and the BuildVersion property can be useful to validate the current code source. Some fixes will only be delivered to the latest build versions of PowerShell.

Starting with Windows Server 2016 Nano Server, a new type of PSEdition was introduced, which is called Core and is bundled with .NET Core. This version can also be found in Windows IoT operating systems.

On November 17, 2017, the Release Candidate of PowerShell Core 6 was released, followed by the official General Availability (GA) on January 10, 2018. This was the start of a completely new direction, which is indicated by the added word, Core. Every PowerShell version 6.0 or higher will only be available with the PSEdition Core.

Due to some security issues, Windows PowerShell 2.0 was deprecated with the Windows 10 Fall Creators Update. We will cover the reasons and consequences in depth in Chapter 7, Understanding PowerShell Security.

Another big milestone was achieved on September 26, 2017, when PowerShell in Azure Cloud Shell (Preview) was made publicly available.

Currently, the development for PowerShell Core 6.1 and the official release for Azure Cloud Shell is ongoing, while very little work is now put into Windows PowerShell. Therefore, it is very unlikely that we will see new versions of Windows PowerShell, though the PowerShell Team has announced that security fixes will continue to be delivered. This brings us to the topic of the technical background and the roadmap and aims of PowerShell in the future.



            

            
        
    



        

                            
                    Overview of different versions of Powershell

                
            
            
                
To provide the best overview, we will focus on the most valuable information. First, you need to know about the two different versions and the differences between them.



            

            
        
    
        

                            
                    PowerShell Editions 

                
            
            
                
There are two editions of PowerShell:


	Desktop Edition: This version uses the full .NET CLR. It is primarily used in Windows Desktop and Core Server environments.

	Core Edition: This version uses .NET Core. It is primarily used in Windows IoT and Nano Server environments.



The $PSVersionTable variable holds the information for the currently used PSVersion and PSEdition.

The same terminology can be observed with Windows PowerShell versus PowerShell Core:


	Windows PowerShell is built on top of the .NET Framework:

	Versions 1 to 5.1

	Available on Windows and Windows Server only

	Delivered as a built-in component and via WMF

	Built on top of the .NET Framework (also known as FullCLR)

	$PSVersionTable.PSEdition is set to Desktop





	PowerShell Core is built on top of .NET Core:

	Version 6++ (and Nano Server/Windows 10 IoT)

	Available on Windows, macOS, and Linux

	Delivered via MSI, ZIP, or PKG (macOS)

	Built on top of the current .NET Core version (also known as CoreCLR)

	$PSVersionTable.PSEdition is set to Core







PowerShell Core is available in Windows Server 2016 Nano Server and Windows 10 IoT, but also in PowerShell Core 6 and newer versions.

This information brings us to the following overview:








            

            
        
    
        

                            
                    Windows PowerShell 5.1

                
            
            
                
Windows PowerShell 5.1 is the latest, and probably last, version of Windows PowerShell, and is therefore of special interest in Windows environments. All operating systems with Windows 10 or Windows Server 2016 and higher come with the latest PowerShell version integrated. But, as you know, in many enterprise environments, you will always find machines with legacy operating systems, which may come with completely different versions.

One of the most important recommendations is to always use the most recent versions. PowerShell is backward-compatible, and therefore you should install Windows PowerShell 5.1 on all your machines, barring those known to be incompatible. This can be achieved with the previously described Windows Management Framework.

Because Windows PowerShell is built on top of the .NET Framework, you will need to have .NET version 4.5.2 installed on all computers before applying WMF 5.1 to them. There have been some issues with previous Windows Management Framework versions, which needed the consecutive installation of all of them, but these have been fixed in the latest version (5.1). So, having .NET Framework 4.5.2 installed on the computers is the only dependency you must fulfill.

Supported Operating Systems:


	Windows Server 2012 R2

	Windows Server 2012

	Windows Server 2008 R2 SP1

	Windows 8.1

	Windows 7 SP1



Windows Management Framework 5.1 includes updates to Windows PowerShell, Windows PowerShell Desired State Configuration (DSC), Windows Remote Management (WinRM), and Windows Management Instrumentation (WMI).

PowerShell version 5.1 should be backward-compatible in most cases, but there are some known issues—for example, with Exchange Server 2010. A recommendation is to deploy the WMF 5.1 in waves and revalidate any existing scripts for possible issues after the upgrade.

There are different WMF 5.1 packages available for different operating systems:





If you have a distribution system in place, such as System Center Configuration Manager, you can easily deploy WMF 5.1 to all your machines. Alternatively, you can also accomplish this task through PowerShell remoting and command-line execution.



            

            
        
    
        

                            
                    PowerShell Core 6

                
            
            
                
Before PowerShell and PowerShell Core 6 were made open source, we had the big PowerShell monolith in place, which was developed and maintained by the PowerShell Team. But there had been a lot of problems with this situation:


	Lack of agility/velocity: There was a legacy control in place, and it was a painful and manual release process with nightly builds tied to Windows having long-running test suites.

	Lack of visibility: The code reviews were done via email, and the issues and working items were stored in many different places.

	Difficult manual feedback process: The Connect/UserVoice items had to be manually triaged into internal work items, and the engineers were completely disconnected from feedback loops.



Therefore, the idea was to set up better engineering processes with rapid, independent builds and fast, transparent tests with automated packing for every platform. In addition, the collaboration needed to be improved in terms of the visibility of the work for all interested parties (first and third parties). A clear project management and release process was needed to provide visibility into current and future releases, as well as a governance system for approving changes and additions to PowerShell.

This all led to PowerShell being made open source, which additionally brought the following benefits with it:


	Enabled the community to directly help in finding and fixing bugs

	Enabled more direct and powerful feedback from the community

	Improved visibility into team priorities

	Increased credibility from the Linux community





            

            
        
    
        

                            
                    PowerShell Open Source

                
            
            
                
PowerShell was completely restructured and published on GitHub; it can be found at https://github.com/PowerShell/PowerShell:





And new documentation was added at https://docs.microsoft.com/en-us/powershell/:





            

            
        
    
        

                            
                    Downloading the source code

                
            
            
                
You can just clone the repository with the following Git command:

git clone --recursive https://github.com/PowerShell/PowerShell.git



            

            
        
    
        

                            
                    Developing and contributing

                
            
            
                
There is also a contribution guideline available, which can be found at https://github.com/PowerShell/PowerShell/blob/master/.github/CONTRIBUTING.md. It contains some information about working with Git and how to create pull requests.

To be even more connected with the community, the PowerShell Team has set up regular open PowerShell Core Community Calls. In these calls, RFCs, feature requests, and contentious bugs are discussed. The team will also provide a quick update about the status of the project and the direction it is headed in. At the following link, you will also find the previously recorded community calls and an ICS file for your calendar application: https://github.com/PowerShell/PowerShell-RFC/tree/master/CommunityCall.



            

            
        
    
        

                            
                    The goals of PowerShell Core 6

                
            
            
                
There have been three primary goals for PowerShell Core 6:



When we examine each of these goals, it becomes clear how PowerShell Core came into being and why it is a great management tool for any infrastructure:


	Ubiquity describes the platform-independency to work with PowerShell on Windows, Linux, and macOS operating systems. This is necessary because heterogenous environments are today's norm, and they are important to developers and IT professionals.

	Cloud refers to the intention of being built for cloud scenarios, because IT is moving towards Azure, REST APIs (Swagger/OpenAPI), and other public clouds. For this, major improvements have been made to the Invoke-WebRequest, Invoke-RestMethod, and ConvertFrom-Json cmdlets. There is a collaboration with the Azure PowerShell team to support PowerShell Core. Third-party vendors, such as VMware and AWS, are also working to support PowerShell Core.

	Community refers to being open source, contributing directly to the product, and allowing the retrieval of customer feedback directly to the engineering team. The current Request for Comments (RFCs)—asking for feedback for the current roadmap/new features or breaking changes, milestones, projects, and issues—should always be transparent and publicly available. This means that we have pull requests against code, tests, and documentation. In addition, issues from the community are dynamically reprioritized, which can also be discussed in the PowerShell Core Community Call. These calls are free to join for everybody, and you can just raise your voice and discuss your feedback directly with the engineers.





            

            
        
    
        

                            
                    Dependencies and support

                
            
            
                
As you know, PowerShell Core 6 and all following PowerShell versions depend on .NET Core. The first version of .NET Core was released in 2016:



On August 14, 2017, .NET Core 2 was released, on which PowerShell Core 6.0 is based. It implements .NET Standard 2.0 with the following conditions (https://github.com/dotnet/standard):


	.NET Standard defines a set of APIs that have to be implemented by all .NET platforms, as shown in the following diagram

	.NET Standard 2.0 is implemented by .NET Core

	.NET Standard 2.0 includes a compatibility shim for .NET Framework binaries

	.NET Standard will replace Portable Class Libraries (PCLs)



You can see the .NET Standard API definition in the .NET/standard repository on GitHub.

In the following diagram, you can see this implementation for all .NET platforms:



Though there were no substantial changes made to the language itself in the .NET Standard 2.0 Release, the increase in API size—and hence, the tools available—more than justified the increased footprint:




	
Version


	
Number of APIs


	
Growth %





	
1.0


	
7,949


	



	
1.1


	
10,239


	
+29%





	
1.6


	
13,501


	
+32%





	
2.0


	
32,638


	
+142%







.NET Standard 2.0 includes the most important APIs and brings almost all .NET Framework 4.6.1 APIs to .NET Core 2.0:



PowerShell Core will be supported by Microsoft's Modern Lifecycle Policy.

The Modern Lifecycle Policy covers products and services that are serviced and supported continuously. Under this policy, the product or service remains in support if the following criteria are met:


	Customers must stay current as per the servicing and system requirements published for the product or service

	Customers must be licensed to use the product or service

	Microsoft must currently offer support for the product or service





            

            
        
    
        

                            
                    Compatibility

                
            
            
                
Because of the changed underlying .NET Framework, compatibility may also have changed. One big benefit here is that .NET Standard 2.0 is implemented with .NET Core, which provides a binary compatibility with existing .NET assemblies. Because many PowerShell cmdlets and modules depend on them, these continue to work with .NET Core.

Many modules shipped as part of Windows haven't been explicitly ported to .NET Core, but may also continue working with the underlying .NET Standard and the implementations of CDXML. The CDXML files define the mappings between PowerShell cmdlets, and CIM class operations, or methods. Everything that is implemented with a CDXML should keep working.

But there are also some known exceptions:


	Workflows

	Snap-ins

	DSC resources (for now, moves to DSC Core)

	WMI v1 cmdlets (Get-WmiObject, Invoke-WmiMethod, and so on)

	A handful of other missing cmdlets



After the first public release of PowerShell Core, we are currently seeing the community and the product groups port their modules and cmdlets to PowerShell Core. It will take some time before most of the existing cmdlets continue to work on PowerShell Core.

Due to some naming collisions in Linux environments, the executable of PowerShell Core has been renamed from PowerShell.exe to pwsh.exe.



            

            
        
    
        

                            
                    Cross-platform remoting

                
            
            
                
With the focus of being platform-independent, some changes to the remoting techniques had to be made. As you can see in the following diagram, PowerShell Core supports PowerShell Remoting (PSRP) over WSMan with Basic authentication on macOS and Linux, and with NTLM-based authentication on Linux. Kerberos-based authentication is not yet supported.

PowerShell Core also supports PSRP over SSH on all platforms (Windows, macOS, and Linux). Since this feature is still actively being developed, it is not recommended to use it in production. We will look at how to establish remote connections in Chapter 3, Basic Coding Techniques, and Chapter 4, Advanced Coding Techniques:



OpenSSH can be installed on Windows 10 1709 and later via the optional features:





            

            
        
    



        

                            
                    Azure Cloud Shell

                
            
            
                
Azure Cloud Shell can be found in the Azure Portal, as shown in the following screenshot:




Afterwards, the Shell will open either in Bash or PowerShell. The connection will look like this and opens in the Azure drive (Azure:):



The PowerShell version that is used for PowerShell in Azure Cloud Shell currently is version 5.1 in the Desktop Edition, which is hosted in a Docker container. We will elaborate on that in Chapter 14, Working with Azure which is dedicated to PowerShell and Azure:






            

            
        
    



        

                            
                    Features of PowerShell in Cloud Shell

                
            
            
                
The PowerShell experience builds upon the benefits of Azure Cloud Shell, such as the following:


	Secure automatic authentication from virtually anywhere

	Choice of shell experience that best suits the way you work

	Common tools and programming languages included that are updated and maintained by Microsoft

	Azure File Storage, which allows access to an Azure file share in a storage account for a small monthly fee associated with data storage. File Storage is mapped as the cloud drive and can be used to exchange data.



The PowerShell experience adds the following:


	The new PSDrive for Azure (Azure:)—this provides easier searching capabilities within Azure resources

	Dedicated and built-in commands

	Data persistence via cloud drive

	Custom modules

	User profile

	Rich tools support

	Azure PowerShell

	Nano and VIM (with PS IntelliSense)

	Git and sqlcmd



For more information on PowerShell features, refer to https://aka.ms/cloudshell/PowerShell-Docs.

The first big achievement here is the new Azure drive. Here, you can just work directly on Azure and retrieve your Azure resources, as shown in this screenshot:



Feedback on Azure Cloud Shell is tracked on UserVoice via issues and feature requests: https://feedback.azure.com/forums/598699-azure-cloud-shell.



            

            
        
    
        

                            
                    Future of PowerShell

                
            
            
                
The future of PowerShell lies in PowerShell Core 6 and newer, with the focus to work platform-independently and together with the community on the new versions. We will see a transitioning phase in the upcoming years, where most of the existing modules are ported from Windows PowerShell to PowerShell Core.

In addition, we will see a lot of work being done within Azure Cloud Shell, providing more automation to work with Azure resources from anywhere. Windows PowerShell, though, will not gain additional features, but will keep being a built-in, supported component of Windows 10 and Windows Server 2016.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, you learned about the different PowerShell versions, what the differences are, and how PowerShell is evolving. With this knowledge, you know which PowerShell versions you should use for different scenarios, such as Windows PowerShell 5.1, PowerShell Core 6 and newer, or PowerShell in Azure Cloud Shell.

In the next chapter, we will look at the tools that the different PowerShell versions can be used with and compare the features of both Visual Studio Code, as well as the Integrated Scripting Environment.



            

            
        
    
        

                            
                    Questions

                
            
            
                

	What is the latest PowerShell version in Windows environments?

	How can you retrieve the version number and the PSEdition?

	What is the difference between the Core edition and Desktop edition?

	How can you deploy the newest Windows PowerShell version to your systems?

	How can you install OpenSSH on a Windows Desktop?




	What is the main difference between Windows PowerShell 5.1 and PowerShell Core 6?

	What are the main goals of PowerShell Core 6?

	How can you use PowerShell in Azure Cloud Shell?





            

            
        
    
        

                            
                    Further reading

                
            
            
                
Please see the following for further reading relating to this chapter:


	Install and Configure WMF 5.1: https://docs.microsoft.com/en-us/powershell/wmf/5.1/install-configure

	Azure Cloud Shell: https://azure.microsoft.com/en-us/features/cloud-shell/





            

            
        
    
        

                            
                    PowerShell ISE Versus VSCode

                
            
            
                
In the last chapter, you learned about different PowerShell versions and how to use them. But one of the most important things for creating fast, reusable, high quality code work with good tools. As you know from the previous chapter, one of the most popular tools is the integrated PowerShell ISE in Windows. It provides an easy UI and also some debugging possibilities. Unfortunately, it has not received many updates since it was initially released. This is why other tools were raised in the meantime. One of the most important ones is Visual Studio Code. This chapter will show the differences between the two tools and introduce VSCode. In Chapter 11, VSCode and PowerShell Release Pipelines, this is going to be continued and some advanced techniques with VSCode will be described.

These are the topics we'll be covering in this chapter:


	Introduction to currently available tools

	The PowerShell ISE

	VSCode:

	Introduction

	Download

	Installation

	First Start

	Basics





	The ISE versus VSCode





            

            
        
    



        

                            
                    Introduction to currently available tools

                
            
            
                
There are many tools available to write PowerShell code or even to create PowerShell-based GUIs. Many administrators just stick to the PowerShell Integrated Scripting Environment (ISE), but there are also a lot of other different tools available. Therefore, I want to give an overview with a small description of each tool and also make a recommendation. 

The following list is not an exhaustive list of tools but includes tools the authors have personal experience with. When choosing the proper tool for scripting, we can only recommend testing the tool in your day-to-day work properly before. Free and open source tools might, for example, be superior to paid tools or might be a better fit for your scripting style:




	
PowerShell Console


	
Free


	
The PowerShell Console is the most basic tool for executing PowerShell commands. Just open PowerShell.exe from Command Prompt to start using it. It provides IntelliSense (shows command suggestions when writing) and integrated help. 

It is lacking any UI options and is therefore just an option to open and use PowerShell in an interactive way.





	
ISE PowerShell


	
Free


	
PowerShell ISE comes with all Windows versions that are being used today.

It provides a good rudimentary feature set, which helps for most scenarios.





	ISE PowerShell + ISESteroids
	
With costs


	
ISESteroids is an add-on from Tobias Weltner, which brings many additional features to the ISE, especially for professional and faster coding. 

This combination has been my preferred tool for years, but was recently replaced by Visual Studio Code.





	
Visual Studio 2017 Community/Professional


	
Free/with costs


	
Visual Studio is the complete development environment, which every developer loves. It might be overwhelming in terms of features and functions, and is therefore very rarely used.

You need to install the PowerShell extension to get language assistance within Visual Studio.





	Visual Studio Code
	
Free


	
This is probably the best tool for PowerShell scripting. You can create PowerShell scripts with it after having the PowerShell extension installed. We will get into this tool in depth.

I use this tool on a daily basis and would never replace it.





	SAPIEN PowerShell Studio
	With costs
	
PowerShell Studio is very often used by administrators to create professional GUIs. Though I personally never used it for a long period of time, it is very well known as one of the best tools to create PowerShell-based GUIs. Its latest version also provides support for PowerShell Core 6.





	SAPIEN Primal Script 2017
	
With costs


	
Primal Script is a professional editor that supports over 50 languages and file types. From my experience it is quite a useful editor, but not as frequently used as the other ones. 





	PoshGUI
	Free
	
PoshGUI is a great web-based tool to create code for PowerShell-based GUIs that are working on Windows Forms. It can be found at https://poshgui.com/.

You should use it if you want to very quickly create these types of GUIs or want to learn how they are created, as you can take the created code as a learning resource.





	PowerGUI
	Free
	
PowerGUI was a very good tool, which also provided additional features for working with WMI or converting VBS into PowerShell. Unfortunately, it is not continued anymore and therefore you should not spend too much time with it.





	Admin Script Editor                                                                               
	Free
	
This is very rarely used editor.







As you can see, there is a vast list of possible tools available. Most administrators and IT-professionals have been using and probably still are using the ISE. In addition, we are seeing huge investments made into VSCode and an increasing adoption rate of this new tool, as well. Therefore, we will focus on these specific two tools, as both are also available cost-free.



            

            
        
    
        

                            
                    Recap

                
            
            
                
In our book we continue on with only the PowerShell ISE and VSCode. We chose the ISE because it is a built-in tool that is always available with the Windows Management Framework. It is easy to use and readily available. Especially for beginners, the interface is very clean and not as overwhelming as the ISE + ISE Steroids or VSCode for that matter.

As the successor to the ISE, we will concentrate on VSCode for the remainder of the book. Since no additional development effort is flowing into the ISE and VSCode is the successor, we will not concentrate on additional tools. VSCode is available on more operating systems than the ISE, is completely free, and already has a huge amount of extensions that can be used.



            

            
        
    
        

                            
                    PowerShell ISE

                
            
            
                
The PowerShell ISE was introduced with PowerShell v3. Unfortunately, it has not evolved too much from past versions, which is why it is losing its importance and is now finally going to be replaced by Visual Studio Code. Though replacing might be the wrong verb in this context—the PowerShell ISE will continue to stick to the Windows PowerShell version on Windows systems. VSCode, in comparison, is free and easily downloadable on every device. The problem is that the PowerShell ISE is still being used by the largest number of people—even today. This is why I am still explaining it very briefly, but then will move on to VSCode and prioritize VSCode in the whole book. You will recognize by yourself that VSCode is the more powerful and flexible tool; it is also continuously getting new features.  

PowerShell ISE can be executed through PowerShell_ISE.exe, which is located in the C:\Windows\System32\WindowsPowerShell\v1.0\ folder. The user interface is very simple and looks like this:



As you can see in the preceding screenshot, you have the dark blue console pane and the white script pane. In the script pane, you can prepare scripts before executing them either in parts or as a full script. For this you also have hotkeys available, which you should get to know and use them in a frequent manner:


	F5 for the execution of the whole script

	F8 to only run the selection



A complete overview of all hotkeys can be found in Appendix A, PowerShell ISE Hotkeys. 



You should get to know most of these; this will help you to create faster scripts and work more efficiently with the tools.

In addition, you can also use the ISE for debugging. With the F9 hotkey, you can set breakpoints in the script pane. A breakpoint forces the debugger to stop at the specified line, where you can then take a dedicated look at the variables and step through the whole script line by line. To accomplish this, you have three actions available after hitting a break point:



For most coding languages and tools, these three options are available:


	F10 just executes the whole line and continues to the next line. If there is a function used in this line, this function is just stepped over, which is why this is named Step Over.

	F11 executes every line of code in its minimal pieces. This means that by the functions that are used are being opened and each single line of code is being stepped through. This is why it is called Step Into.

	The last one is Shift + F11, which jumps out of the current function block. The next line shown is the initial executing line of the function. This hotkey can be used in combination with F11 to jump into and then Shift + F11 to jump back out of functions. This is why it is called Step Out.



This is the basic knowledge about debugging that we will use throughout the whole book. It is important that you get used to the possibilities in debugging and use them frequently. Coming with PowerShell, there are many skills you need to evolve. People with a developer background will already have many helpful skills. But if you are not familiar with these techniques because you come, for example, from an administration background, it is highly recommended that you learn these developer skills. They will come in very handy if you need to do some troubleshooting, and you will also learn how to write better code.

Another great feature for beginners in the ISE is the so-called Command Window. You can open it up by either executing the Show-Command cmdlet or pressing the dedicated icon:



It will show you a complete command list, where you can now easily filter the modules and the cmdlets by name. By marking a dedicated cmdlet, its information, the cmdlet parameters and the common parameters are visualized:



This can be a good tool to get familiar with the available cmdlets and their execution. Try to fill in the parameters and use them. Mandatory parameters, for example, for the Remove-ServiceEndpoint cmdlet, are marked with an asterisk.

Another great feature from the PowerShell ISE are the so-called snippets. You can open the snippet list by pressing Ctrl + J:



It brings up a list of available snippets, which can be used to speed up the creation of your script or even just to prevent any manual errors. You can also use them as a learning resource to see how specific tasks can be coded. If you, for example, are not aware of how to code a do...until loop, the snippets will provide you with some initial guidance. For the moment, let's leave it there. Coding techniques and working with snippets will be explained in detail with VSCode later. 

The official Microsoft documentation are evolving continuously and are a great learning resource. If you are not familiar with the PowerShell ISE or just want to increase or check your current knowledge, you should take a look at their content: https://docs.microsoft.com/en-us/powershell/scripting/core-powershell/ise/introducing-the-windows-powershell-ise.



            

            
        
    
        

                            
                    Visual Studio Code

                
            
            
                
As you have seen, the PowerShell ISE is quite a good tool, but still missing some features. Nevertheless, it comes with any Windows environment and is a helpful tool for creating valuable scripts and debugging them, if necessary. In comparison, we will now take an initial look at VSCode and how to set it up for the creation of PowerShell code. An explanation of and the usage of advanced techniques of VSCode will be covered throughout the rest of the book.



            

            
        
    
        

                            
                    Introduction

                
            
            
                
Visual Studio Code (VSCode) is a lightweight open-source editor, which is free for private and commercial use. Technically, VSCode is built on the framework Electron. Electron is known as a toolset to deploy Node.js applications that are running on the Blink layout engine. The underlying editor is the Monaco Editor. Like the PowerShell ISE, it also has IntelliSense capabilities, which are even available for many more languages. You can easily extend VSCode with the installation of additional extensions. These extensions bring code language and markup language capabilities. But extensions can leverage VSCode even more, which we will see in later chapters. In addition, it comes with an integration of Git and some good debugging capabilities. Git is a source versioning tool and highly important in professional software development. We will take a closer look at it when we are creating reusable code with VSCode.

To recap, the idea of VSCode is very simple—it's main characteristics are as follows:


	Fast

	Simple

	Customizable

	Extendable

	Support for multiple languages

	IntelliSense

	Debugging

	Version Control



Its customization and the endless capabilities that come with its extensions make VSCode a very powerful tool. To be able to make use of all of its benefits, it is important to go through its complexity step by step on your own. Try to follow and adopt the demonstrated steps for a stronger understanding.



            

            
        
    
        

                            
                    Download

                
            
            
                
First of all, you need to download Visual Studio Code. You will find all the different versions at https://code.visualstudio.com/download:





After choosing a platform, you will be forwarded to the Getting Started landing page (https://code.visualstudio.com/docs/) and the download will also be started. 

You might find a lot of resources on the internet when starting with VSCode, but this one is definitely one of the best. It receives continuous updates and new features. I would recommend you go step by step through the topics on the left.



            

            
        
    
        

                            
                    Installation

                
            
            
                
The installation is simple and you will be guided through the following steps:


	Starting

	License—accept the license

	Destination location—where should it be installed to?

	Additional Tasks—desktop icon and file context/extension

	Start Menu folder




	Ready to install

	Finish



Now you have installed VSCode and are able to start it for the first time:








            

            
        
    
        

                            
                    First start

                
            
            
                
This is how Visual Studio Code looks on the first start. You will recognize the warning at the top mentioning the missing Git, which we'll need to download:






This is recommended and, after pressing Download Git, you will be forwarded to the download landing page of Git:



You can see the latest source release on the right-hand side and, by pressing on the Downloads section, you are also able to download Git for other platforms.

After downloading it, you will go through the installation. In this case, I am working on a Windows 10 machine and the installation is very straightforward. For most of the steps, you can just leave the default configuration. You will start with the starting page and the license agreement. Next, you need to define the destination location, which, for most cases, does not need to be changed. Afterwards, you are going to be asked for the installed components, such as file and explorer integration, followed by the Start Menu folder. Here then follows the first setting that you might want to modify. I would recommend using VSCode as the default browser for Git:



In the next window, you can adjust the PATH environment. I would recommend that you stay on the Use Git from the Windows Command Prompt setting—especially when working on a Windows machine. This is followed by the step to choose the HTTPS transport backend, then to configure the line ending conversion, and finally to configure the terminal emulator to use with Git Bash. These three steps can also be kept on the default values. Now, we are close to finishing the installation process. Some extra options follow about filesystem caching, Credential Manager, and enabling symbolic links. If you are not aware of these settings, just keep the filesystem caching and the Credential Manager enabled, which might be of help sometimes. After finishing the installation of Git you should restart Visual Studio Code. You will see that VSCode automatically finds and uses the installed Git version:



Now VSCode is up and running, but, to really make use of it, you need to install the dedicated PowerShell extensions.

To achieve this, you click either on the extension symbol or press Ctrl + Shift + X, then search for PowerShell and click on the PowerShell extension coming from Microsoft. Now, install the extension by pressing Install, which you can find on the top right-hand side:



After the installation has finished, you'll need to reload VSCode. The Install button will turn into a Reload button. Just press on it and VSCode will be reloaded. Now you can see the installed PowerShell extension:



The installation of VSCode is now completed and you are ready to use it for PowerShell development. In the next sections, some of the basic configurations and the first steps are described. 



            

            
        
    
        

                            
                    Basics

                
            
            
                
For the first step, we should find the PowerShell console in VSCode. For this, press on TERMINAL. We validate the started PowerShell version with $PSVersionTable and you can see that the default PowerShell version running on a Windows 10 environment is loaded:



So, in this console, you have the same possibilities as working directly with PowerShell.exe.

Next, we want to create a new script. For this, we create a new workspace folder and add a new file, test.ps1, to it. It is self-explanatory and should look similar to this, when you have finished:



You can now start writing your scripts and make use of IntelliSense. In the next screenshot, we are coding in the test.ps1 file. Just try to write get-se to see how it is working:



By just focusing on one cmdlet with the arrow keys, additional cmdlet information is shown. You can also test the debugging mechanisms, which will work mostly the same as in the ISE. You have some more capabilities for debugging and customization options for the whole editor. As for now, we will keep it like this. Later in the book, we will take a dedicated look at how to create reusable code and how to benefit in the same spot from the possibilities within VSCode. In the next two chapters, we will learn how to write PowerShell code. All of the demo code can be executed in PowerShell files. The whole scripts are available in GitHub and you can just open the folder.

To get an overview of all of the capabilities of VSCode, you should go through the following two resources step by step:



https://code.visualstudio.com/docs/

https://github.com/Microsoft/vscode-tips-and-tricks



Because of the complexity and variety of configuration possibilities and the continuously developing feature set of VSCode, only the most important mechanisms can be covered in this book.



Therefore, you should take these two resources as required learning material.



            

            
        
    
        

                            
                    ISE versus VSCode

                
            
            
                
As you have seen, the PowerShell ISE and VSCode are completely different tools with similar possibilities. The big benefits of VSCode over the PowerShell ISE are definitely the platform independence, the Git integration, and the customization possibilities. In fact, you can configure almost everything in VSCode and leverage the tool for your own or your company's needs. From the first chapter, you also know that Windows PowerShell will not continue to receive any major updates and so neither will the PowerShell ISE. From a long-term perspective, you should make the transition from the PowerShell ISE to VSCode or directly start with VSCode from scratch. VSCode is continuously evolving and gaining new features that also address DevOps and automation approaches. 



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, you received a very brief overview of the tools available for creating good PowerShell code. We took a dedicated look at the PowerShell ISE and VSCode and explained some of the basics of both of them. Most simple tasks can be achieved with both tools, but you have also learned about the advantages of VSCode. With this knowledge, you should be able to get your hands on the tools and set them up. As a long-term recommendation, VSCode should become your primary tool and therefore you should learn most of its capabilities to benefit from it. The additional resources, which are consolidated under Further reading, will help you to accomplish this task. In the next two chapters, we will cover the basics for coding with PowerShell. I would recommend that you continue to use VSCode for the examples and get used to working with it.



            

            
        
    
        

                            
                    Questions

                
            
            
                

	What are very well known tools for primarily creating good PowerShell GUIs?

	Which tool is better - PowerShell ISE versus VSCode, and why?

	How do you get the PowerShell ISE?

	How do you get VSCode?

	What are the first steps after installing VSCode?

	What is IntelliSense?

	What is Git and why does it make sense to install it with VSCode?

	How can you execute code with the PowerShell ISE and VSCode?

	How can you debug with the PowerShell ISE and VSCode?





            

            
        
    
        

                            
                    Further reading

                
            
            
                
Please see the following for further reading relating to this chapter:


	PowerShell: https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting

	Visual Studio Code: https://code.visualstudio.com/docs/

	Git: https://git-scm.com/

	Key Bindings for Visual Studio Code: http://aka.ms/vscodekeybindings

	Microsoft/vscode-tips-and-tricks: https://github.com/Microsoft/vscode-tips-and-tricks





            

            
        
    
        

                            
                    Basic Coding Techniques

                
            
            
                
In this chapter, you'll learn about the basics in PowerShell scripting, which are necessary to develop and understand most PowerShell scripts. We recommend using VSCode when working with the examples provided in this and all subsequent chapters. We put forth our argument in its favor in the previous chapter and the examples assume they are run in the editor's console. You can download the code from GitHub to work with the provided examples; you can find them at https://github.com/ddneves/Book_Learn_PowerShell.

Keep in mind that you should put a lot of efforts into training yourself with the content of this chapter, because it is the foundation for upcoming chapters. Some of the topics are simply introduced and will be expanded upon in upcoming chapters, providing the best didactic methods.

In this chapter, we will cover the following topics:




	Comments

	Regions

	Types

	Pipelines

	Commands and parameters

	PSDrives and PSProviders

	PowerShell's scripting language:


	Operators 

	Loops

	Break and Continue

	If...ElseIf...Else

	Switch









            

            
        
    
        

                            
                    Comments

                
            
            
                
I'd like to introduce comments right at the beginning. As you may know (from other scripting or coding languages), comments are necessary to describe and explain your code. Developers often argue that code is self-explanatory, but that is a lie. You will quickly learn that, even when working with your own scripts, it is always good to have some comments on the side. You can use either line comments or comment blocks in PowerShell, which make use of the key character (#), and look as follows:


# this is a comment line
## this as well

<#
this is a comment block
#>

<# this as well
       this as well
this as well
#>


As we are starting with the basics, you should know that there are some best practices for writing code. We will provide many of them throughout this book, but the most important one is to always provide comments with your code, to help the reader, other coders, or even yourself, if you need to reuse or debug your code. If you need to write multiline comments, you can use comment blocks. For most of the other scenarios, line comments fulfill the job. Later on, you will see other commenting techniques, and how they can be valuable.





            

            
        
    
        

                            
                    Regions

                
            
            
                
Regions are used to structure your code and give parts of the code separated names. Regions are special comments in your scripts that can be used to give structure to your code:



Regions are always initiated with the #region keyword followed by the title. You can also use a multi-word title, and nest as many regions as you want. In Visual Studio Code, you will also be able to collapse complete regions, to get a better overview. Just move the mouse cursor onto the left side of the opened region, and it will show you all possible collapse options, as visible in the previous screenshot. You can also fold all of the sections very easily, by using the hotkeys Ctrl + K, Ctrl + 0; to unfold all sections, use Ctrl + K, Ctrl + J.



            

            
        
    
        
    





















































OEBPS/assets/15e1a98b-aa09-4c70-a799-ddcb6de3bff8.png
Q> & 0 0






OEBPS/assets/2eed2fb5-fd25-4b6d-8f1e-e7625c1e8e34.png
PS Azure:\> dir

Directory: Azure:

Mode SubscriptionName SubscriptionId TenantId

+ Visual Studio Enterprise 7e1608el-6d7e-4dda-890a-36247e29af4b 34c7837c-56bl1-461e-b38. ..





OEBPS/assets/8cd55b1b-3982-4305-88a4-8a94e33f42d5.png
<% Git2.16.1.4 Setup

Choosing the default editor used by Git
Which editor would you ke Gitto use?

Use Vim (the ubiquitous text edtor) as Gits default edtor

Use the Nano editor by default
lUse Vim (the ubiauitous text edtor) as Gits defaut editor

itis highly recommended to switch to a modern GUI edtor nsteac.

hitps:fatforvindons.org/






OEBPS/assets/d523ff32-b81e-45b2-918a-e7bac79b62a2.jpg
PowerShell
Core 6.0

Automate and control administrative tasks using DevOps principles

Packty

www.packt.com

By David das Neves and Jan-Hendrik Peters





OEBPS/assets/ec5c3f4e-b0f4-4918-8ee8-ca342c217321.png
PS Azure:\> $PSVersionTable

Name Value

PSVersion 5.1.14393.1480

PSEdition Desktop
PSCompatibleVersions {1.e, 2.0, 3.0, 4.0...}
BuildVersion 10.0.14393.1480
CLRVersion 4.0.30319.42000
WSManStackVersion

3.0
PSRemotingProtocolVersion 2.3
1.1.

SerializationVersion 0.1





OEBPS/assets/900ac8b8-de88-4cfb-8494-9342f0e1229a.png
Setup - Visual Studio Code

Welcome to the Visual Studio
Code Setup Wizard

This will nstal Mcrosoft Visual Studio Code on your computer.

Itis recommended that you dose al other appications before:
continuing,

Click Next to continue, or Cancel to exit Setup.

s [ concl





OEBPS/assets/9c4339f8-b352-45ae-ad23-b48f6caedc00.png
PROBLEMS ~ OUTPUT  DEBUGCONSOLE  TERMINAL Git

Looking for git in: C:\Program Files\Git\cmd\git.exe
Using git 2.16.1.windows.4 from C:\Program Files\Git\cmd\git.exe





OEBPS/assets/4281f1bd-ebad-4f72-b576-ff64db0fa850.png
Strings (text)

SSH client (ssh.exe)





OEBPS/assets/c60d658c-d930-497b-934c-3c368eb15f83.png
4  Windows 4 .deb 4 .rpm 4 Mac

Windows 7, 8, 10 Debian, Ubuntu Red Hat, Fedora, SUSE macOS 10.9+

.zip | 32 bit versions ‘tar.gz | 32 bit versions





OEBPS/assets/7a80e598-59f8-4fa1-97c3-fbed8084fad2.png
B PowerShell / PowerShell © Watch~

¢Code  (lssues 119 [ Pull requests 45 [ Projects 12 | Insights

PowerShell for every system!  https;//microsoft.com/powershell

769

K Unstar | 8755 | ¥Fork

1319

powershell  windows  macos  linux  command-line  shell  netcore
) 5,682 commits ¥ 3 branches © 41 releases 22165 contributors
Branch: master v || New pull request Create new file | Upload files | Find file | [RSa R e






OEBPS/assets/e23c4c3e-a246-46c9-98c7-f0d8c59f7470.png
Settings -

& Manage optional features

OpenSSH Client (Beta) 324 MB
OpenSSH Server (Beta) 338 MB





OEBPS/assets/2d4d385f-b025-4255-857c-0a8b83a4dc8f.png
PS C:\> $PSVersionTable

Name

PSVersion

PSEdition
PSCompatibleVersions
BuildVersion

CLRVersion
WSManStackVersion
PSRemotingProtocolVersion
SerializationVersion

5.1.17046.1000
Desktop

{1.e, 2.0, 3.0, 4.0
10.0.17046.1000
4.0.30319.42000
3.0

7

[ R






OEBPS/assets/cee0ae32-f78e-45ef-99c0-e6858bc84754.jpg
@ EXPLORER 4] Welcome %

4 OPEN EDITORS

Start

pen forder
Add workspace folder

B testps1
{-} ws.code-workspace

Recent

TERMINAL





OEBPS/assets/593299a2-f1da-47bb-9700-99dd6f7f41b4.png
Packh






OEBPS/assets/4adb2498-43a6-4c42-a083-fdd14623f183.png
o Visual Studio Code
Editing evolved

Start

New file
Open folder.
‘Add workspace folder.

Recent

No recent folders

Help

Printable keyboard cheatsheet
Introductory videos

Tips and Tricks

Product documentation
Gittub repository

Stack Overflow

Show welcome page on startup

PROBLE

1S OUTPUT  DEBUGCONSO MINAL

Looking for git in: C:\Program Files\Git\cmd\git.exe

Customize

Tools and languages
Install support for Javascript, TypeScript, Python, PHP, Azure, Docke.

Install keyboard shortcuts
Install the keyboard shortcuts of Vim, Sublime, Atom and others

Color theme
Make the editor and your code look the way you love

Learn

Find and run all commands
Rapidly access and search commands from the Command Palette (...

Interface overview
Get a visual overlay highlighting the major components of the U

Interactive playground
Try essential editor features out in a short walkthrough

Git v

Looking for git in: C:\Program Files (x86)\Git\cmd\git.exe

Looking for git in: C:\Program Files\Git\cmd\git.exe

| L o R O G N D e P e

Git installation not found.






OEBPS/assets/11b1826a-3e33-4785-86a7-09e73d43954e.jpg
16
17
18
Sk
20
21
22
24
26
27

= #region MyFirstRegion
#comment 1
#endregion

[ #region BigRegion
® #region FirstSmallRegion ---

® #region SecondSmallRegion -

#endregion





OEBPS/assets/08e337c5-9a66-41ce-a8b3-60664f1c320e.png
.NET FRAMEWORK .NET CORE XAMARIN

WPFE Windows UWP
Forms .
Android

APP
MODELS

ASPNET ASPNET Core

.NET STANDARD LIBRARY
One library to rule them all

COMMON INFRASTRUCTURE






OEBPS/assets/8de0b76b-790c-4aaf-8fc8-bf609b0c838d.png
.NET Framework

ASPNET 5
ASPNET 46
WPE

Windows Forms

Common Runtime

2 T

.4

.NET Core
ASPNET 5
W NET Native

& O ASPNETS for Mac and Linux

Compilers NuGet packages

NET Compler latform
Languages innovation

NET Core s Librries
RS p—p—






OEBPS/assets/03b3a7e7-813a-4539-991a-766233047de1.png
PowerShell Documentation

R
Features
Reference
Y

Community
Get started with Windows PowerShell

Learn how to use PowerShell.

e SN

PowerShell on GitHub

PowerShell is an open-source project and available for
‘Windows, Linux and mac0s.

PowerShell in Azure Cloud Shell

PowerShell in Azure Cloud Shellis now availlable in public

preview. Leam more!

s

Setup and installation
Get PowerShell installed in your environment.

ﬁﬁ!ﬁ

Download WMF
Windows Management Framework contains the latest
versions of PowerShell, DSC, WMI, and WinRM for older
versions of Windows.

Tutorials

A cookbook of common scripting tasks.

\

PowerShell Module Browser
Search for PowerShell modules and cmlets.





OEBPS/assets/6c8bf84b-4b5a-4312-b7c9-88f8e42b8bd9.png





OEBPS/assets/e4faf4c0-281d-4c14-8470-a495468f9669.png
Mapt





OEBPS/assets/e6ec6037-cd3f-4a33-9359-11b678199249.png
Step Over F10
Step Into 1
Step Out Shift-F11





OEBPS/assets/32d313b3-a395-4308-9aaa-17b2469f500b.jpg
0
0 glt —-everything-is-local Q Search entire sie...

Gitis a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency.

Git s easy to learn and has a tiny footprint with lightning fast
performance. It outclasses SCM tools like Subversion, CVS, Perforce,
and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.

@ Learn Gt in your browser for free with Try Git.

About Documentation ’7 3
T S m Fammmmie s v B e el
to other source control systems. Git book content, videos and 2.16.1
other material. o)
Download 2.16.1 for Windows
Downloads Community
* GUI clients and binary releases (j? Get involved! Bug reporting,
for all major platforms. ‘mailing lst, chat, development

and more.






OEBPS/assets/ab70b9d2-0ec3-4668-8b09-6ac663144f85.png
.NET STANDARD 2.0

XLing* XML Documente®XPath*XSDe®XSL

SERIALIZATION BinaryFormattere® Data Contract® XML

Primitives ® Collections ® Reflections® Interop® Linq






OEBPS/assets/dc1666c6-0af3-4c39-af54-4ce85a2f36af.png
Operating System Prerequisites Package Links
Windows Server 2012 R2 https://go.microsoft.com/flink/?linkid=839516
Windows Server 2012 https://go.microsoft.com/flink/?linkid=839513
Windows Server 2008 R2 .NET Framework4.5.2 | https://go.microsoft.com/fwlink/?linkid=839523
x64:
https://go.microsoft.com/flink/?linkid=839516
Windows 8.1
x86:
https://go.microsoft.com/flink/?linkid=839521
x64:
https://go.microsoft.com/flink/?linkid=839523
Windows 7 SP1
x86:

https;

0. microsoft.com/fulink/?linkid=839522





OEBPS/assets/d5a9166f-9476-41c7-986d-11cd888ff9bf.png
B Administrator: Windows PowerShell ISE - o x

Fle Edit View Tooks Debug Add-ons Help

&3 & a » L]
Untitled1.ps1 X @

1

(]

WINDOWS\system32>

Ln1 Col1 1%





OEBPS/assets/72275247-a46f-4a3a-a955-91578af5f2f7.png
EXTENSIONS.
Powershell

PowerShell 151
Develop Powershellscr...
Microsoft Install
PowerShell Stack... 002
Search for selected text...
DougFinke Install
CodeShell 022

Start 2 new Powershell .

o Install

Vscode-psconfeu... 105
Powershell Conference ..
tefan Stranger ISl

Code Runner 0s7
RuNC, C++, Java, JS, PH,
Jun Han Install

Template Literal ... 054
Use Ctrl+Enter to open...
plicvone Install
Better Comments 115

Improve your code com.
Install

Terminal for Visual Stud...

Jun Han Install
Devskim 020
Detect security mistake...

Install

Extension: Powershell X o

PowerShell =
Microsoft | @ 2060673 | k% %k k | Repository | License

Develop PowerShell scripts in Visual Studio Code!

Contributions Changelog Dependencies

PowerShell Language Support for Visual Studio Code
Vissal Sudio Warketpisce VS| installs [E06M) chat [GnGHEEF)

AppVeyor (Windows)  Travis Cl (Linux / macOS)

Obuid [FE) oo )

“This extension provides rich Powershell language support for Vi<u Code. Now you can write and debug Pow N |
scripts using the excellent IDE-like interface that Visual Studio Code provides.

tu

output SOLE  TERMINAL Git v

Ed A~ D x
Looking for git in: C:\Program Files\Git\cmd\git.exe
Using git 2.16.1.windowus.4 from C:\Program Files\Git\cmd\git.exe





OEBPS/assets/e66135b0-f6ea-4495-8816-1b2c037768d9.png
B windows Powershell ISE
Fie Edit View Tools Debug Add-ons Help

N@eR4&carx e pEE|« |8 Boo|lod.
[ Untiteatpst- x |
1

1 class (simple)

) Cmdlet (advanced function)

£ Cmdlet (advanced function) - complete
£ Comment block

o A (o-<ciption: do-until loop
1% do-while Path: Built-in

£ DSC Configuration (simple)

1 DSC Configuration (using ConfigurationData) ?0
1 DSC ConfigurationData :
}

until ($x -gt 0)





OEBPS/assets/62197265-b5b6-4029-b7ba-a83d4868e219.png
Requesting a Cloud Shell.
PowerShell may take up to a minute...Succeeded.
Connecting terminal...

Welcome to Azure Cloud Shell (Preview)

Type "dir" to see your Azure resources
Type "help” to learn about Cloud Shell

VERBOSE: Authenticating to Azure ...
VERBOSE: Building your Azure drive ...
Azure:\

PS Azure:\> I





OEBPS/assets/e0c29e36-7400-4888-b4b2-c9184d4e86a1.png





OEBPS/assets/eb757601-48b8-4694-b0c7-e91951823aa5.png
B Administrator: Windows PowerShell ISE - o X

Fle Edit View Tooks Debug Add-ons Help

&3 & a » L]
Untitled1.ps1 X @

1

[

WINDOWS\system32>

Ln1 Col1 1%





OEBPS/assets/da322177-93ee-44ad-85a0-19b760c17065.jpg
9

Help
o~

»

£

L >

Boo

Show Command Window






OEBPS/assets/61ba6f5b-ebe9-46fc-81d7-f11ab19e58bc.jpg





OEBPS/assets/7f0eece3-0a6a-4939-a347-4b829d5c865a.png
@ EXPLORER

4 OPEN EDITORS

p #4] Welcome
¥ test.ps1
4 WORKSPACE
? £ testps1

{.} ws.code-workspace

> AZURE APP SERVICE
b AZURE FUNCTIONS
b AZURE STORAGE

’°J Welcome

Y testps1

get—sel

x

@ Get-SecureBootPolicy
@ Get-SecureBootUEFT

@ Get-Service Get-Service [[-Name] <string[]>] [-C.®

@ Get-ServiceEndpoint

@ Get-ACSEvent

@ Get-ACSEventQuery

@ Get-PSSession

@ Get-PSSessionCapability

@ Get-PsSessionConfiguration

@ Get-VMSecurity

@ Get-CimSession

@ Get-IISServerManager
Powershell Integrated Console

PS C:\Users\dadasnev\das
PS C:\Users\dadasnev\das
PS C:\Users\dadasnev\das
PS C:\Users\dadasnev\das
PS C:\Users\dadasnev\das
PS C:\Users\dadasnev\das
PS C:\Users\dadasnev\das
\Workspace>

Neves\OneDrive
Neves\OneDrive
Neves\OneDrive
Neves\OneDrive
Neves\OneDrive
Neves\OneDrive
Neves\OneDrive

das
das
das
das
das
das
das

Neves\Books\Learning
Neves\Books\Learning
Neves\Books\Learning
Neves\Books\Learning
Neves\Books\Learning
Neves\Books\Learning
Neves\Books\Learning

+ @ o~ O %

PowerShell\Current
PowerShell\Current
PowerShell\Cur
PowerShell\Cur
PowerShell\

Powers
PowerShell\Current





OEBPS/assets/e75f95c9-a948-440e-a475-9bb64aa0a427.jpg
PROBLEMS ~ OUTPUT  DEBUG CONSOLE

Windows Powershell

Copyright (C) Microsoft Corporation. ALl rights reserved.

PS C:\Users\David:

Value

Psversion 5.1.16299.98

PsEdition Desktop
PsConpatibleversions {18, 2.0, 3.8, 4.0...}
Buildversion 16.6.16299.98
CLRVersion 4.0.36319.42000
wshanstackversion 3.8
PSRenotingProtocolVersion 2.3

SerializationVersion 1.1.0.1






OEBPS/assets/310cc077-2216-4281-920c-9ce683414a93.jpg
EXTENSIONS.






OEBPS/assets/9799bb59-1842-4b57-aa7d-87d7f8e5f726.png
Verson| Relesse Date Detaut 05 Versions Available OS Versions PStiton
Novs Windows XP 571573
Windows Serves 2003 591,522
1 Downloadable ‘Windows Server 2003 R2 Desktop.
Windows Via
Widows Vita P2
) Wit 7 Wadows X573
) Windows Servec 208 R2 Winows Srvec 203 P2 Desop
WE20 Windows Vista SPL 5P2
Windos Serves 200891, 522
s Wit Windows 7571
s Windows Serves 212 Windows Servec 208 P2 Desitop
W30 Windows Serves 2082 SPL
outs Wades1 Wadows 7571
. Windows Servc D12R2 Windows Serves 208 R2SPL Desop
WD Wi Serves 2012
Fets Wadows 7571
Widows 8.1
N WMF 5.0 Windoss 10 ‘Windows Server 2012 Desktop
Widows Sever 012R2
T Wadows 101607 Widows 7571 Deaop
Windows Serves 216 Widows 8.1
| Windows Serves 208 R2SPL o
Windows Srves 2016 N Srer | Windows Srves 2012
Widows Sevec 012R2
=g S
Core 6 Limux Core.
Dovnlousle plage Windows






OEBPS/assets/6f3da15a-3c97-48d6-a522-c75329575327.png
B commands - O

Modules: | All
Name; [service
Get-Service

Get-ServiceEndpoint
Get-VMintegrationService
Get-WAPackCloudSenvice

Name: Get:-Service
Module: Microsoft PowerShell Management (imported)

Parameters for “Get-Service

Computertiame: |

[ Dependentsenices

Exclude:

Includ

Name:

] RequiredServices

(@ Common Parameters
[ Debug

ErrorAction:

ErmorVariable:

InformationAction:

InformationVariable:

OutBuffer:






