
        
            [image: Mastering PostgreSQL 9.6]
        
    
        

            
                Title Page

            

            
                
Mastering PostgreSQL 9.6



A comprehensive guide for PostgreSQL 9.6 developers and administrators

Hans-Jürgen Schönig







BIRMINGHAM - MUMBAI



            

            
                
            

        
    
        

            
                Copyright

            

            
                
Mastering PostgreSQL 9.6

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1250517

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham 

B3 2PB, UK.

ISBN 978-1-78355-535-2

www.packtpub.com



            

            
                
            

        
    
        

            
                Credits

            

            
                





	
Author

Hans-Jürgen Schönig


	
Copy Editor

Vikrant Phadkay





	
Reviewer

Shaun Thomas


	
Project Coordinator

Nidhi Joshi 





	
Commissioning Editor

Amey Varangaonkar


	
Proofreader

Safis Editing





	
Acquisition Editor

Varsha Shetty 


	
Indexer

Aishwarya Gangawane 





	
Content Development Editor

Aishwarya Pandere


	
Production Coordinator

Arvindkumar Gupta





	
Technical Editor

Dinesh Pawar


	







            

            
                
            

        
    
        

            
                About the Author

            

            
                
Hans-Jürgen Schönig has 18 years of experience with PostgreSQL. He is the CEO of a PostgreSQL consulting and support company called Cybertec Schönig & Schönig GmbH (www.postgresql-support.de). It has successfully served countless customers around the globe.

Before founding Cybertec Schönig & Schönig GmbH in 2000, he worked as a database developer at a private research company that focused on the Austrian labor market, where he primarily worked on data mining and forecast models. He has also written several books about PostgreSQL.



            

            
                
            

        
    
        

            
                About the Reviewer

            

            
                
Shaun Thomas has been working with PostgreSQL since late 2000. From 2011 and beyond, he's been a frequent presenter at the PostgresOpen conference on topics such as handling extreme throughput, high availability, monitoring, architecture, and automation. He contributed a few PostgreSQL extensions, as well as a tool for administering massive database clusters. On occasion, he's even been known to guest lecture at the local university. His goal is to help the community make PostgreSQL a bigger, better database for everyone to enjoy.



            

            
                
            

        
    
        

            
                www.PacktPub.com

            

            
                
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.



https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

Why subscribe?


	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser





            

            
                
            

        
    
        

            
                Customer Feedback

            

            
                
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1783555351.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!



            

            
                
            

        
                                           Table of Contents
                                                                 
	     Preface     
	     What this book covers      
 	     What you need for this book      
 	     Who this book is for      
 	     Conventions      
 	     Reader feedback      
 	     Customer support     
	     Errata      
 	     Piracy      
 	     Questions      
 
 
 
 
 	     PostgreSQL Overview     
	     What is new in PostgreSQL 9.6?     
	     Understanding new database administration functions     
	     Killing idle sessions      
 	     Finding more detailed information in pg_stat_activity      
 	     Tracking vaccum progress      
 	     Improving vacuum speed      
 
 
 	     Digging into new SQL and developer-related functions      
 	     Using new backup and replication functionality     
	     Streamlining wal_level and monitoring      
 	     Using multiple synchronous standby servers      
 
 
 	     Understanding performance-related features     
	     Improving relation extensions      
 	     Checkpoint sorting and kernel interaction      
 	     Using more advanced foreign data wrappers      
 	     Introducing parallel queries      
 	     Adding snapshot too old      
 
 
 
 
 	     Summary      
 
 
 	     Understanding Transactions and Locking     
	     Working with PostgreSQL transactions     
	     Handling errors inside a transaction      
 	     Making use of savepoints      
 	     Transactional DDLs      
 
 
 	     Understanding basic locking     
	     Avoiding typical mistakes and explicit locking     
	     Considering alternative solutions      
 
 
 
 
 	     Making use of FOR SHARE and FOR UPDATE      
 	     Understanding transaction isolation levels     
	     Considering SSI transactions      
 
 
 	     Observing deadlocks and similar issues      
 	     Utilizing advisory locks      
 	     Optimizing storage and managing cleanup     
	     Configuring VACUUM and autovacuum     
	     Digging into transaction wraparound-related issues      
 	     A word on VACUUM FULL      
 
 
 	     Watching VACUUM at work      
 	     Making use of snapshot too old      
 
 
 	     Summary      
 
 
 	     Making Use of Indexes     
	     Understanding simple queries and the cost model     
	     Making use of EXPLAIN      
 	     Digging into the PostgreSQL cost model      
 	     Deploying simple indexes      
 	     Making use of sorted output      
 	     Using more than one index at a time     
	     Using bitmap scans effectively      
 
 
 	     Using indexes in an intelligent way      
 
 
 	     Improving speed using clustered tables     
	     Clustering tables      
 	     Making use of index only scans      
 
 
 	     Understanding additional B-tree features     
	     Combined indexes      
 	     Adding functional indexes      
 	     Reducing space consumption      
 	     Adding data while indexing      
 
 
 	     Introducing operator classes     
	     Hacking up an operator class for a B-tree     
	     Creating new operators      
 	     Creating operator classes      
 	     Testing custom operator classes      
 
 
 
 
 	     Understanding PostgreSQL index types     
	     Hash indexes      
 	     GiST indexes     
	     Understanding how GiST works      
 	     Extending GiST      
 
 
 	     GIN indexes     
	     Extending GIN      
 
 
 	     SP-GiST indexes      
 	     BRIN indexes     
	     Extending BRIN indexes      
 
 
 	     Adding additional indexes      
 
 
 	     Achieving better answers with fuzzy searching     
	     Taking advantage of pg_trgm      
 	     Speed up LIKE queries      
 	     Handling regular expressions      
 
 
 	     Understanding full-text search - FTS     
	     Comparing strings      
 	     Defining GIN indexes      
 	     Debugging your search      
 	     Gathering word statistics      
 	     Taking advantage of exclusion operators      
 
 
 	     Summary      
 
 
 	     Handling Advanced SQL     
	     Introducing grouping sets     
	     Loading some sample data      
 	     Applying grouping sets     
	     Investigating performance      
 
 
 	     Combining grouping sets with the FILTER clause      
 
 
 	     Making use of ordered sets      
 	     Understanding hypothetical aggregates      
 	     Utilizing windowing functions and analytics     
	     Partitioning data      
 	     Ordering data inside a window      
 	     Using sliding windows      
 	     Abstracting window clauses      
 	     Making use of onboard windowing functions     
	     rank and dense_rank functions      
 	     ntile() function      
 	     lead() and lag() functions      
 	     first_value(), nth_value(), and last_value() functions      
 	     row_number() function      
 
 
 
 
 	     Writing your own aggregates     
	     Creating simple aggregates      
 	     Adding support for parallel queries      
 	     Improving efficiency      
 	     Writing hypothetical aggregates      
 
 
 	     Summary      
 
 
 	     Log Files and System Statistics     
	     Gathering runtime statistics     
	     Working with PostgreSQL system views     
	     Checking live traffic      
 	     Inspecting databases     
	     Inspecting tables      
 
 
 	     Making sense of pg_stat_user_tables      
 	     Digging into indexes      
 	     Tracking the background worker      
 	     Tracking, archiving, and streaming      
 	     Checking SSL connections      
 	     Inspecting transactions in real time      
 	     Tracking vacuum progress      
 	     Using pg_stat_statements      
 
 
 
 
 	     Creating log files     
	     Configuring postgresql.conf file     
	     Defining log destination and rotation      
 	     Configuring syslog      
 	     Logging slow queries      
 	     Defining what and how to log      
 
 
 
 
 	     Summary      
 
 
 	     Optimizing Queries for Good Performance     
	     Learning what the optimizer does     
	     Optimizations by example     
	     Evaluating join options     
	     Nested loops      
 	     Hash joins      
 	     Merge joins      
 
 
 	     Applying transformations     
	     Inlining the view      
 	     Flattening subselects      
 
 
 	     Applying equality constraints      
 	     Exhaustive searching      
 	     Trying it all out      
 	     Making the process fail      
 	     Constant folding      
 	     Understanding function inlining      
 	     Join pruning      
 	     Speedup set operations      
 
 
 
 
 	     Understanding execution plans     
	     Approaching plans systematically     
	     Making EXPLAIN more verbose      
 
 
 	     Spotting problems     
	     Spotting changes in runtime      
 	     Inspecting estimates      
 	     Inspecting buffer usage      
 	     Fixing high buffer usage      
 
 
 
 
 	     Understanding and fixing joins     
	     Getting joins right      
 	     Processing outer joins      
 	     Understanding the join_collapse_limit variable      
 
 
 	     Enabling and disabling optimizer settings     
	     Understanding genetic query optimization      
 
 
 	     Partitioning data     
	     Creating partitions      
 	     Applying table constraints      
 	     Modifying inherited structures      
 	     Moving tables in and out of partitioned structures      
 	     Cleaning up data      
 
 
 	     Adjusting parameters for good query performance     
	     Speeding up sorting      
 	     Speedup administrative tasks      
 
 
 	     Summary      
 
 
 	     Writing Stored Procedures     
	     Understanding stored procedure languages     
	     The anatomy of a stored procedure     
	     Introducing dollar quoting      
 	     Making use of anonymous code blocks      
 	     Using functions and transactions      
 
 
 
 
 	     Understanding various stored procedure languages     
	     Introducing PL/pgSQL     
	     Handling quoting      
 	     Managing scopes      
 	     Understanding advanced error handling      
 	     Making use of GET DIAGNOSTICS      
 	     Using cursors to fetch data in chunks      
 	     Utilizing composite types      
 	     Writing triggers in PL/pgSQL      
 
 
 	     Introducing PL/Perl     
	     Using PL/Perl for datatype abstraction      
 	     Deciding between PL/Perl and PL/PerlU      
 	     Making use of the SPI interface      
 	     Using SPI for set returning functions      
 	     Escaping in PL/Perl and support functions      
 	     Sharing data across function calls      
 	     Writing triggers in Perl      
 
 
 	     Introducing PL/Python     
	     Writing simple PL/Python code      
 	     Using the SPI interface      
 	     Handling errors      
 
 
 
 
 	     Improving stored procedure performance     
	     Reducing the number of function calls     
	     Using cached plans      
 	     Assigning costs to functions      
 
 
 
 
 	     Using stored procedures      
 	     Summary      
 
 
 	     Managing PostgreSQL Security     
	     Managing network security     
	     Understanding bind addresses and connections     
	     Inspecting connections and performance      
 	     Living in a world without TCP      
 
 
 	     Managing pg_hba.conf     
	     Handling SSL      
 
 
 	     Handling instance-level security     
	     Creating and modifying users      
 
 
 	     Defining database-level security      
 	     Adjusting schema-level permissions      
 	     Working with tables      
 	     Handling column-level security      
 	     Configuring default privileges      
 
 
 	     Digging into row-level security - RLS      
 	     Inspecting permissions      
 	     Reassigning objects and dropping users      
 	     Summary      
 
 
 	     Handling Backup and Recovery     
	     Performing simple dumps     
	     Running pg_dump      
 	     Passing passwords and connection information     
	     Using environment variables      
 	     Making use of .pgpass      
 	     Using service files      
 
 
 	     Extracting subsets of data      
 	     Handling various data formats      
 
 
 	     Replaying backups      
 	     Handling global data      
 	     Summary      
 
 
 	     Making Sense of Backups and Replication     
	     Understanding the transaction log     
	     Looking at the transaction log      
 	     Understanding checkpoints      
 	     Optimizing the transaction log      
 
 
 	     Transaction log archiving and recovery     
	     Configuring for archiving      
 	     Confguring the pg_hba.conf file      
 	     Creating base backups     
	     Reducing the bandwidth of a backup      
 	     Mapping tablespaces      
 	     Using different formats      
 	     Testing transaction log archiving      
 
 
 	     Replaying the transaction log     
	     Finding the right timestamp      
 
 
 	     Cleaning up the transaction log archive      
 
 
 	     Setting up asynchronous replication     
	     Performing a basic setup     
	     Improving security      
 
 
 	     Halting and resuming replication      
 	     Checking replication to ensure availability      
 	     Performing failovers and understanding timelines      
 	     Managing conflicts      
 	     Making replication more reliable      
 
 
 	     Upgrading to synchronous replication     
	     Adjusting durability      
 
 
 	     Making use of replication slots     
	     Handling physical replication slots      
 	     Handling logical replication slots     
	     Use cases of logical slots      
 
 
 
 
 	     Summary      
 
 
 	     Deciding on Useful Extensions     
	     Understanding how extensions work     
	     Checking for available extensions      
 
 
 	     Making use of contrib modules     
	     Using the adminpack      
 	     Applying bloom filters      
 	     Deploying btree_gist and btree_gin      
 	     Dblink - consider phasing out      
 	     Fetching files with file_fdw      
 	     Inspecting storage using pageinspect      
 	     Investigating caching with pg_buffercache      
 	     Encrypting data with pgcrypto      
 	     Prewarming caches with pg_prewarm      
 	     Inspecting performance with pg_stat_statements      
 	     Inspecting storage with pgstattuple      
 	     Fuzzy searches with pg_trgm      
 	     Connecting to remote servers using postgres_fdw     
	     Handling mistakes and typos      
 
 
 
 
 	     Other useful extensions      
 	     Summary      
 
 
 	     Troubleshooting PostgreSQL     
	     Approaching an unknown database      
 	     Inspecting pg_stat_activity     
	     Querying pg_stat_activity     
	     Treating Hibernate statements      
 	     Figuring out where queries come from      
 
 
 
 
 	     Checking for slow queries     
	     Inspecting individual queries      
 	     Digging deeper with perf      
 
 
 	     Inspecting the log      
 	     Checking for missing indexes      
 	     Checking for memory and I/O      
 	     Understanding noteworthy error scenarios     
	     Facing clog corruption      
 	     Understanding checkpoint messages      
 	     Managing corrupted data pages      
 	     Careless connection management      
 	     Fighting table bloat      
 
 
 	     Summary      
 
 
 	     Migrating to PostgreSQL     
	     Migrating SQL statements to PostgreSQL     
	     Using lateral joins     
	     Supporting lateral      
 
 
 	     Using grouping sets     
	     Supporting grouping sets      
 
 
 	     Using WITH clause - common table expressions     
	     Supporting WITH clause      
 
 
 	     Using WITH RECURSIVE clause     
	     Supporting WITH RECURSIVE clause      
 
 
 	     Using FILTER clause     
	     Supporting FILTER clause      
 
 
 	     Using windowing functions     
	     Supporting windowing and analytics      
 
 
 	     Using ordered sets - WITHIN GROUP clause     
	     Supporting WITHIN GROUP clause      
 
 
 	     Using TABLESAMPLE clause     
	     Supporting TABLESAMPLE clause      
 
 
 	     Using limit/offset     
	     Supporting FETCH FIRST clause      
 
 
 	     Using OFFSET     
	     Supporting OFFSET clause      
 
 
 	     Using temporal tables     
	     Supporting temporal tables      
 
 
 	     Matching patterns in time series      
 
 
 	     Moving from Oracle to PostgreSQL     
	     Using the oracle_fdw extension to move data      
 	     Using ora2pg to migrate from Oracle      
 	     Common pitfalls      
 
 
 	     Moving from MySQL or MariaDB to PostgreSQL     
	     Handling data in MySQL and MariaDB     
	     Changing column definitions      
 	     Handling null values      
 	     Expecting problems      
 
 
 	     Migrating data and schema     
	     Using pg_chameleon      
 	     Using foreign data wrappers      
 
 
 
 
 	     Summary      
 
 
 
                                                            
        

            
                Preface

            

            
                
PostgreSQL is an open source database management tool used for handling large datasets (big data) and as a JSON document database. It also has applications in the software and web domains. This book will enable you to build better PostgreSQL applications and administer databases more efficiently. 



            

            
                
            

        
    
        

            
                What this book covers

            

            
                
Chapter 1, PostgreSQL Overview, will give you an overview of PostgreSQL and its features. You will learn about new stuff and new functionality available in PostgreSQL.

Chapter 2, Understanding Transactions and Locking, will cover one of the most important aspects of any database system. Proper database work is usually not possible without the existence of transactions, and understanding transactions and locking is vital to performance as well as professional work.

Chapter 3, Making Use of Indexes, covers everything you need to know about indexes. Indexes are key to performance and are therefore an important cornerstone if you want good user experience and high throughput. All important aspects of indexing will be covered.

Chapter 4, Handling Advanced SQL, will introduce some of the most important concepts of modern SQL. You will learn about windowing functions as well as other important, more modern, elements of SQL.

Chapter 5, Log Files and System Statistics, will guide you through more administrative tasks, such as log file management and monitoring. You will learn how to inspect your servers and extract runtime information from PostgreSQL.

Chapter 6, Optimizing for Good Query Performance, will tell you everything you need to know about good PostgreSQL performance. The chapter will cover SQL tuning as well as information about memory management.

Chapter 7, Writing Stored Procedures, teaches you some more advanced topics related to server-side code. The most important server-side programming languages are covered and important aspects are pointed out.

Chapter 8, Managing PostgreSQL Security, has been designed to help you improve the security of your server. The chapter features everything from user management to row-level security. Information about encryption is also included.

Chapter 9, Handling Backup and Recovery, is all about backups and data recovery. You will learn to backup your data and it will enable you to restore things in case of disaster.

Chapter 10, Making Sense of Backups and Replication, is all about redundancy. You will learn to asynchronously and synchronously replicate PostgreSQL database systems. All modern features are covered as extensively as possible.



Chapter 11, Deciding on Useful Extensions, describes widely used modules that add additional functionality to PostgreSQL. You will learn about the most common extensions.



Chapter 12, Troubleshooting PostgreSQL, offers a systematic approach to fixing problems in PostgreSQL. It will enable you to spot common problems and approach them in an organized way.



Chapter 13, Migrating to PostgreSQL, is the final chapter of this book and shows you the way from commercial databases to PostgreSQL. The most important databases migrated these days will be covered.



            

            
                
            

        
    



        

            
                What you need for this book

            

            
                
This book has been written for a broad audience. In order to follow the examples presented in this book, it makes sense to have at least some experience with SQL and maybe even PostgreSQL in general (although this is not a hard requirement). In general, it is a good idea to be familiar with the Unix command line.



            

            
                
            

        
    
        

            
                Who this book is for

            

            
                
This book has explicitly been written for people who want to know more about PostgreSQL and who are not satisfied with basic information. The aim is to write a book that goes a bit deeper and explains the most important stuff in a clear and easy-to-understand way.



            

            
                
            

        
    
        

            
                Conventions

            

            
                
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In this case, the \timing command will tell psql to show the runtime of a query."

Any command-line input or output is written as follows:


test=# CREATE TABLE t_test (id serial, name text); 
CREATE TABLE 
test=# INSERT INTO t_test (name) SELECT 'hans'  
FROM generate_series(1, 2000000); 


New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



            

            
                
            

        
    
        

            
                Reader feedback

            

            
                
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.



            

            
                
            

        
    
        

            
                Customer support

            

            
                
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.



            

            
                
            

        
    
        

            
                Errata

            

            
                
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.



            

            
                
            

        
    
        

            
                Piracy

            

            
                
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.



            

            
                
            

        
    
        

            
                Questions

            

            
                
If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.



            

            
                
            

        
    
        

            
                PostgreSQL Overview

            

            
                
PostgreSQL is one of the world's most advanced open source database systems and it has many features widely used by developers and system administrators alike. In this book, many of those cool features will be covered and discussed in great detail.

In this chapter, you will be introduced to PostgreSQL and the cool new features available in PostgreSQL 9.6 and beyond. All relevant new functionality will be covered in detail. Given the sheer number of changes made to the code and given the size of the PostgreSQL project, this list of features is of course not complete, so I tried to focus on the most important aspects relevant to most people.

The features outlined in this chapter will be split into the following categories:


	Database administration

	SQL and developer-related

	Backup, recovery, and replication

	Performance-related topics





            

            
                
            

        
    
        

            
                What is new in PostgreSQL 9.6?

            

            
                
PostgreSQL 9.6 was released in late 2016 and is the last version that will still be following the old numbering scheme PostgreSQL has been using for more than a decade now. From PostgreSQL 10.0 onward, a new version numbering system will be in place. From 10.0 on, major releases will happen way more frequently.



            

            
                
            

        
    
        

            
                Understanding new database administration functions

            

            
                
PostgreSQL 9.6 has many new features that can help the administrator to reduce work and make systems more robust.

One of those features is the idle_in_transaction_session_timeout function.



            

            
                
            

        
    
        

            
                Killing idle sessions

            

            
                
In PostgreSQL, a session or a transaction can basically live almost forever. In some cases, this has been a problem because transactions were kept open for too long. Usually, this was due to a bug. The trouble is this: insanely long transactions can cause cleanup problems and table bloat can occur. The uncontrolled growth of a table (table bloat) naturally leads to performance problems and unhappy end users.

Starting with PostgreSQL 9.6, it is possible to limit the duration a database connection is allowed to spend inside a transaction without performing real work. Here is how it works:


test=# SET idle_in_transaction_session_timeout TO 2500; 
SET 
test=# BEGIN; 
BEGIN 
test=# SELECT 1; 
 ?column?  
---------- 
        1 
(1 row) 

test=# SELECT 1; 
FATAL:  terminating connection due to idle-in-transaction timeout 



Administrators and developers can set a timeout, which is 2.5 seconds in my example. As soon as a transaction is idle for too long, the connection will be terminated automatically by the server. Nasty side effects of long idle transactions can be prevented easily by adjusting this parameter.



            

            
                
            

        
    
        

            
                Finding more detailed information in pg_stat_activity

            

            
                
The pg_stat_activity function is a system view that has been around for many years. It basically contains a list of active connections. In older versions of PostgreSQL, administrators could see that a query is waiting for somebody else—however, it was not possible to figure out why and for whom. This has changed in 9.6. Two columns have been added:


test=# \d pg_stat_activity  
           View "pg_catalog.pg_stat_activity" 
      Column      |           Type           | Modifiers  
------------------+--------------------------+----------- 
... 
 wait_event_type  | text                     |  
 wait_event       | text                     |  
... 


In addition to this extension, a new procedure has been added, which shows who caused whom to wait:


test=# SELECT * FROM pg_blocking_pids(4711);
pg_blocking_pids
------------------
{3435}
(1 row)


When the function is called, it will return a list of blocking PIDs.



            

            
                
            

        
    
        

            
                Tracking vaccum progress

            

            
                
For many years, people have asked for a progress tracker for vacuum. Finally, PostgreSQL 9.6 makes this wish come true by introducing a new system view. Here is how it works:


postgres=# SELECT * FROM pg_stat_progress_vacuum ;

[ RECORD 1 ]+

pid | 29546
datid | 67535
datname | test
relid | 16402
phase | scanning heap
heap_blks_total | 6827
heap_blks_scanned | 77
heap_blks_vacuumed | 0
index_vacuum_count | 0
max_dead_tuples | 154
num_dead_tuples | 0


PostgreSQL will provide detailed information about ongoing vacuum processes so that people can track the progress of this vital operation.



            

            
                
            

        
    
        

            
                Improving vacuum speed

            

            
                
PostgreSQL 9.6 not only provides you with deeper insights into what vacuum does at the moment, it will also speed up the process in general. From PostgreSQL 9.6 onward, PostgreSQL will keep track of all frozen pages and avoid vacuuming those pages.

Tables that are mostly read-only will massively benefit from this change, as vacuum load is drastically reduced.



            

            
                
            

        
    
        

            
                Digging into new SQL and developer-related functions

            

            
                
One of the most promising new features of PostgreSQL is the ability to perform phrase searching. Up to 9.5 it was only possible to search for words—phrase searching was very hard to do. 9.6 nicely removes this limitation. Here is an example of how it works:


test=# SELECT phraseto_tsquery('Under pressure') @@                   to_tsvector('Something was under some sort of pressure');

?column?

----------

f

(1 row)

test=# SELECT phraseto_tsquery('Under pressure') @@                   to_tsvector('Under pressure by David Bowie hit number 1 again');

?column?

----------

t

(1 row)


The first query returns false because the words we are looking for do not occur in the desired order. In the second example, true is returned because there really is a proper match.

However, there is more: in 9.6 it is possible to check whether words show up in a certain order. In the following example, we want a word to be between united and nations:


test=# SELECT tsquery('united <2> nations') @@                     to_tsvector('are we really united, happy nations?');

?column?

----------

t

(1 row)

test=# SELECT tsquery('united <2> nations') @@                     to_tsvector('are we really at united nations?');

?column?

----------

f

(1 row)


The second example returns false as there is no word between united and nations.



            

            
                
            

        
    
        

            
                Using new backup and replication functionality

            

            
                
PostgreSQL 9.6 has also seen improvements in the area of backup and recovery.



            

            
                
            

        
    
        

            
                Streamlining wal_level and monitoring

            

            
                
The wal_level setting has always been a bit hard to understand for many people. Many were struggling with the difference between the archive and hot_standby settings. To remove this confusion altogether, both settings have been replaced with the easier-to-understand replica setting, which does the same as hot_standby.

In addition to that, the monitoring of replicated setups has been simplified. Prior to 9.6, there was only the pg_stat_replication view, which could be queried on the master to supervise the flow of data to the slave. Now it is also possible to monitor the flow of data on the slaves, by consulting the pg_stat_wal_receiver function. It is basically the slave-side mirror of the pg_stat_replication function and helps to determine the state of replication.



            

            
                
            

        
    
        

            
                Using multiple synchronous standby servers

            

            
                
PostgreSQL has been able to perform synchronous replication for quite a while already. In PostgreSQL, it is possible to have more than just one synchronous server from 9.6 onward. Earlier, only one server had to acknowledge a commit. Now it is possible to have an entire group of servers that has to confirm a commit. This is especially important if you want to improve reliability in case of multi-node error.

The syntax to use this new feature is simple:


synchronous_standby_names = '3 (server1, server2, server3, server4) 


However, there is more to synchronous replication in PostgreSQL 9.6. Previously, PostgreSQL ensured (synchronous_commit = on) that the transaction log has reached the slave. However, this did not mean that data was actually visible. Consider an example: somebody adds a user to the master, instantly connects to the slave, and checks for the user. While the transaction log was guaranteed to be on the slave, it was not necessarily guaranteed that the data inside the log was already visible to the end user (due to replication conflicts and so on). By setting synchronous_commit = 'remote_apply', it is now possible to query the slave directly after a commit on the master, without having to worry that data might not be visible yet. The remote_apply value is slower than the on value but it allows to write more advanced applications.



            

            
                
            

        
    
        

            
                Understanding performance-related features

            

            
                
Just like every release of PostgreSQL, there are numerous performance improvements, which can help to speedup applications. In this section, I want to focus on the most important and most powerful ones. Of course, there are many more small improvements than listed here.



            

            
                
            

        
    
        

            
                Improving relation extensions

            

            
                
For many years PostgreSQL has extended a table (or an index) block by block. In the case of a single writer process, this was usually fine. However, in cases of high-concurrency writing, writing a block at a time was a source of contention and suboptimal performance. From 9.6 onward, PostgreSQL started to extend tables by multiple blocks at a time. The number of blocks added at a time is 20 times the number of waiting processes.



            

            
                
            

        
    
        

            
                Checkpoint sorting and kernel interaction

            

            
                
When PostgreSQL writes changes to disk during a checkpoint, it now does so in a more orderly way to ensure that writes are more sequential than earlier. This is done by sorting blocks before sending them too. Random writes will be dramatically reduced this way, which in turn leads to higher throughput on most hardware.

Sorted checkpoints are not the only scalability thing to make it into 9.6. There are also new kernel write-back configuration options: what does this mean? In case of large caches, it could take quite a long time to write all changes out. This used to be especially nasty on systems with hundreds of gigabytes of memory because fairly intense I/O storms could happen. Of course, the operating system, level behavior of Linux could be changed using the /proc/sys/vm/dirty_background_ratio command. However, only a handful of consultants and system administrators actually knew how to do that and why. The checkpoint_flush_after, bgwriter_flush_after, and backend_flush_after functions can be used now to control the flush behavior. In general, the rule is to flush earlier. Still, as the feature is new, people are still gathering experience on how to use those settings in the most efficient way possible.



            

            
                
            

        
    
        

            
                Using more advanced foreign data wrappers

            

            
                
Foreign data wrappers have been around for many years. Starting with PostgreSQL 9.6, the optimizer can use foreign tables way more efficiently. This includes join push down (joins can now already be performed remotely) and order push down (sorting can now happen remotely). Distributing data inside a cluster is now way more efficient due to faster remote operations.



            

            
                
            

        
    
        

            
                Introducing parallel queries

            

            
                
Traditionally, a query had to run on a single CPU. While this was just fine in the OLTP world, it started to be a problem for analytical applications, which were bound to the speed provided by a single core. With PostgreSQL 9.6, parallel queries were introduced. Of course, implementing parallel queries was hard and so a lot of infrastructure has already been implemented over the years. All this infrastructure is now available to provide the end user with parallel sequential scans. The idea is to make many CPUs work on complicated WHERE conditions during a sequential scan. Version 9.6 also allowed for parallel aggregates and parallel joins. Of course, there is a lot of work left, but we are already looking at a major leap forward.

To control parallelism, there are two essential settings:


test=# SHOW max_worker_processes; 
 max_worker_processes  
---------------------- 
 8 
(1 row) 

test=# SHOW max_parallel_workers_per_gather ; 
 max_parallel_workers_per_gather  
--------------------------------- 
 2 
(1 row) 


The first one limits the overall number of worker processes available. The second one controls the number of workers allowed per gather node.

A gather node is a new thing you will see in an execution plan. It is in charge of unifying results coming from parallel subprocesses.

In addition to those fundamental settings, there are a couple of new optimizer parameters to adjust the cost of parallel queries.



            

            
                
            

        
    
        

            
                Adding snapshot too old

            

            
                
Those of you using Oracle would be aware of the following error message: snapshot too old. In Oracle, this message indicates that a transaction has been too long, so it has to be aborted. In PostgreSQL, transactions can run almost infinitely. However, long transactions can still be a problem, so the snapshot too old error has been added as a feature to 9.6, which allows transactions to be aborted after a certain amount of time.

The idea behind that is to prevent table bloat and to make sure that end users are aware of the fact that they might be about to do something stupid.



            

            
                
            

        
    
        

            
                Summary

            

            
                
In PostgreSQL 9.6 and 10.0, a lot of functionality has been added, which allows people to run even more professional applications even more faster and more efficiently. As far as PostgreSQL 10.0 is concerned, the exact new features are not fully defined yet; some things are already known and are outlined in this chapter.



            

            
                
            

        
    
        

            
                Understanding Transactions and Locking

            

            
                
Locking is an important topic in any kind of database. It is not enough to understand just how it works to write proper or better applications; it is also essential from a performance point of view. Without properly handling locks, your applications might not only be slow, it might also be wrong and behave in an insane way. In my judgment, locking is key to performance and having a good overview will certainly help. Therefore, understanding locking and transaction is important for administrators and developers alike.

In this chapter, you will learn:


	Basic locking

	Transactions and transaction isolation

	Deadlocks

	Locking and foreign keys

	Explicit and implicit locking

	Advisory locks



At the end of the chapter, you will be able to understand and utilize PostgreSQL transactions in the most efficient way possible.



            

            
                
            

        
    
        

            
                Working with PostgreSQL transactions

            

            
                
PostgreSQL provides you with a highly advanced transaction machinery that offers countless features to developers and administrators alike. In this section, it is time to look at the basic concept.

The first important thing to know is this: in PostgreSQL, everything is a transaction. If you send a simple query to the server, it is already a transaction. Here is an example:


test=# SELECT now(), now();
             now              |             now               
------------------------------+------------------------------
 2016-08-30 12:03:27.84596+02 | 2016-08-30 12:03:27.84596+02
(1 row)


In this case, the SELECT statement will be a separate transaction. If the same command is executed again, different timestamps will be returned.

Keep in mind that the now() function will return the transaction time. The SELECT statement will, therefore, always return two identical timestamps.

If more than one statement has to be part of the same transactions, the BEGIN clause must be used:


test=# h BEGIN 
Command:     BEGIN 
Description: start a transaction block 
Syntax: 
BEGIN [ WORK | TRANSACTION ] [ transaction_mode [, ...] ] 

where transaction_mode is one of: 

    ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ  
   | READ COMMITTED | READ UNCOMMITTED } 
    READ WRITE | READ ONLY 
    [ NOT ] DEFERRABLE 


The BEGIN clause will ensure that more than one command will be packed into a transaction. Here is how it works:


test=# BEGIN;
BEGIN 
test=# SELECT now(); 
              now               
------------------------------- 
 2016-08-30 12:13:54.839277+02 
(1 row) 
test=# SELECT now(); 
              now               
------------------------------- 
 2016-08-30 12:13:54.839277+02 
(1 row) 
test=# COMMIT; 
COMMIT 


The important point here is that both timestamps will be identical. As mentioned earlier, we are talking about transaction time here.

To end the transaction, COMMIT can be used:


test=# h COMMIT 
Command:     COMMIT 
Description: commit the current transaction 
Syntax: 
COMMIT [ WORK | TRANSACTION ] 


There are a couple of syntax elements here. You can just use COMMIT, COMMIT WORK, or COMMIT TRANSACTION. All three options have the same meaning. If this is not enough, there is more:


test=# h END 
Command:     END 
Description: commit the current transaction 
Syntax: 
END [ WORK | TRANSACTION ] 


The END clause is the same as the COMMIT clause.

ROLLBACK is the counterpart of COMMIT. Instead of successfully ending a transaction, it will simply stop the transaction without ever making things visible to other transactions:


test=# h ROLLBACK 
Command:     ROLLBACK 
Description: abort the current transaction 
Syntax: 
ROLLBACK [ WORK | TRANSACTION ] 


Some applications use ABORT instead of ROLLBACK. The meaning is the same.



            

            
                
            

        
    
        

            
                Handling errors inside a transaction

            

            
                
It is not always the case that transactions are correct from beginning to end. However, in PostgreSQL, only error-free transactions can be committed. Here is what happens:


test=# BEGIN; 
BEGIN 
test=# SELECT 1; 
 ?column?  
---------- 
        1 
(1 row) 

test=# SELECT 1 / 0; 
ERROR:  division by zero 
test=# SELECT 1; 
ERROR:  current transaction is aborted, commands ignored until end of transaction block 
test=# COMMIT; 
ROLLBACK 


Note that the division by zero did not work out.

In any proper database, an instruction like this will instantly error-out and make the statement fail.

It is important to point out that PostgreSQL will error-out, unlike MySQL, which does not seem to have a problem with a mathematically wrong result.

After an error has occurred, no more instructions will be accepted even if those instructions are semantically and syntactically correct. It is still possible to issue a COMMIT. However, PostgreSQL will roll back the transaction because it is the only thing at this point that can still be done.



            

            
                
            

        
    
        

            
                Making use of savepoints

            

            
                
In professional applications, it can be pretty hard to write reasonably long transactions without ever encountering a single error. To solve the problem, users can utilize something called SAVEPOINT. As the name indicates, it is a safe place inside a transaction that the application can return to in the event things go terribly wrong. Here is an example:


test=# BEGIN; 
BEGIN 
test=# SELECT 1; 
 ?column?  
---------- 
        1 
(1 row) 

test=# SAVEPOINT a; 
SAVEPOINT 
test=# SELECT 2 / 0; 
ERROR:  division by zero 
test=# ROLLBACK TO SAVEPOINT a; 
ROLLBACK 
test=# SELECT 3; 
 ?column?  
---------- 
        3 
(1 row) 

test=# COMMIT; 
COMMIT 


After the first SELECT clause, I decided to create a SAVEPOINT to make sure that the application can always return to this point inside the transaction. As you can see, a SAVEPOINT has a name, which is referred to later.

After returning to a, the transaction can proceed normally. The code has jumped back before the error, so everything is fine.

The number of savepoints inside a transaction is practically unlimited. We have seen customers with over 250,000 savepoints in a single operation. PostgreSQL can easily handle that.

If you want to remove a savepoint from inside a transaction, there is RELEASE SAVEPOINT:


test=# h RELEASE SAVEPOINT  
Command:     RELEASE SAVEPOINT 
Description: destroy a previously defined savepoint 
Syntax: 
RELEASE [ SAVEPOINT ] savepoint_name 


Many people ask, What will happen if you try to reach a savepoint after a transaction has ended? The answer is that the life of a savepoint ends as soon as the transaction ends. In other words, there is no way to return to a certain point in time after the transactions have been completed.



            

            
                
            

        
    
        

            
                Transactional DDLs

            

            
                
PostgreSQL has a very nice feature that is unfortunately not present in many commercial database systems. In PostgreSQL, it is possible to run DDLs (commands that change the data structure) inside a transaction block. In a typical commercial system, a DDL will implicitly commit the current transaction. Not so in PostgreSQL.

Apart from some minor exceptions (DROP DATABASE, CREATE TABLESPACE/DROP TABLESPACE, and so on), all DDLs in PostgreSQL are transactional, which is a huge plus and a real benefit to end users.

Here is an example:


test=# d 
No relations found. 
test=# BEGIN; 
BEGIN 
test=# CREATE TABLE t_test (id int); 
CREATE TABLE 
test=# ALTER TABLE t_test ALTER COLUMN id TYPE int8; 
ALTER TABLE 
test=# d t_test 
    Table "public.t_test" 
 Column |  Type  | Modifiers  
--------+--------+----------- 
 id     | bigint |  

test=# ROLLBACK; 
ROLLBACK 
test=# d t_test 
Did not find any relation named "t_test". 


In this example, a table has been created and modified, and the entire transaction is aborted instantly. As you can see, there is no implicit COMMIT or any other strange behavior. PostgreSQL simply acts as expected.

Transactional DDLs are especially important if you want to deploy software. Just imagine running a CMS. If a new version is released, you'll want to upgrade. Running the old version would still be OK; running the new version is also OK but you really don't want a mixture of old and new. Therefore, deploying an upgrade in a single transaction is definitely highly beneficial as it makes upgrades an atomic operation.

psql allows you to include files using the i directive. It allows you to start a transaction, load various files, and execute them in a single transaction.



            

            
                
            

        
    
        

            
                Understanding basic locking

            

            
                
In this section, you will learn about basic locking mechanisms. The goal is to make you understand how locking works in general and how to get simple applications right.

To show how things work, a simple table can be created. For demonstration purposes, I will add one row to the table:


test=# CREATE TABLE t_test (id int); 
CREATE TABLE 
test=# INSERT INTO t_test VALUES (1); 
INSERT 0 1 


The first important thing is that tables can be read concurrently. Many users reading the same data at the same time won't block each other. This allows PostgreSQL to handle thousands of users without problems.

Multiple users can read the same data at the same time without blocking each other.

The question now is: what happens if reads and writes occur at the same time? Here is an example:




	
Transaction 1


	
Transaction 2





	BEGIN;
	
BEGIN;





	UPDATE t_test SET id = id + 1 RETURNING *;
	



	User will see 1
	
SELECT * FROM t_test;





	
	
User will see 1





	
COMMIT;


	
COMMIT;







Two transactions are opened. The first one will change a row. However, this is no problem as the second transaction can proceed. It will return the old row as it was before the UPDATE. This behavior is called Multi-Version Concurrency Control (MVCC).

Note that a transaction will see data only if it has been committed by the writing transaction. One transaction cannot inspect the changes made by an active connection.

A transaction can see only those changes that have already been committed.

There is also a second important aspect: many commercial or open source databases are still (as of 2017) unable to handle concurrent reads and writes. In PostgreSQL, this is absolutely not a problem. Reads and writes can coexist.

Writing transactions won't block reading transactions.

After the data has been committed, the table will contain 2.

What will happen if two people change data at the same time? Here is an example:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	
BEGIN;





	
UPDATE t_test SET id = id + 1 RETURNING *;


	



	
It will return 3


	
UPDATE t_test SET id = id + 1 RETURNING *;





	
	
It will wait for transaction 1





	
COMMIT;


	
It will wait for transaction 1





	
	
It will reread the row, find 3, set the value, and return 4





	
	
COMMIT;







Suppose you want to count the number of hits on a website. If you run the code as outlined just now, no hit can be lost because PostgreSQL guarantees that one UPDATE is performed after the other.

PostgreSQL will only lock rows affected by the UPDATE. So if you have 1,000 rows, you can theoretically run 1,000 concurrent changes on the same table.

It is also noteworthy that you can always run concurrent reads. Our two writes will not block reads.



            

            
                
            

        
    
        

            
                Avoiding typical mistakes and explicit locking

            

            
                
In my life as a professional PostgreSQL consultant (http://postgresql-support.de/), I have seen a couple of mistakes that are made again and again. If there are constants in life, these typical mistakes are definitely some of the things that never change.

Here is my favorite:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	
BEGIN;





	
SELECT max(id) FROM product;


	
SELECT max(id) FROM product;





	
User will see 17


	
User will see 17





	
User will decide to use 18


	
User will decide to use 18





	
INSERT INTO product ... VALUES (18, ...)


	
INSERT INTO product ... VALUES (18, ...)





	
COMMIT;


	
COMMIT;







In this case, there will be either a duplicate key violation or two identical entries. Neither variation of the problem is all that appealing.

One way to fix the problem is to use explicit table locking:


test=# h LOCK 
Command:     LOCK 
Description: lock a table 
Syntax: 
LOCK [ TABLE ] [ ONLY ] name [ * ] [, ...] [ IN lockmode MODE ] [ NOWAIT ] 

where lockmode is one of: 

    ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE |  
    SHARE UPDATE EXCLUSIVE| SHARE |  
    SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE 


As you can see, PostgreSQL offers eight types of locks to lock an entire table. In PostgreSQL, a lock can be as light as an ACCESS SHARE lock or as heavy as an ACCESS EXCLUSIVE lock. The following list shows what these locks do:


	ACCESS SHARE: This type of lock is taken by reads and conflicts only with ACCESS EXCLUSIVE, which is set by DROP TABLE and the like. Practically, this means that a SELECT cannot start if a table is about to be dropped. This also implies that DROP TABLE has to wait until a reading transaction is completed.

	ROW SHARE: PostgreSQL takes this kind of lock in the case of SELECT FOR UPDATE/SELECT FOR SHARE. It conflicts with EXCLUSIVE and ACCESS EXCLUSIVE.

	ROW EXCLUSIVE: This lock is taken by INSERT, UPDATE, and DELETE. It conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE.

	SHARE UPDATE EXLUSIVE: This kind of lock is taken by CREATE INDEX CONCURRENTLY, ANALYZE, ALTER TABLE, VALIDATE, and some other flavors of ALTER TABLE as well as by VACUUM (not VACUUM FULL). It conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

	SHARE: When an index is created, SHARE locks will be set. It conflicts with ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE.

	SHARE ROW EXCLUSIVE: This one is set by CREATE TRIGGER and some forms of ALTER TABLE, and conflicts with everything but ACCESS SHARE.

	EXCLUSIVE: This type of lock is by far the most restrictive one. It protects against reads and writes alike. If this lock is taken by a transaction, nobody else can read or write to the table affected.



Given the PostgreSQL locking infrastructure, one solution to the max-problem outlined previously would be:


BEGIN; 
LOCK TABLE product IN ACCESS EXCLUSIVE MODE; 
INSERT INTO product SELECT max(id) + 1, ... FROM product; 
COMMIT;


Keep in mind that this is a pretty nasty way of doing this kind of operation because nobody else can read or write to the table during your operation. Therefore, ACCESS EXCLUSIVE should be avoided at all costs.



            

            
                
            

        
    
        

            
                Considering alternative solutions

            

            
                
However, there is an alternative solution to the problem. Consider the following example: you are asked to write an application generating invoice numbers. The tax office might require you to create invoice numbers without gaps and without duplicates. How would you do it? Of course, one solution would be a table lock. But you can really do better. Here is what I would do:


test=# CREATE TABLE t_invoice (id int PRIMARY KEY); 
CREATE TABLE 
test=# CREATE TABLE t_watermark (id int); 
CREATE TABLE 
test=# INSERT INTO t_watermark VALUES (0); 
INSERT 0 1 
test=# WITH x AS (UPDATE t_watermark SET id = id + 1 RETURNING *) 
         INSERT INTO t_invoice  
         SELECT * FROM x RETURNING *; 
 id  
---- 
  1 
(1 row) 


In this case, I introduced a table called t_watermark. It contains just one row. The WITH will be executed first. The row will be locked and incremented, and the new value will be returned. Only one person can do this at a time. The value returned by the CTE is then used in the invoice table. It is guaranteed to be unique. The beauty is that there is only a simple row lock on the watermark table; no reads will be blocked in the invoice table. Overall, this way is more scalable.



            

            
                
            

        
    
        

            
                Making use of FOR SHARE and FOR UPDATE

            

            
                
Sometimes, data is selected from the database, then some processing happens in the application and finally some changes are made back on the database side. This is a classic example of SELECT FOR UPDATE.

Here is an example:


BEGIN; 
SELECT * FROM invoice WHERE processed = false; 
** application magic will happen here ** 
UPDATE invoice SET processed = true ... 
COMMIT; 


The problem here is that two people might select the same unprocessed data. Changes made to those processed rows will then be overwritten. In short, a race condition will occur.

To solve this problem, developers can make use of SELECT FOR UPDATE. Here is how it works:


BEGIN; 
SELECT * FROM invoice WHERE processed = false FOR UPDATE; 
** application magic will happen here ** 
UPDATE invoice SET processed = true ... 
COMMIT;


The SELECT FOR UPDATE will lock rows just like an UPDATE would. This means that no changes can happen concurrently. All locks will be released on commit as usual.

If one SELECT FOR UPDATE is waiting for some other SELECT FOR UPDATE, one has to wait until the other one completes (COMMIT or ROLLBACK). If the first transaction does not want to end, for whatever reason, the second transaction might potentially wait forever. To avoid that, it is possible to use SELECT FOR UPDATE NOWAIT.

Here is how it works:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	
BEGIN;





	
SELECT ... FROM tab WHERE ... FOR UPDATE NOWAIT;


	



	
Some processing


	
SELECT ... FROM tab WHERE ... FOR UPDATE NOWAIT;





	
Some processing


	
ERROR: could not obtain lock on row in relation tab







If NOWAIT is not flexible enough for you, consider using lock_timeout. It will contain the amount of time you want to wait on locks. You can set this on a per-session level:


test=# SET lock_timeout TO 5000;
SET


In this, the value is set to 5 seconds.

While SELECT does basically no locking, SELECT FOR UPDATE can be pretty harsh. Just imagine the following business process: we want to fill up an airplane providing 200 seats. Many people want to book seats concurrently. In this case, the following might happen:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	
BEGIN;





	
SELECT ... FROM flight LIMIT 1 FOR UPDATE;


	



	
Waiting for user input 


	
SELECT ... FROM flight LIMIT 1 FOR UPDATE;





	
Waiting for user input 


	
It has to wait







The trouble is that only one seat can be booked at a time. There are potentially 200 seats available but everybody has to wait for the first person. While the first seat is blocked, nobody else can book a seat even if people don't care which seat they get in the end.

SELECT FOR UPDATE SKIP LOCKED will fix the problem. Let us create some sample data first:


test=# CREATE TABLE t_flight AS  
   SELECT * FROM generate_series(1, 200) AS id; 
SELECT 200


Now comes the magic:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	
BEGIN;





	
SELECT * FROM t_flight LIMIT 2 FOR UPDATE SKIP LOCKED;


	
SELECT * FROM t_flight LIMIT 2 FOR UPDATE SKIP LOCKED;





	
It will return 1, 2


	
It will return 2, 3







If everybody wants to fetch two rows, we could serve 100 concurrent transactions at a time without having to worry about blocking transactions.

Keep in mind that waiting is the slowest form of execution. If only one CPU can be active at a time, it is pointless to buy ever bigger servers.

However, there is more. In some cases a FOR UPDATE can have unintended consequences. Most people are not aware of the fact that FOR UPDATE will have an impact on foreign keys. Let us assume we have two tables: one to store currencies and the other to store accounts:


CREATE TABLE t_currency (id int, name text, PRIMARY KEY (id)); 
INSERT INTO t_currency VALUES (1, 'EUR'); 
INSERT INTO t_currency VALUES (2, 'USD'); 

CREATE TABLE t_account ( id int, currency_id int REFERENCES t_currency (id) ON UPDATE CASCADE ON DELETE CASCADE, balance numeric); 
INSERT INTO t_account VALUES (1, 1, 100); 
INSERT INTO t_account VALUES (2, 1, 200); 


Now, we want to run SELECT FOR UPDATE on the account table:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	



	
SELECT * FROM t_account FOR UPDATE;


	
BEGIN;





	
Waiting for user to proceed


	
UPDATE t_currency SET id = id * 10;





	
Waiting for user to proceed


	
It will wait on transaction 1







Although there is a SELECT FOR UPDATE on accounts, the UPDATE on the currency table will block. This is necessary because otherwise there is a chance of breaking the foreign key constraint altogether. In a fairly complex data structure, you can therefore easily end up with contentions in an area where they are least expected (some highly important lookup tables).

On top of FOR UPDATE, there are FOR SHARE, FOR NO KEY UPDATE, and FOR KEY SHARE. The following listing describes what those modes actually mean:


	FOR NO KEY UPDATE: This one is pretty similar to FOR UPDATE. However, the lock is weaker and therefore it can coexist with SELECT FOR SHARE.

	FOR SHARE: FOR UPDATE is pretty strong and works on the assumption that you are definitely going to change rows. FOR SHARE is different because more than one transaction can hold a FOR SHARE lock at the same time.

	FOR KEY SHARE: This behaves similarly to FOR SHARE, except that the lock is weaker. It will block FOR UPDATE but will not block FOR NO KEY UPDATE.



The important thing here is to simply try things out and observe what happens. Improving locking behavior is really important as it can dramatically improve the scalability of your application.



            

            
                
            

        
    
        

            
                Understanding transaction isolation levels

            

            
                
Up to now, you have seen how to handle locking as well as some basic concurrency. In this section, you will learn about transaction isolation. To me, this is one of the most neglected topics in modern software development. Only a small fraction of software developers are actually aware of this issue, which in turn leads to disgusting and mind-boggling bugs.

Here is an example of what can happen:




	
Transaction 1


	
Transaction 2





	
BEGIN;


	



	
SELECT sum(balance) FROM t_account;


	



	
User will see 300


	
BEGIN;





	
	
INSERT INTO t_account (balance) VALUES (100);





	
	
COMMIT;





	
SELECT sum(balance) FROM t_account;


	



	
User will see 400


	



	
COMMIT;


	





Most users would actually expect the left transaction to always return 300 regardless of the second transaction. However, this is not true. By default, PostgreSQL runs in READ COMMITTED transaction isolation mode. This means that every statement inside a transaction will get a new snapshot of the data, which will be constant throughout the query.

An SQL statement will operate on the same snapshot and will ignore changes by concurrent transactions while it is running.

If you want to avoid that, you can use TRANSACTION ISOLATION LEVEL REPEATABLE READ. In this transaction isolation level, a transaction will use the same snapshot through the entire transactions. Here is what will happen:




	
Transaction 1


	
Transaction 2





	
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;


	



	
SELECT sum(balance) FROM t_account;


	



	
User will see 300


	
BEGIN;





	
	
INSERT INTO t_account (balance) VALUES (100);





	
	
COMMIT;





	
SELECT sum(balance) FROM t_account;


	
SELECT sum(balance) FROM t_account;





	
User will see 300


	
User will see 400





	
COMMIT;


	





As just outlined, the first transaction will freeze its snapshot of the data and provide us with constant results throughout the entire transaction. This feature is especially important if you want to run reports. The first and the last page of a report should always be consistent and operate on the same data. Therefore, repeatable read is key to consistent reports.

Note that isolation-related errors won't always pop up instantly. It can happen that trouble is noticed years after an application has been moved to production.

Repeatable read is not more expensive than read committed. There is no need to worry about performance penalties.



            

            
                
            

        
    
        

            
                Considering SSI transactions

            

            
                
On top of read committed and repeatable read, PostgreSQL offers serializable (or SSI) transactions. So, in all, PostgreSQL supports three isolation levels. Note that read uncommitted (which still happens to be the default in some commercial databases) is not supported: if you try to start a read uncommitted transaction, PostgreSQL will silently map to read committed. However, back to serializable.

The idea behind serializable is simple; if a transaction is known to work correctly if there is only a single user, it will also work in the case of concurrency if this isolation level is chosen. However, users have to be prepared; transactions may fail (by design) and error-out. In addition to that, a performance penalty has to be paid.

If you want to know more about this isolation level, consider checking out https://wiki.postgresql.org/wiki/Serializable.

Consider using serializable only when you have a decent understanding of what is going on inside the database engine.



            

            
                
            

        
    
        
    





















































OEBPS/assets/tip-small.png


OEBPS/assets/info-small.png


OEBPS/assets/Packt-Logo-beacon.png


OEBPS/assets/Mapt_logo.jpg


OEBPS/assets/cover.png


