
		
			[image: Cover.png]
		

	
		
			Speed Up Your Python with Rust

			Optimize Python performance by creating Python pip modules in Rust with PyO3

			Maxwell Flitton

			[image:]

			BIRMINGHAM—MUMBAI

			Speed Up Your Python with Rust

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Richa Tripathi

			Publishing Product Manager: Richa Tripathi

			Senior Editor: Nisha Cleetus

			Content Development Editor: Vaishali Ramkumar

			Technical Editor: Pradeep Sahu

			Copy Editor: Safis Editing

			Project Coordinator: Deeksha Thakkar

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Shankar Kalbhor

			First published: December 2021

			Production reference: 1151221

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80181-144-6

			www.packt.com

			To my wife, Melanie Zhang, who stuck with me and supported me through a busy work schedule and deadlines. Not only are you smart and caring, you have been an amazing team player.

			– Maxwell Flitton

			Contributors

			About the author

			Maxwell Flitton is a software engineer who works for the open source financial loss modeling foundation OasisLMF. In 2011, Maxwell achieved his Bachelor of Science degree in nursing from the University of Lincoln, UK. While working 12-hour shifts in the A&E departments of hospitals, Maxwell obtained another degree in physics from the Open University in the UK and then moved on to another milestone, with a postgraduate diploma in physics and engineering in medicine from UCL in London. He's worked on numerous projects such as medical simulation software for the German government and supervising computational medicine students at Imperial College London. He also has experience in financial tech and Monolith AI.

			Many thanks to the Rust community for developing an amazing language with a friendly community that's willing to push boundaries. I'm also grateful to the team at Monolith AI, where Saravanan Sathyanandha and Richard Ahlfeld empowered me to grow as an engineer. This has been carried further by the OasisLMF team where Ben Hayes, Stephane Struzik, Sam Gamble, and Hassan Chagani have been supportive and enabled me to grow.

			About the reviewers

			Mário Idival is a Brazilian and a lover of technologies aimed at software development, mainly focused on programming languages. He acts as a technical manager and software engineer in his spare time. He started his journey as a software developer in 2011 learning only with instructional material from the internet, starting with learning C, and soon after switched to Python, which allowed him to achieve his first job after 6 months of studies.

			Today, with 10 years of experience, he has delivered software in several areas including loans, tourism and travel, artificial intelligence, electronic data interchange, process automation, and cryptocurrency. He is currently focused on learning and spreading knowledge of the Rust language. He also supports the Rust community in the Rust By Example project.

			Boyd Johnson has been working in software since 2015. As part of a team at Bitwise IO, along with partners at Intel, he worked to develop Hyperledger Sawtooth, an open source blockchain, in Python and Rust. Boyd worked, in particular, on the FFI layer between Python and Rust, as well as transaction processing components. You can read more of Boyd's writing at boydjohnson.dev.

		

	
		
			Table of Contents

			Preface

			Section 1: Getting to Understand Rust

			Chapter 1: An Introduction to Rust from a Python Perspective

			Technical requirements

			Understanding the differences between Python and Rust

			Why fuse Python with Rust?

			Passing strings in Rust

			Sizing up floats and integers in Rust

			Managing data in Rust's vectors and arrays

			Replacing dictionaries with hashmaps

			Error handling in Rust

			Understanding variable ownership

			Copy

			Move

			Immutable borrow

			Mutable borrow

			Keeping track of scopes and lifetimes

			Building structs instead of objects

			Metaprogramming with macros instead of decorators

			Summary

			Questions

			Answers

			Further reading

			Chapter 2: Structuring Code in Rust

			Technical requirements

			Managing our code with crates and Cargo instead of pip

			Structuring code over multiple files and modules

			Building module interfaces

			Benefits of documentation when coding

			Interacting with the environment

			Summary

			Questions

			Answers

			Further reading

			Chapter 3: Understanding Concurrency

			Technical requirements

			Introducing concurrency

			Threads

			Processes

			Basic asynchronous programming with threads

			Running multiple processes

			Customizing threads and processes safely

			Amdahl's law

			Deadlocks

			Race conditions

			Summary

			Questions

			Answers

			Further reading

			Section 2: Fusing Rust with Python

			Chapter 4: Building pip Modules in Python

			Technical requirements

			Configuring setup tools for a Python pip module

			Creating a GitHub repository

			Defining the basic parameters

			Defining a README file

			Defining a basic module

			Packaging Python code in a pip module

			Building our Fibonacci calculation code

			Creating a command-line interface

			Building unit tests

			Configuring continuous integration

			Manually deploying onto PyPI

			Managing dependencies

			Setting up type checking for Python

			Setting up and running tests and type-checking with GitHub Actions

			Create automatic versioning for our pip package

			Deploying onto PyPI using GitHub Actions

			Summary

			Questions

			Answers

			Further reading

			Chapter 5: Creating a Rust Interface for Our pip Module

			Technical requirements

			Packaging Rust with pip

			Define gitignore and Cargo for our package

			Configuring the Python setup process for our package

			Installing our Rust library for our package

			Building a Rust interface with the pyO3 crate

			Building our Fibonacci Rust code

			Creating command-line tools for our package

			Creating adapters for our package

			Building tests for our Rust package

			Comparing speed with Python, Rust, and Numba

			Summary

			Questions

			Answers

			Further reading

			Chapter 6: Working with Python Objects in Rust

			Technical requirements

			Passing complex Python objects into Rust

			Updating our setup.py file to support .yml loading

			Defining our .yml loading command

			Processing data from our Python dictionary

			Extracting data from our config file

			Returning our Rust dictionary to our Python system

			Inspecting and working with custom Python objects

			Creating an object for our Rust interface

			Acquiring the Python GIL in Rust

			Adding data to our newly created PyDict struct

			Setting the attributes of our custom object

			Constructing our own custom Python objects in Rust

			Defining a Python class with the required attributes

			Defining class static methods to process input numbers

			Defining a class constructor

			Wrapping up and testing our module

			Summary

			Questions

			Answers

			Further reading

			Chapter 7: Using Python Modules with Rust

			Technical requirements

			Exploring NumPy

			Adding vectors in NumPy

			Adding vectors in pure Python

			Adding vectors using NumPy in Rust

			Building a model in NumPy

			Defining our model

			Building a Python object that executes our model

			Using NumPy and other Python modules in Rust

			Recreating our NumPy model in Rust

			Building get_weight_matrix and inverse_weight_matrix functions

			Building get_parameters, get_times, and get_input_vector functions

			Building calculate_parameters and calculate_times functions

			Adding calculate functions to the Python bindings and adding a NumPy dependency to our setup.py file

			Building our Python interface

			Summary

			Questions

			Answers

			Further reading

			Chapter 8: Structuring an End-to-End Python Package in Rust

			Technical requirements

			Breaking down a catastrophe modeling problem for our package

			Building an end-to-end solution as a package

			Building a footprint merging process

			Building the vulnerability merge process

			Building a Python interface in Rust

			Building our interface in Python

			Building package installation instructions

			Utilizing and testing our package

			Building a Python construct model using pandas

			Building a random event ID generator function

			Timing our Python and Rust implementations with a series of different data sizes

			Summary

			Further reading

			Section 3: Infusing Rust into a Web Application

			Chapter 9: Structuring a Python Flask App for Rust

			Technical requirements

			Building a basic Flask application

			Building an entry point for our application

			Building our Fibonacci number calculator module

			Building a Docker image for our application

			Building our NGINX service

			Connecting and running our Nginx service

			Defining our data access layer

			Defining a PostgreSQL database in docker-compose

			Building a config loading system

			Building our data access layer

			Setting up the application database migration system

			Building database models

			Applying the database access layer to the fib calculation view

			Building a message bus

			Building a Celery broker for Flask

			Building a Fibonacci calculation task for Celery

			Updating our calculation view

			Defining our Celery service in Docker

			Summary

			Questions

			Answers

			Further reading

			Chapter 10: Injecting Rust into a Python Flask App

			Technical requirements

			Fusing Rust into Flask and Celery

			Defining our dependency on the Rust Fibonacci number calculation package

			Building our calculation model with Rust

			Creating a calculation view using Rust

			Inserting Rust into our Celery task

			Deploying Flask and Celery with Rust

			Deploying with a private GitHub repository

			Building a Bash script that orchestrates the whole process

			Reconfiguring the Rust Fib package installment in our Dockerfile

			Fusing Rust with data access

			Setting up our database cloning package

			Setting up the diesel environment

			Autogenerating and configuring our database models and schema

			Defining our database connection in Rust

			Creating a Rust function that gets all the Fibonacci records and returns them

			Deploying Rust nightly in Flask

			Summary

			Questions

			Answers

			Further reading

			Chapter 11: Best Practices for Integrating Rust

			Technical requirements

			Keeping our Rust implementation simple by piping data to and from Rust

			Building a Python script that formulates the numbers for calculation

			Building a Rust file that accepts the numbers, calculates the Fibonacci numbers, and returns the calculated numbers

			Building another Python script that accepts the calculated numbers and prints them out

			Giving the interface a native feel with objects

			Defining traits

			Defining struct behavior with traits

			Passing traits through functions

			Storing structs with common traits

			Running our traits in the main file

			Keeping data-parallelism simple with Rayon

			Further reading

			Other Books You May Enjoy

		

	

		
			Preface

			The Rust programming language is an exciting new language. It gives us memory safety without garbage collection, resulting in fast times and low memory footprints. However, rewriting everything in Rust can be expensive and risky as there might not be package support in Rust for the problem being solved. This is where Python bindings and pip come in. This book will enable you to code modules in Rust that can be installed using pip. As a result, you will be able to inject Rust as and when you need it without taking on the risk and workload of rewriting your entire system. This enables you, as a developer, to experiment with and use Rust in your Python projects.

			Who this book is for

			Python developers who want to speed up their code with Rust, or experiment with Rust without having to take on much risk or workload, will benefit from this book. No background in Rust is needed. This book has an introduction to Rust for Python developers, and uses Python examples to get you up to speed with Rust quickly.

			What this book covers

			Chapter 1, An Introduction to Rust from a Python Perspective, covers the basics of Rust to enable Rust development. Relevant Python examples are given to help you grasp the Rust concepts examined.

			Chapter 2, Structuring Code in Rust, explains how to structure Rust programs over multiple pages and use package management tools to organize and install dependencies.

			Chapter 3, Understanding Concurrency, covers how to multithread and multiprocess in Rust, seeing as Rust has "fearless concurrency." We also cover concurrency in Python to see the differences.

			Chapter 4, Building pip Modules in Python, sees us build Python packages that can be installed using pip. It also covers how packages can be hosted privately on GitHub.

			Chapter 5, Creating a Rust Interface for Our pip Module, has us inject Rust into our pip module and use the Rust setup tools to compile and use the Rust code in our Python code.

			Chapter 6, Working with Python Objects in Rust, considers how compatibility does not just go in one direction. In this chapter, we take in Python objects and interact with them. We also create Python objects in Rust.

			Chapter 7, Using Python Modules in Rust, builds on the previous chapter and sees us use Python modules such as NumPy in our Rust code.

			Chapter 8, Structuring an End-to-End Python Module in Rust, sees us wrapping up everything that has been covered into a fully functioning Python package written in Rust. This package has Python interfaces and command-line functionality that accepts YAML files for configuration.

			Chapter 9, Structuring a Python Flask App for Rust, has us build a Python Flask app with a PostgreSQL database, NGINX load balancer, and Celery worker in order to get more practical with our Rust skills. All of this is wrapped in Docker to prepare us for injecting Rusk into all of these aspects of the web application.

			Chapter 10, Injecting Rust into a Python Flask App, covers how to take the web application that we built in the previous chapter and inject our Rust modules into the Docker containers for the Celery worker and Flask application. We also imprint the migrations that have already been applied to automatically generate a schema of the database so our Rust code can directly connect with the database.

			Chapter 11, Best Practices for Integrating Rust, concludes the book with some tips on how to avoid common mistakes as you continue to write Rust code for Python.

			To get the most out of this book

			It is advisable that you understand Python and are comfortable with object-Oriented programming. Some advanced topics such as meta-classing will be touched on but are not essential. Rust programming, Python web apps, and Python modules installed using pip are all covered in the book.

			
				
					[image:]
				

			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust. If there's an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801811446__ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system."

			A block of code is set as follows:

			use std::error::Error;

			use std::fs::File;

			use csv;

			use super::structs::FootPrint;

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			let code = "5 + 6";

			let result = py.eval(code, None, Some(&locals)).unwrap();

			let number = result.extract::<i32>().unwrap();

			Any command-line input or output is written as follows:

			pip install git+https://github.com/maxwellflitton/flitton-fib-rs@main

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "This can be done by clicking on the Settings tab and then the Secrets tab on the left sidebar, as seen here."

			Tips or Important Notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Speed Up your Python with Rust, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	

		
			Section 1: Getting to Understand Rust

		

		
			
			

		

		
			In this section, we will get to grips with Rust. Instead of introducing the basics of Rust, such as loops and functions, we will cover the syntax specific to Rust. After this, we will explore the quirks that the Rust language introduces, primarily centered around memory management. We will then cover how to manage dependencies and structure our code over multiple files. After this, we will experiment with multithreading and multiprocessing in Rust and Python.

			This section comprises the following chapters:

			
					Chapter 1, An Introduction to Rust from a Python Perspective

					Chapter 2, Structuring Code in Rust

					Chapter 3, Understanding Concurrency

			

		

		
			
			

		

		
			
			

		

	

		
			Chapter 1: An Introduction to Rust from a Python Perspective

			Due to its speed and safety, it is no surprise that Rust is the new language gaining in popularity. However, with success comes criticism. Despite Rust's popularity as an impressive language, it has also gained the label of being hard to learn, an idea which isn't quite grounded in reality.

			In this chapter, we will cover all of Rust's quirks that will be new to a Python developer. If Python is your main language, concepts such as basic memory management and typing can initially slow down your ability to quickly write productive Rust code due to the compiler failing to compile the code. However, this can quickly be overcome by learning the rules around Rust features, such as variable ownership, lifetimes, and so on, as Rust is a memory-safe language. Consequently, we must keep track of our variables as they usually get deleted instantly when they go out of scope. If this does not make sense yet, don't worry; we will cover this concept in the Keeping track of scopes and lifetimes section.

			In this chapter, we will also be covering the basics of syntax, while you will be setting up a Rust environment on your own computer in the next chapter. Do not worry though, you can code all the examples in this chapter on the free online Rust playground.

			In particular, we will cover the following topics in this chapter:

			
					Understanding the differences between Python and Rust

					Understanding variable ownership

					Keeping track of scopes and lifetimes

					Building structs as opposed to objects

					Metaprogramming with macros instead of decorators

			

			Technical requirements

			As this is just an introduction, all the Python examples in the chapter can be implemented with a free online Python interpreter such as https://replit.com/languages/python3.

			The same goes for all the Rust examples. These can be implemented using the free online Rust playground found at https://play.rust-lang.org/.

			The code covered in the chapter can be found at https://github.com/PacktPublishing/Speed-up-your-Python-with-Rust/tree/main/chapter_one.

			Understanding the differences between Python and Rust

			Rust can sometimes be described as a systems language. As a result, it can sometimes be labeled by software engineers in a way that is similar to C++: fast, hard to learn, dangerous, and time-consuming to code in. As a result, most of you mainly working in dynamic languages such as Python could be put off. However, Rust is memory-safe, efficient, and productive. Once we have gotten over some of the quirks that Rust introduces, nothing is holding you back from exploiting Rust's advantages by using it to write fast, safe, and efficient code. Seeing as there are so many advantages to Rust, we will explore them in the next section.

			Why fuse Python with Rust?

			When it comes to picking a language, there is usually a trade-off between resources, speed, and development time. Dynamic languages such as Python became popular as computing power increased. We were able to use the extra resources we had to manage our memory with garbage collectors. As a result, developing software became easier, quicker, and safer. As we will cover later in the Keeping track of scopes and lifetimes section, poor memory management can lead to some security flaws. The exponential increase in computing power over the years is known as Moore's Law. However, this is not continuing to hold and in 2019, Nvidia's CEO Jensen Huang suggested that as chip components get closer to the size of individual atoms, it has gotten harder to keep up with the pace of Moore's Law, thus declaring it dead (https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces-2019/).

			However, with the rise of big data, our need to pick up faster languages to satisfy our needs is increasing. This is where languages such as Golang and Rust enter. These languages are memory-safe, yet they compile and have significant speed increases. What makes Rust even more unique is that it has managed to achieve memory safety without garbage collection. To appreciate this, let's briefly describe garbage collection: this is where the program temporarily stops, checks all the variables to see which ones are no longer being used, and deletes those that are not. Considering that Rust does not have to do this, it is a significant advantage as Rust does not have to keep stopping to clean up the variables. This was demonstrated in Discord's 2020 blog post Why Discord is switching from Go to Rust: https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f#:~:text=The%20service%20we%20switched%20from,is%20in%20the%20hot%20path. In this post, we can see that Golang just could not keep up with Rust, as demonstrated in the graph they presented:

			
				
					[image: Figure 1.1 – Golang is spiky and Rust is the flat line below Golang]
				

			

			Figure 1.1 – Golang is spiky and Rust is the flat line below Golang (image source: https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f#:~:text=The%20service%20we%20switched%20from,is%20in%20the%20hot%20path)

			The comments on the post were full of people complaining that Discord used an out-of-date version of Golang. Discord responded to this by stating that they tried a range of Golang versions, and they all had similar results. With this, it makes sense to get the best of both worlds without much compromise. We can use Python for prototyping and complex logic. The extensive range of third-party libraries that Python has combined with the flexible object-oriented programming it supports make it an ideal language for solving real-world problems. However, it's slow and is not efficient with the use of resources. This is where we reach for Rust.

			Rust is a bit more restrictive in the way we can lay out and structure the code; however, it's fast, safe, and efficient when implementing multithreading. Combining these two languages enables a Python developer to have a powerful tool in their belt that their Python code can use when needed. The time investment needed to learn and fuse Rust is low. All we must do is package Rust and install it in our Python system using pip and understand a few quirks that Rust has that are different from Python. We can start this journey by looking at how Rust handles strings in the next section. However, before we explore strings, we have to first understand how Rust is run compared to Python.

			If you have built a web app in Python using Flask, you will have seen multiple tutorials sporting the following code:

			from flask import Flask

			app = Flask(__name__)

			@app.route("/")

			def home():

			 return "Hello, World!"

			

			if __name__ == "__main__":

			 app.run(debug=True)

			What we must note here is the last two lines of the code. Everything above that defines a basic Flask web app and a route. However, the running of the app in the last two lines only executes if the Python interpreter is directly running the file. This means that other Python files can import the Flask app from this file without running it. This is referred to by many as an entry point.

			You import everything you need in this file, and for the application to run, we get our interpreter to run this script. We can nest any code under the if __name__ == "__main__": line of code. It will not run unless the file is directly hit by the Python interpreter. Rust has a similar concept. However, this is more essential, as opposed to Python that just has it as a nice-to-have feature. In the Rust playground (see the Technical requirements section), we can type in the following code if it is not there already:

			fn main() {

			 println!("hello world");

			}

			This is the entry point. The Rust program gets compiled, and then runs the main function. If whatever you've coded is not accessed by the main function, it will never run. Here, we are already getting a sense of the safety enforced by Rust. We will see more of this throughout the book.

			Now that we have our program running, we can move on to understanding the difference between Rust and Python when it comes to strings.

			Passing strings in Rust

			In Python, strings are flexible. We can pretty much do what we want with them. While technically, Python strings cannot be changed under the hood, in Python syntax, we can chop and change them, pass them anywhere, and convert them into integers or floats (if permitted) without having to think too much about it. We can do all of this with Rust too. However, we must plan beforehand what we are going to do. To demonstrate this, we can dive right in by making our own print function and calling it, as seen in the following code:

			fn print(input: str) {

			 println!("{}", input);

			}

			fn main() {

			 print("hello world");

			}

			In Python, a similar program would work. However, when we run it in the Rust playground, we get the following error:

			error[E0277]: the size for values of type 'str' cannot be known at compilation time

			This is because we cannot specify what the maximum size is. We don't get this in Python; therefore, we must take a step back and understand how variables are assigned in memory. When the code compiles, it allocates memory for different variables in the stack. When the code runs, it stores data in the heap. Strings can be various sizes so we cannot be sure at compile time how much memory we can allocate to the input parameter of our function when compiling. What we are passing in is a string slice. We can remedy this by passing in a string and converting our string literal to a string before passing it into our function as seen here:

			fn print(input: String) {

			 println!("{}", input);

			}

			fn main() {

			 let string_literal = "hello world";

			 print(string_literal.to_string());

			}

			Here, we can see that we have used the to_string() function to convert our string literal into a string. To understand why String is accepted, we need to understand what a string is.

			A string is a type of wrapper implemented as a vector of bytes. This vector holds a reference to a string slice in the heap memory. It then holds the amount of data available to the pointer, and the length of the string literal. For instance, if we have a string of the string literal one, it can be denoted by the following diagram:

			
				
					[image: Figure 1.2 – String relationship to str]
				

			

			Figure 1.2 – String relationship to str

			Considering this, we can understand why we can guarantee the size of String when we pass it into our function. It will always be a pointer to the string literal with some meta-information about the string literal. If we can just make a reference to the string literal, we can pass this into our function as it is just a reference and we can therefore guarantee that the size of the reference will stay the same. This can be done by borrowing using the & operator as shown in the following code:

			fn print(input_string: &str) {

			 println!("{}", input_string);

			}

			fn main() {

			 let test_string = &"Hello, World!";

			 print(test_string);

			}

			We will cover the concept of borrowing later in the chapter but, for now, we understand that, unlike Python, we must guarantee the size of the variable being passed into a function. We can use borrowing and wrappers such as strings to handle this. It may not come as a surprise, but this does not just stop at strings. Considering this, we can move on to the next section to understand the differences between Python and Rust when it comes to floats and integers.

			Sizing up floats and integers in Rust

			Like strings, Python manages floats and integers with ease and simplicity. We can pretty much do whatever we want with them. For instance, the following Python code will result in 6.5:

			result = 1 + 2.2

			result = result + 3.3

			However, there is a problem when we try to just execute the first line in Rust with the following line of Rust code:

			let result = 1 + 2.2;

			It results in an error telling us that a float cannot be added to an integer. This error highlights one of the pain points that Python developers go through when learning Rust, as Rust enforces typing aggressively by refusing to compile if typing is not present and consistent. However, while this is an initial pain, aggressive typing does help in the long run as it maintains safety.

			Type annotation in Python is gaining popularity. This is where the type of the variable is declared for parameters of functions or variables declared, enabling some editors to highlight when the types are inconsistent. The same happens in JavaScript with TypeScript. We can replicate the Python code at the start of this section with the following Rust code:

			let mut result = 1.0 + 2.2;

			result = result + 3.3;

			It has to be noted that the result variable must be declared as a mutable variable with the mut notation. Mutable means that the variable can be changed. This is because Rust automatically assigns all variables as immutable unless we use the mut notation.

			Now that we have seen the effects of types and mutability, we should really explore integers and floats. Rust has two types of integers: signed integers, which are denoted by i, and unsigned integers, denoted by u. Unsigned integers only house positive numbers, whereas signed integers house positive and negative integers. This does not just stop here. In Rust, we can also denote the size of the integer that is allowed. This can be calculated by using binary. Now, understanding how to use binary notation to describe numbers in detail is not really needed. However, understanding the simple rule that the size can be calculated by raising two to the power of the number of bits can give us an understanding of how big an integer is allowed to be. We can calculate all the integer sizes that we can utilize in Rust with the following table:

			
				
					[image: Table 1.1 – Size of integer types]
				

			

			Table 1.1 – Size of integer types

			As we can see, we can get to very high numbers here. However, it is not the best idea to assign all variables and parameters as u128 integers. This is because the compiler will set aside this amount of memory each time when compiling. This is not very efficient considering that it's unlikely that we will be using such large numbers. It must be noted that the changes in each jump are so large it is pointless graphing it. Each jump in bits completely overshadows all the others, resulting in a flat line along the x axis and a huge spike at the last graphed number of bits. However, we also must be sure that our assignment is not too small. We can demonstrate this with the Rust code as follows:

			let number: u8 = 255;

			let breaking_number: u8 = 256;

			Our compiler will be OK with the number variable. However, it will throw the error shown next when assigning the breaking_number variable:

			literal '256' does not fit into the type 'u8' whose range

			is '0..=255'

			This is because there are 256 integers between 0 -> 255, as we include 0. We can change our unsigned integer to a signed one with the following line of Rust code:

			let number: i8 = 255;

			This gives us the following error:

			literal '255' does not fit into the type 'i8' whose range

			is '-128..=127'

			In this error, we are reminded that the bits are are allocated memory space. Therefore, an i8 integer must accommodate positive and negative integers within the same number of bits. As a result, we can only support a magnitude that is half of the integer of an unsigned integer.

			When it comes to floats, our choices are more limited. Here, Rust accommodates both f32 and f64 floating points. Declaring these floating-point variables requires the same syntax as integers:

			let float: f32 = 20.6;

			It must be noted that we can also annotate numbers with suffixes, as shown in the following code:

			let x = 1u8;

			Here, x has a value of 1 with the type of u8. Now that we have covered floats and integers, we can use vectors and arrays to store them.

			Managing data in Rust's vectors and arrays

			With Python, we have lists. We can stuff anything we want into these lists with the append function and these lists are, by default, mutable. Python tuples are technically not lists, but we can treat them as immutable arrays. With Rust, we have arrays and vectors. Arrays are the most basic of the two. Defining and looping through an array is straightforward in Rust, as we can see in the following code:

			let array: [i32; 3] = [1, 2, 3];

			println!("array has {} elements", array.len());

			for i in array.iter() {

			 println!("{}", i);

			}

			If we try and append another integer onto our array with the push function, we will not be able to even if the array is mutable. If we add a fourth element to our array definition that is not an integer, the program will refuse to compile as all of the elements in the array have to be the same. However, this is not entirely true.

			Later in this chapter, we will cover structs. In Python, the closest comparison to objects is structs as they have their own attributes and functions. Structs can also have traits, which we will also discuss later. In terms of Python, the closest comparison to traits is mixins. Therefore, a range of structs can be housed in an array if they all have the same trait in common. When looping through the array, the compiler will only allow us to execute functions from that trait as this is all we can ensure will be consistent throughout the array.

			The same rules in terms of type or trait consistency also apply to vectors. However, vectors place their memory on the heap and are expandable. Like everything in Rust, they are, by default, immutable. However, applying the mut tag will enable us to add and manipulate the vector. In the following code, we define a vector, print the length of the vector, append another element to the vector, and then loop through the vector printing all elements:

			let mut str_vector: Vec<&str> = vec!["one", "two", \

			 "three"];

			println!("{}", str_vector.len());

			str_vector.push("four");

			for i in str_vector.iter() {

			 println!("{}", i);

			}

			This gives us the following output:

			3

			one

			two

			three

			four

			We can see that our append worked.

			Considering the rules about consistency, vectors and arrays might seem a little restrictive to a Python developer. However, if they are, sit back and ask yourself why. Why would you want to put in a range of elements that do not have any consistency? Although Python allows you to do this, how could you loop through a list with inconsistent elements and confidently perform operations on them without crashing the program?

			With this in mind, we are starting to see the benefits and safety behind this restrictive typing system. There are some ways in which we can put in different elements that are not structs bound by the same trait. Considering this, we will explore how we can store and access our varied data elements via hashmaps in Rust in the next section.

			Replacing dictionaries with hashmaps

			Hashmaps in Rust are essentially dictionaries in Python. However, unlike our previous vectors and arrays, we want to have a range of different data types housed in a hashmap (although we can also do this with vectors and arrays). To achieve this, we can use Enums. Enums are, well, Enums, and we have the exact same concept in Python. However, instead of it being an Enum, we merely have a Python object that inherits the Enum object as seen in the following code:

			from enum import Enum

			class Animal(Enum):

			 STRING = "string"

			 INT = "int"

			Here, we can use the Enum to save us from using raw strings in our Python code when picking a particular category. With a code editor known as an IDE, this is very useful, but it's understandable if a Python developer has never used them as they are not enforced anywhere. Not using them makes the code more prone to mistakes and harder to maintain when categories change and so on, but there is nothing in Python stopping the developer from just using a raw string to describe an option. In Rust, we are going to want our hashmap to accept strings and integers. To do this, we are going to have to carry out the following steps:

			
					Create an Enum to handle multiple data types.

					Create a new hashmap and insert values belonging to the Enum we created in step 1.

					Test the data consistency by looping through the hashmap and match all possible outcomes.

					Build a function that processes data extracted from the hashmap.

					Use the function to process outcomes from getting a value from the hashmap.

			

			Therefore, we are going to create an Enum that houses this using the following code:

			enum Value {

			 Str(&'static str),

			 Int(i32),

			}

			Here, we can see that we have introduced the statement 'static. This denotes a lifetime and basically states that the reference remains for the rest of the program's lifetime. We will cover lifetimes in the Keeping track of scopes and lifetimes section.

			Now that we have defined our Enum, we can build our own mutable hashmap and insert an integer and a string into it with the following code:

			use std::collections::HashMap;

			let mut map = HashMap::new();

			map.insert("one", Value::Str("1"));

			map.insert("two", Value::Int(2));

			Now that our hashmap is housing a single type that houses the two types we defined, we must handle them.

			Remember, Rust has strong typing. Unlike Python, Rust will not allow us to compile unsafe code (Rust can compile in an unsafe context but this is not default behavior). We must handle every possible outcome, otherwise the compiler will refuse to compile. We can do this with a match statement as seen in the following code:

			for (_key, value) in &map {

			 match value {

			 Value::Str(inside_value) => {

			 println!("the following value is an str: {}", \

			 inside_value);

			 }

			 Value::Int(inside_value) => {

			 println!("the following value is an int: {}", \

			 inside_value);

			 }

			 }

			}

			In this code sample, we have looped through a borrowed reference to the hashmap using &. Again, we will cover borrowing later on in the Understanding variable ownership section. We prefix the key with a _. This is telling the compiler that we are not going to use the key. We don't have to do this as the compiler will still compile the code; however, it will complain by issuing a warning. The value that we are retrieving from the hashmap is our Value Enum. In this match statement, we can match the field of our Enum, and unwrap and access the inside value that we denote as inside_value, printing it to the console.

			Running the code gives us the printout to the terminal as follows:

			the following value is an int: 2

			the following value is an str: 1

			It must be noted that Rust is not going to let anything slip by the compiler. If we remove the match for our Int field for our Enum, then the compiler will throw the error seen here:

			18 | match value {

			 | ^^^^^ pattern '&Int(_)' not covered

			 |

			 = help: ensure that all possible cases are being

			 handled,

			 possibly by adding wildcards or more match arms

			 = note: the matched value is of type '&Value'

			This is because we have to handle every single possible outcome. Because we have been explicit that only values that can be housed in our Enum can be inserted into the hashmap, we know that there are only two possible types that can be extracted from our hashmap. We have nearly covered enough about hashmaps to use them effectively in Rust programs. One last concept that we must cover is the Enum called Option.

			Considering that we have arrays and vectors, we will not be using our hashmaps primarily for looping through outcomes. Instead, we will be retrieving values from them when we need them. Like in Python, the hashmap has a get function. In Python, if the key that is being searched is not in the dictionary, then the get function will return None. It is then left to the developer to decide what to do with it. However, in Rust, the hashmap will return a Some or None. To demonstrate this, let's try to get a value belonging to a key that we know is not there:

			
					Start by running the following code: let outcome: Option<&Value> = map.get("test");
println!("outcome passed");
let another_outcome: &Value = \
 map.get("test").unwrap();
println!("another_outcome passed");
Here, we can see that we can access the reference to the Value Enum wrapped in Option with the get function. We then directly access the reference to the Value Enum using the unwrap function.

					However, we know that the test key is not in the hashmap. Because of this, the unwrap function will cause the program to crash, as seen in the following output from the previous code:thread 'main' panicked at 'called 'Option::unwrap()'
on a 'None' value', src/main.rs:32:51
We can see that the simple get function did not crash the program. However, we didn't manage to get the string "another_outcome passed" to print out to the console. We can handle this with a match statement.
However, this is going to be a match statement within a match statement.

					In order to reduce the complexity, we should explore Rust functions to process our value Enum. This can be done with the following code:fn process_enum(value: &Value) -> () {
 match value {
 Value::Str(inside_value) => {
 println!("the following value is an str: \
 {}", inside_value);
 }
 Value::Int(inside_value) => {
 println!("the following value is an int: \
 {}", inside_value);
 }
 }
}
The function does not really give us any new logic to explore. The -> () expression is merely stating that the function is not returning anything.

					If we are going to return a string, for instance, the expression would be -> String. We do not need the -> () expression; however, it can be helpful for developers to quickly understand what's going on with the function. We can then use this function to process the outcome from our get function with the following code: match map.get("test") {
 Some(inside_value) => {
 process_enum(inside_value);
 }
 None => {
 println!("there is no value");
 }
}

			

			We now know enough to utilize hashmaps in our programs. However, we must notice that we have not really handled errors; we have either printed out that nothing was found or let the unwrap function just result in an error. Considering this, we will move on to the next section on handling errors in Rust.

			Error handling in Rust

			Handling errors in Python is straightforward. We have a try block that houses an except block underneath. In Rust, we have a Result wrapper. This works in the same way as an Option. However, instead of having Some or None, we have Ok or Err.

			To demonstrate this, we can build on the hashmap that was defined in the previous section. We accept Option from a get function applied to the hashmap. Our function will check to see whether the integer retrieved from the hashmap is above a threshold. If it's above the threshold, we will return a true value. If not, then it is false.

			The problem is that there might not be a value in Option. We also know that the Value Enum might not be an integer. If any of this is the case, we should return an error. If not, we return a Boolean. This function can be seen here:

			fn check_int_above_threshold(threshold: i32,

			 get_result: Option<&Value>) -> Result<bool, &'static \

			 str> {

			 match get_result {

			 Some(inside_value) => {

			 match inside_value {

			 Value::Str(_) => return Err(

			 "str value was supplied as opposed to \

			 an int which is needed"),

			 Value::Int(int_value) => {

			 if int_value > &threshold {

			 return Ok(true)

			 }

			 return Ok(false)

			 }

			 }

			 }

			 None => return Err("no value was supplied to be \

			 checked")

			 }

			}

			Here, we can see that the None result from Option instantly returns an error with a helpful message as to why we are returning an error. With the Some value, we utilize another match statement to return an error with a helpful message that we cannot supply a string to check the threshold if the Value is a string. It must be noted that Value::Str(_) has a _ in it. This means that we do not care what the value is because we are not going to use it. In the final part, we check to see whether the integer is above the threshold returning Ok values that are either true or false. We implement this function with the following code:

			let result: Option<&Value> = map.get("two");

			let above_threshold: bool = check_int_above_threshold(1, \

			 result).unwrap();

			println!("it is {} that the threshold is breached", \

			 above_threshold);

			This gives us the following output in the terminal:

			it is true that the threshold is breached

			If we up the first parameter in our check_int_above_threshold function to 3, we get the following output:

			it is false that the threshold is breached

			If we change the key in map.get to three, we get the following terminal output:

			thread 'main' panicked at 'called 'Result::unwrap()'

			on an 'Err' value: "no value was supplied to be checked"'

			If we change the key in map.get to one, we get the following terminal output:

			thread 'main' panicked at 'called 'Result::unwrap()' on

			an 'Err' value: "str value was supplied as opposed to an

			int

			We can add extra signposting to the unwrap with the expect function. This function unwraps the result and adds an extra message to the printout if there is an error. With the following implementation, the message "an error happened" will be added to the error message:

			let second_result: Option<&Value> = map.get("one");

			let second_threshold: bool = check_int_above_threshold(1, \

			 second_result).expect("an error happened");

			We can also directly throw an error if needed with the following code:

			panic!("throwing some error");

			We can also check to see whether the result is an error by using the is_err function as seen here:

			result.is_err()

			This returns a bool, enabling us to alter the direction of our program if we come across an error. As we can see, Rust gives us a range of ways in which we can throw and manage errors.

			We can now handle enough of Rust's quirks to write basic scripts. However, if the program gets a little more complicated, we fall into other pitfalls such as variable ownership and lifetimes. In the next section, we cover the basics of variable ownership so we can continue to use our variables throughout a range of functions and structs.

			Understanding variable ownership

			As we pointed out in the introduction discussing why we should use Rust, Rust doesn't have a garbage collector; however, it is still memory-safe. We do this to keep the resources low and the speed high. However, how do we achieve memory safety without a garbage collector? Rust achieves this by enforcing some strict rules around variable ownership.

			Like typing, these rules are enforced when the code is being compiled. Any violation of these rules will stop the compilation process. This can lead to a lot of initial frustration for Python developers, as Python developers like to use their variables as and when they want. If they pass a variable into a function, they also expect that variable to still be able to be mutated outside the function if they want. This can lead to issues when implementing concurrent executions. Python also allows this by running expensive processes under the hood to enable the multiple references with cleanup mechanisms when the variable is no longer referenced.

			As a result, this mismatch in coding style gives Rust the false label of having a steep learning curve. If we learn the rules, we only must rethink our code a little, as the helpful compiler enables us to adhere to them easily. You'll also be surprised how this approach is not as restrictive as it sounds. Rust's compile-time checking is done to protect against the following memory errors:

			
					Use after frees: This is where memory is accessed once it has been freed, which can cause crashes. It can also allow hackers to execute code via this memory address.

					Dangling pointers: This is where a reference points to a memory address that no longer houses the data that the pointer was referencing. Essentially, this pointer now points to null or random data.

					Double frees: This is where allocated memory is freed, and then freed again. This can cause the program to crash and increases the risk of sensitive data being revealed. This also enables a hacker to execute arbitrary code.

					Segmentation faults: This is where the program tries to access the memory it's not allowed to access.

					Buffer overrun: An example of this is reading off the end of an array. This can cause the program to crash.

			

			Rust manages to protect against these errors by enforcing the following rules:

			
					Values are owned by the variables assigned to them.

					As soon as the variable goes out of scope, it is deallocated from the memory it is occupying.

					Values can be used by other variables, if we adhere to the conventions around copying, moving, immutable borrowing, and mutable borrowing.

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		
		Contents

			
						Speed Up Your Python with Rust

						Contributors

						About the author

						About the reviewers

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

					

				

						Section 1: Getting to Understand Rust

						Chapter 1: An Introduction to Rust from a Python Perspective
					
								Technical requirements

								Understanding the differences between Python and Rust
							
										Why fuse Python with Rust?

										Passing strings in Rust

										Sizing up floats and integers in Rust

										Managing data in Rust's vectors and arrays

										Replacing dictionaries with hashmaps

										Error handling in Rust

							

						

								Understanding variable ownership
							
										Copy

										Move

										Immutable borrow

										Mutable borrow

							

						

								Keeping track of scopes and lifetimes

								Building structs instead of objects

								Metaprogramming with macros instead of decorators

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 2: Structuring Code in Rust
					
								Technical requirements

								Managing our code with crates and Cargo instead of pip

								Structuring code over multiple files and modules

								Building module interfaces
							
										Benefits of documentation when coding

							

						

								Interacting with the environment

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 3: Understanding Concurrency
					
								Technical requirements

								Introducing concurrency
							
										Threads

										Processes

							

						

								Basic asynchronous programming with threads

								Running multiple processes

								Customizing threads and processes safely
							
										Amdahl's law

										Deadlocks

										Race conditions

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Section 2: Fusing Rust with Python

						Chapter 4: Building pip Modules in Python
					
								Technical requirements

								Configuring setup tools for a Python pip module
							
										Creating a GitHub repository

										Defining the basic parameters

										Defining a README file

										Defining a basic module

							

						

								Packaging Python code in a pip module
							
										Building our Fibonacci calculation code

										Creating a command-line interface

										Building unit tests

							

						

								Configuring continuous integration
							
										Manually deploying onto PyPI

										Managing dependencies

										Setting up type checking for Python

										Setting up and running tests and type-checking with GitHub Actions

										Create automatic versioning for our pip package

										Deploying onto PyPI using GitHub Actions

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 5: Creating a Rust Interface for Our pip Module
					
								Technical requirements

								Packaging Rust with pip
							
										Define gitignore and Cargo for our package

										Configuring the Python setup process for our package

										Installing our Rust library for our package

							

						

								Building a Rust interface with the pyO3 crate
							
										Building our Fibonacci Rust code

										Creating command-line tools for our package

										Creating adapters for our package

							

						

								Building tests for our Rust package

								Comparing speed with Python, Rust, and Numba

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 6: Working with Python Objects in Rust
					
								Technical requirements

								Passing complex Python objects into Rust
							
										Updating our setup.py file to support .yml loading

										Defining our .yml loading command

										Processing data from our Python dictionary

										Extracting data from our config file

										Returning our Rust dictionary to our Python system

							

						

								Inspecting and working with custom Python objects
							
										Creating an object for our Rust interface

										Acquiring the Python GIL in Rust

										Adding data to our newly created PyDict struct

										Setting the attributes of our custom object

							

						

								Constructing our own custom Python objects in Rust
							
										Defining a Python class with the required attributes

										Defining class static methods to process input numbers

										Defining a class constructor

										Wrapping up and testing our module

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 7: Using Python Modules with Rust
					
								Technical requirements

								Exploring NumPy
							
										Adding vectors in NumPy

										Adding vectors in pure Python

										Adding vectors using NumPy in Rust

							

						

								Building a model in NumPy
							
										Defining our model

										Building a Python object that executes our model

							

						

								Using NumPy and other Python modules in Rust

								Recreating our NumPy model in Rust
							
										Building get_weight_matrix and inverse_weight_matrix functions

										Building get_parameters, get_times, and get_input_vector functions

										Building calculate_parameters and calculate_times functions

										Adding calculate functions to the Python bindings and adding a NumPy dependency to our setup.py file

										Building our Python interface

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 8: Structuring an End-to-End Python Package in Rust
					
								Technical requirements

								Breaking down a catastrophe modeling problem for our package

								Building an end-to-end solution as a package
							
										Building a footprint merging process

										Building the vulnerability merge process

										Building a Python interface in Rust

										Building our interface in Python

										Building package installation instructions

							

						

								Utilizing and testing our package
							
										Building a Python construct model using pandas

										Building a random event ID generator function

										Timing our Python and Rust implementations with a series of different data sizes

							

						

								Summary

								Further reading

					

				

						Section 3: Infusing Rust into a Web Application

						Chapter 9: Structuring a Python Flask App for Rust
					
								Technical requirements

								Building a basic Flask application
							
										Building an entry point for our application

										Building our Fibonacci number calculator module

										Building a Docker image for our application

										Building our NGINX service

										Connecting and running our Nginx service

							

						

								Defining our data access layer
							
										Defining a PostgreSQL database in docker-compose

										Building a config loading system

										Building our data access layer

										Setting up the application database migration system

										Building database models

										Applying the database access layer to the fib calculation view

							

						

								Building a message bus
							
										Building a Celery broker for Flask

										Building a Fibonacci calculation task for Celery

										Updating our calculation view

										Defining our Celery service in Docker

							

						

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 10: Injecting Rust into a Python Flask App
					
								Technical requirements

								Fusing Rust into Flask and Celery
							
										Defining our dependency on the Rust Fibonacci number calculation package

										Building our calculation model with Rust

										Creating a calculation view using Rust

										Inserting Rust into our Celery task

							

						

								Deploying Flask and Celery with Rust

								Deploying with a private GitHub repository
							
										Building a Bash script that orchestrates the whole process

										Reconfiguring the Rust Fib package installment in our Dockerfile

							

						

								Fusing Rust with data access
							
										Setting up our database cloning package

										Setting up the diesel environment

										Autogenerating and configuring our database models and schema

										Defining our database connection in Rust

										Creating a Rust function that gets all the Fibonacci records and returns them

							

						

								Deploying Rust nightly in Flask

								Summary

								Questions

								Answers

								Further reading

					

				

						Chapter 11: Best Practices for Integrating Rust
					
								Technical requirements

								Keeping our Rust implementation simple by piping data to and from Rust
							
										Building a Python script that formulates the numbers for calculation

										Building a Rust file that accepts the numbers, calculates the Fibonacci numbers, and returns the calculated numbers

										Building another Python script that accepts the calculated numbers and prints them out

							

						

								Giving the interface a native feel with objects
							
										Defining traits

										Defining struct behavior with traits

										Passing traits through functions

										Storing structs with common traits

										Running our traits in the main file

							

						

								Keeping data-parallelism simple with Rayon

								Further reading

								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Share Your Thoughts

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Image85479.jpg

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/Figure_1.01_B17720.jpg

OEBPS/image/Preface_Table.jpg

OEBPS/image/Table_1.1.jpg

OEBPS/image/Figure_1.02_B17720.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Cover.png

