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			Foreword

			In Enhanced Test Automation with WebdriverIO, you’ll embark on an exciting journey through the lens of a Software Development Engineer in Test (SDET) - a role that, quite frankly, is often an unsung hero in software delivery. This book highlights the SDET Superhero in a comic book narrative while sharing the tips and tricks that unlock the superpowers of a successful SDET.

			The journey of an SDET is depicted as akin to a superhero’s path, full of challenges, learning, and growth. The superhero analogies used are not mere entertainment; they transform abstract concepts into tangible skills and knowledge.

			As someone devoted to making complex technical concepts accessible and engaging, I find this book’s approach not only refreshing but incredibly effective. It makes the learning process both enjoyable and impactful, adding a layer of relatability to topics that might otherwise seem daunting.

			For aspiring and established SDETs, this book serves as an essential collection of armor - filled with tools, insights, and practical strategies. It skillfully guides you from the basics of test environment setup to the complexities of advanced testing techniques. The book’s practical application of WebdriverIO in TypeScript offers hands-on experience that is beneficial for readers at all levels.

			I invite you to delve into this book with an eagerness to learn. Prepare to navigate the exhilarating path of an SDET, equipped with newfound skills and a deeper understanding of test automation techniques.

			Welcome to a journey that promises to be as informative as it is engaging.

			-Angie Jones

			Vice President of Developer Relations
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			Preface

			Welcome, and let us embark on an extraordinary journey through the realm of coding with our superhero-themed technical manual! Bid farewell to the mundane as each chapter unfolds like an exciting comic book adventure. Unlike traditional superheroes, you won’t need a brush with a radioactive arachnid to unlock your coding powers. Instead, you will arm yourself with the essential tools to forge a formidable framework using WebdriverIO in TypeScript.

			For those stepping into the shoes of a Software Developer Engineer in Test (SDET), the allure of leaping into setting up your JavaScript coding environment, running that inaugural test, and hoping for a victorious pass result might be strong. We’ve been there, only to discover later that crucial tools were overlooked, tools that could have smoothed the path from the very beginning. That’s why the opening chapter dives into system specifications, tools, and configurations, laying the foundation for crafting superior code from day one.

			Prepare to be guided by the wisdom of authors who have spent over 20 years in the superhero league of SDETs. Discover tips, tricks, rules of thumb, and advanced techniques tailored to help you not only write more tests but also navigate debugging challenges with finesse. Elevate your testing framework to superhero status—stable, scalable, and requiring minimal code maintenance. Get ready to unleash your coding superpowers and make your mark in the coding superhero universe!

			Who this book is for

			This book serves as a superhero toolkit for test automation enthusiasts at all levels, from new recruits to seasoned champions in the digital realm. It empowers users with the superpowers of WebdriverIO with Jasmine in TypeScript, offering an arsenal of code examples, advanced strategies in Jenkins, and cloud-based automation tactics. Whether you’re just been bitten by the automation bug in the world of test automation or you’re a caped veteran looking to upgrade your utility belt gadgets, this book is your secret weapon to mastering the art of test automation.

			What this book covers

			Chapter 1, The Utility Belt – Tools Every Superhero SDET Needs, provides an overview of the initial preparation tools that need to be installed, including Node, Yarn, and the VS Code IDE configurations.

			Chapter 2, Fortress of Solitude – Configuring WebdriverIO, covers setting up the project workspace folder with an overview of the WDIO install options to run our first test.

			Chapter 3, Cybernetic Enhancements – WebdriverIO Config and Debug Tips, provides an in-depth look at the package file and WDIO configuration options for both Mac and Windows with the concept of a function wrapper for enhanced logging.

			Chapter 4, Super Speed – Time Travel Paradoxes and Broken Promises, provides an in-depth look at the challenges of multi-threaded execution that are resolved with async and await commands.

			Chapter 5, Alter Egos – Why Do We Need Function Wrappers?, introduces the helpers file, the Switchboard object, a smart click() wrapper that leverages the pageSync() function and resolves speed-related timing issues.

			Chapter 6, The setValue Wrapper – Entering Text and Dynamic Data Replacement, introduces the setValue() wrapper with dynamic data tags, which provides offset dates in multiple formatting.

			Chapter 7, The Select Wrapper – Choosing Values in Lists and Combo Boxes, introduces the select() wrapper, which handles multiple types of drop-down elements and advanced scrolling to avoid object overlap errors.

			Chapter 8, The Assert Wrapper – The Importance of Embedded Details, introduces a wrapper for soft asserts with custom Allure reporting with screenshots.

			Chapter 9, The Ancient Spell Book – Building the Page Object Model, introduces page classes with xPath and CSS locators and atomic actions.

			Chapter 10, Increased Flexibility – Writing Robust Selectors and Reducing Maintenance, provides a deep dive into advanced xPath tips and self-healing strategies to reduce maintenance.

			Chapter 11, Echo Location – Skipping the Page Object Model, enhances the three basic actions to find elements by text alone with a relative element location.

			Chapter 12, Superhero Landing – Setting Up Flexible Navigation Options, introduces concepts for running tests in different test environments where elements may have been removed or do not yet exist without failing.

			Chapter 13, The Multiverses – Cross-Browser and Cross-Environment Testing, provides an introduction to the risks and rewards of expanding coverage with horizontal testing of multiple operating systems and browsers.

			Chapter 14, The Time Traveler’s Dilemma – State-Driven End-to-End User Journeys, discusses advanced concepts to create end-to-end tests that do not rely on any specific page following another with custom decision points and error detection.

			Chapter 15, The Sentient Cape – Running Tests in a CI/CD Pipeline with Jenkins and LambdaTest, brings test automation back to the manual testers who can call for complex artifacts to be produced in the cloud with a simple descriptive statement and access video capture replay.

			Appendix, The Ultimate Guide to TypeScript Error Messages, Causes, and Solutions, provides an extensive collection of error messages, potential causes, and solutions gathered from years of project development.

			To get the most out of this book

			
				
					
					
				
				
					
							
							Software covered in the book

						
							
							Operating system requirements

						
					

					
							
							WebdriverIO v.8

						
							
							Windows, macOS, or Linux

						
					

					
							
							TypeScript v.5.1.6

						
							
					

					
							
							Java JDK @latest

						
							
					

					
							
							Node v.18

						
							
					

					
							
							Yarn @latest

						
							
					

					
							
							Git @latest

						
							
					

					
							
							GitHub Desktop latest version

						
							
							GUI frontend for GitHub and GitLab

						
					

					
							
							SelectorsHub 5.0 free edition

						
							
							Chrome extension

						
					

					
							
							EditThisCookie

						
							
							Chrome extension

						
					

					
							
							VS Code

						
							
					

					
							
							Belarc Advisor Profiler (optional)
free, single, personal-use license

						
							
							Windows only

						
					

				
			

			The authors have attempted to use freely available tools for readers’ benefit. There are other paid IDEs available that offer more coding features to make life easier. In addition, the free version of SelectorsHub does an exceptional job, but we recommend the paid Pro version for its advanced Shadow Dom features. Free GitHub accounts are public while paid repos are private.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			If you are new to test automation, we advise you to get machines equivalent to, or better than, the specification used by the product development team you will be supporting. There is a common misconception that automation is just “record and playback” and does not require heavy-duty resources. There is one simple fact to keep in mind: parallel browsers and virtual machine testing require more resources.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Enhanced-Test-Automation-with-WebdriverIO. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We have a host command and a ghost party. Writing this line of code could potentially take the host command from the ghost string.”

			A block of code is set as follows:

			
Set JOURNEY="Attend Ghost"; yarn ch15
if (journey.includes(" host").toLowerCase()) {
// Host path being taken in error.
}
			Any command-line input or output is written as follows:

			
[0-0] ---> Clicking button[type="submit"] ...
[0-0] ---> button clicked.
[0-0] ---> pageSync() completed in 25 ms
[0-0] ---> Clicking button[type="bogus"] ...
[0-0] ---> button[type="submit"] was not clicked.
[0-0] Error: Can't call click on element with selector "button[type="bogus"]" because element wasn't found
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “In this example, the user does not attend the party and instead clicks the I’m scared button.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Enhanced Test Automation with WebdriverIO, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below
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			https://packt.link/free-ebook/978-1-83763-018-9

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			1

			The Utility Belt – Tools Every Superhero SDET Needs

			This is not your ordinary technical manual, which can be dry and boring. This book is intended to be fun. That’s why many of the chapters share a comic book theme. But unlike some superheroes, you won’t need to be bitten by a radioactive arachnid to get these powers. We just need some tools to create a great framework using WebdriverIO in TypeScript.

			If you are just beginning your journey as a software developer engineer in test (SDET), you might be tempted to just skip ahead, install the TypeScript coding environment, run your first test, and hopefully see a Pass result. I’ve done that myself, only to realize later there were some tools I missed that could have helped make the journey easier from the start. That is why this first chapter speaks to the system specifications, tools, and configurations that will help us write better code from day one.

			Along the way, I’ll be providing tips and tricks from more than 20 years as an SDET. There will be rules of thumb and advanced techniques. These are designed to help you write more tests, debug more efficiently, and produce a testing framework that will be stable, scalable, and require far less code maintenance.

			The main topics covered in this chapter are:

			
					The Virgin machine setup

					Installing Visual Studio Code for your operating system

					Writing better code with Prettier, ESLint, and GitLens

					Installing Chrome extensions

					Installing WebdriverIO

			

			Virgin machine setup

			Before you can do anything in the world of test automation on a virgin machine, you must install some packages, so you will need admin rights to the machine. So, before going any further, please ensure you have the following packages installed globally with their most stable version:

			
					NodeJS

					Yarn

					Java JDK

					An integrated development environment (IDE) (IntelliJ, VSCode, and so on)

					Git

			

			Here are some extra steps if you are using a Windows machine:

			
					Set up the PATH environment for your node

					Reboot the machine for all the changes to take effect

			

			Before we get to running our first test, we need to check out system requirements and get our tools. In this chapter, we’re going to cover how to install and configure tools that will make our job easier, as follows:

			
					Hardware specifications

					Node.js

					A GitHub account and GitHub Desktop for code change management

					Microsoft Visual Studio Code

					Prettier, GitLens, and ESLint extensions

					The SelectorsHub and EditThisCookie Chrome extensions

			

			Note that to install these tools, you will need local admin rights or know someone in your IT security department who has the rights and can install them for you. Without local admin rights, you won’t get far. You should have the same rights as the product development team, whose applications you will be testing.

			This brings us to our first rule of thumb.

			Rule of thumb – the hardware resources and access rights must match the development team

			Throughout this book, I will be bringing up some rules of thumb that I use to keep us on the path and out of the thorn bushes.

			Let’s talk about why this is important. Upfront, you can assess if your automation project will succeed just by considering if you can install Chrome extensions. If your corporate IT security department prevents the installation of any browser extensions, your automation progress will be severely hindered. We all want to have a successful test automation project. We do not want to start our journey hamstrung. Test automation is code development; it requires developer tools, and you are a developer. Do not let anyone tell you differently.

			If your employer or client sees your project as just record and playback, you are at risk of having a project that is doomed to fail from the start. The biggest red flag that this is the case is that your computer resources and access do not match that of your developers.

			Question: What are the technical spec requirements for my WebdriverIO test automation system?

			The answer is a simple Do and Do not:

			Do not use the minimum requirements listed anywhere on the internet. Whatever it is, it is too small.

			Do match the CPU speed, the amount of RAM, the drive space, and the number of monitors on desks.

			This includes matching the version of the Mac or Windows operating system used by the development team. Windows should be 64-bit and probably the Professional edition.

			It also includes the local admin rights of your application developers. This allows you to install browser extensions that will save your team time. This means you might have to propose a business case to meet this requirement.

			It is simple, really: without these tools, you will spend time trying to write locators by hand and taking extra steps to clear cookies. The project will go slower, and the company will pay more for fewer tests in the same amount of time. In extreme cases, you may have to walk away from a project and find a new employer who is ready to take QA testing seriously. The only exception is if your application developers are using Eclipse, which is not recommended for professional-level code development.

			That said, let’s begin by installing the tools for WebdriverIO so that we’re heading in the right direction.

			We will start by emulating two heroes who have unlimited wealth and brilliant minds. To be effective at fighting crime, one has a utility belt with multiple tools and the other a metal suit with AI intelligence to help bring villains—or, in our case, bugs—to justice faster.

			Installing Node.js and npm

			Node.js is an open source, cross-platform runtime environment and an asynchronous library that is used for running web applications outside the client’s browser. This project was created with Node version 16.13.0 for several reasons. Earlier versions were only required to support synchronous mode, which was deprecated in WebDriverIO 7.0 and removed in version 8.0. While the latest version of Node as of this writing is 19.8.1, it is recommended to use 16.13.0 as it is the most compatible with most other modules and packages.

			Make sure you have enough hard drive space for the installation. It will take a minimum of 3 GB to install. By default, these tools are installed on the C: drive. If your drive is nearing capacity, consider installing it on a larger drive partition.

			Let’s begin by installing Node and npm. The following screenshot shows how you can do this:

			
				
					[image: Figure 1.1 – Downloading Node.js from https://nodejs.org/en/download/]
				

			

			Figure 1.1 – Downloading Node.js from https://nodejs.org/en/download/

			For Mac, install the latest .pkg file.

			For Windows, download the 64-bit version.

			The version of Node.js to install will be long-term support (LTS), which is version 18.0 as of this writing. Note that WebdriverIO deprecated the @wdio/sync synchronous mode, which is supported and stable only through Node.js version 12.0. This book will use asynchronous command execution with the async() and await() commands.

			The installation will also install the following:

			
					Chocolatey for Windows or Brew for Mac, a package installation tool

					Python

					Node.js

					npm

					Required system updates

			

			Reminder

			These all will require admin rights to complete successfully.

			Once completed, check whether the Node.js and Chocolatey paths have been added to the system’s PATH environment variables, as illustrated in the following screenshot. If not, they must be added manually:

			
				
					[image: Figure 1.2 – Node.js and Chocolatey paths in the PATH environment variable for Windows]
				

			

			Figure 1.2 – Node.js and Chocolatey paths in the PATH environment variable for Windows

			For both Mac and Windows, we will install a version of Node that is at least version 18.0. From the command shell, type these two commands:

			
> nvm install 18
Downloading node.js version 18.17.1 (64-bit)...
> nvm use 18
Now using node v18.17.1 (64-bit)
			While this completes the Node installation, we need to take note of alternative package managers that offer additional options.
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