
		
			[image: Cover.png]
		

	
		
			Enhanced Test Automation with WebdriverIO

			Unlock the superpowers of hybrid testing frameworks

			Paul M. Grossman

			Larry C. Goddard

			[image:]

			BIRMINGHAM—MUMBAI

			Enhanced Test Automation with WebdriverIO

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kunal Sawant

			Book Project Manager: Prajakta Naik

			Senior Editor: Kinnari Chohan

			Technical Editor: Jubit Pincy

			Copy Editor: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Prashant Ghare

			DevRel Marketing Coordinator: Sonia Chauhan

			First published: December 2023

			Production reference: 2281123

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-83763-018-9

			www.packtpub.com

			To my wife, Mickey, for her unending love, support, and encouragement in all our crazy endeavors. To my son, Kyle, who always chooses the more challenging road.

			– Paul M. Grossman

			Dedicated to the memory of my mother, Yvonne, my dad, Kent Cuffy, and my best friends, Raul Cambridge, Randolph Yearwood, and Glen Smart, whose sacrifices and unwavering determination have profoundly shaped me into the person I am today. I extend profound gratitude to my partner, Deniele St. Bernard, for unwaveringly and steadfastly walking by my side throughout our shared life journey. A heartfelt acknowledgment goes to my children—Lee-Ann and Leland “Bobby” Goddard, Leshem “Pumpkin” Stafford, Tyrell John and Sacha Mc Kinnon—the stabilizing influence in my life and the driving force behind my continually expanding technical inquisitiveness.

			– Larry C. Goddard

			Foreword

			In Enhanced Test Automation with WebdriverIO, you’ll embark on an exciting journey through the lens of a Software Development Engineer in Test (SDET) - a role that, quite frankly, is often an unsung hero in software delivery. This book highlights the SDET Superhero in a comic book narrative while sharing the tips and tricks that unlock the superpowers of a successful SDET.

			The journey of an SDET is depicted as akin to a superhero’s path, full of challenges, learning, and growth. The superhero analogies used are not mere entertainment; they transform abstract concepts into tangible skills and knowledge.

			As someone devoted to making complex technical concepts accessible and engaging, I find this book’s approach not only refreshing but incredibly effective. It makes the learning process both enjoyable and impactful, adding a layer of relatability to topics that might otherwise seem daunting.

			For aspiring and established SDETs, this book serves as an essential collection of armor - filled with tools, insights, and practical strategies. It skillfully guides you from the basics of test environment setup to the complexities of advanced testing techniques. The book’s practical application of WebdriverIO in TypeScript offers hands-on experience that is beneficial for readers at all levels.

			I invite you to delve into this book with an eagerness to learn. Prepare to navigate the exhilarating path of an SDET, equipped with newfound skills and a deeper understanding of test automation techniques.

			Welcome to a journey that promises to be as informative as it is engaging.

			-Angie Jones

			Vice President of Developer Relations

			Contributors

			About the authors

			Paul M. Grossman, aka @DarkArtsWizard on X and Threads, is a test automation framework architect, project manager, and conference speaker with a love of stage magic. Since 2001, he has worked with numerous toolsets, including WebdriverIO in TypeScript, Selenium in Java, OpenText UFT in VBScript, and WinRunner in C++. He advocates for low-code automation tools for manual testers, including testRigor. He is also the creator of the CandyMapper sandbox website, where he invites novice users to try their hand at automating common challenges. You can find videos of his test automation experiments on his YouTube channel at https://www.youtube.com/PaulGrossmanTheDarkArtsWizard.

			I extend thanks to my high school coding teacher, Mrs. O’Toole, who awarded exam points for “Syntax Error in Line 20” when I found a misspelled “Print” statement; Rebecca, who took a chance on my automation skills after catching my One-Handed Knotted Rope stunt in the test lab; Mike, who encouraged me to present with fire on stage in Las Vegas; Tarun for his inspiring QTP Unplugged books; and Larry for saving me from the Lone Ranger issues.

			[image: Paul M. Grossman]

			Larry C. Goddard, aka “LarryG,” is the creator of Klassi-js. He boasts a stellar career as an award-winning test automation framework architect, mentor, career coach, and speaker since 2000. His expertise spans diverse toolsets, including AI, ML, WebdriverIO, JavaScript, TypeScript, and Selenium. With a profound journey across aviation, software testing, and telecommunications sectors, he has also lent his technical prowess to a major fashion house and served as an expert witness for an international law firm. A father of five, an ex-international rugby player for Trinidad and Tobago, ex-military, and a certified physical training instructor, he shares his extensive knowledge via insightful test automation videos on https://youtube.com/@larryg_01.

			I’m truly grateful to my loving and supportive partner, Deniele, and my children—Lee-Ann, Leland, Leshem, Tyrell, and Sacha—for their unwavering encouragement and support during the book’s creation. To my co-author, Paul, for entrusting me with the crucial coding task, a vital component of this book. A special shout-out to my siblings, Gillian, Phillip, Bertrand, Orlando, and Clint, and my beloved niece, Joanna Levine—she knows!!

			[image: Larry C. Goddard]

			About the reviewers

			Panagiotis Leloudas is a lead quality assurance engineer with more than 10 years of working experience in the industry. He holds several ISTQB certifications and is an expert in testing principles methodologies and techniques. He is also the author of the book Introduction to Software Testing.

			Ekansh Mehrotra is an analytical, enthusiastic, and innovative consultant with 14+ years of IT experience in management, consulting, implementation, manual and automation testing, and framework designing and development. He has strong experience in the Agile and Waterfall methodologies, Azure DevOps, and automation framework design, development, and testing using various tools. He has good experience in managing critical project deliveries and team projects.

		

	
		
			Table of Contents

			Preface

			1

			The Utility Belt – Tools Every Superhero SDET Needs

			Virgin machine setup

			Rule of thumb – the hardware resources and access rights must match the development team

			Installing Node.js and npm

			Alternate node package managers – Yarn versus npm

			Configuring the coding environment with GitHub Desktop

			GitHub and the GitHub Desktop tool

			Getting a GitHub account

			Installing GitHub Desktop

			Choosing your TypeScript development environment – Microsoft Visual Studio Code versus JetBrains Aqua

			Installing Visual Studio Code for your operating system

			Initializing the Node project

			Configuring Visual Studio Code

			X-ray vision – writing better code with Prettier, ESLint, and GitLens

			Installing Visual Studio Code add-ons – Prettier

			Installing Visual Studio Code add-ons – GitLens

			Installing Visual Studio Code add-ons – ESLint

			Installing Chrome extensions

			Adding the SelectorsHub Chrome extension

			Adding the EditThisCookie Chrome extension

			Pinning Chrome extensions to the browser title bar

			Installing WebdriverIO

			Summary

			2

			Fortress of Solitude – Configuring WebdriverIO

			WebdriverIO setup

			Option 1 – cloning WebdriverIO from a boilerplate project

			Building and installing the project dependencies

			Making our first commit

			Summary

			3

			Cybernetic Enhancements – WebdriverIO Config and Debug Tips

			The three main files of a WebdriverIO node project

			The package.json file

			The yarn.lock file

			The wdio.conf.ts file and webhooks

			Rule of thumb – match your developer’s hardware

			Letting Yarn help keep files up to date

			Configuring debugging with VS Code

			browser.debug()

			Dynamic configuration

			A note about template strings

			Reducing the signal-to-noise ratio

			Our first custom wrapper method – global.log()

			Rules to enforce coding standards

			Strict mode

			Turning on individual TypeScript subset rule checks

			CodeGPT

			Summary

			4

			Super Speed – Time-Travel Paradoxes and Broken Promises

			Technical requirements

			The time-travel dilemma

			Schrödinger and the quantum mechanics of test automation

			Callbacks, promises, and async/await

			The death of fibers and synchronous mode

			Keep it simple with async and await

			Summary

			5

			Alter Egos – The ClickAdv Wrapper

			Adding a helpers file

			The “Hello, World!” of test automation

			ES6 helper modules versus overriding intrinsic methods

			Overriding intrinsic element methods

			Adding a custom element method

			Who tests the SDET’s code? Sanity testing of the automation framework

			Extending our ES module helper file with a custom click method

			Why are waits difficult to implement correctly?

			“I don’t always use Pause(), but when I do, It’s less than 1000 milliseconds”

			Highlighting elements

			Expanding the click method wrapper

			Supercharged scroll before a click event

			Expanding the click method wrapper

			The importance of metrics

			Self-healing elements

			Stubbing out methods with the “alreadyFailed” switchboard key

			Summary

			6

			The setValue Wrapper – Entering Text and Dynamic Data Replacement

			Normalizing the element type

			Adding the setValue() method wrapper

			Is this trip really necessary?

			Coal into diamonds – replacing dynamic data tags

			Injecting versus typing text into a field

			Checking whether the field is pre-populated for speed

			Behind the mask – SetValuePassword() to keep data secure

			Detecting and masking passwords in your output

			Putting it all together

			Summary

			7

			The Select Wrapper – Choosing Values in Lists and Comboboxes

			Adding the base functionality of clickAdv() and setValueAdv() to selectAdv()

			Selecting an item from the list

			Selecting from a combobox

			Using selectByVisibleText

			Using selectByAttribute

			Using selectByIndex

			Inspecting a list that closes when it loses focus with SelectorsHub

			Writing a locator that is an element inside a list

			Summary

			8

			The Assert Wrapper – the Importance of Embedded Details

			expect, assert, and should –how did we get here?

			What is Jasmine?

			What is Jest?

			What is Chai?

			Timeout – delay of game

			What is expect-webdriverio?

			What are hard and soft expect assertions?

			Putting it all together

			What are soft assertions and why would we need them?

			Soft asserts – allowing a test to continue after an assertion fails

			Introduction to Allure reports

			Summary

			9

			The Ancient Spell Book – Building the Page Object Model

			Technical requirements

			What is Page Object Model?

			What constitutes a good Page Object pattern?

			Creating a page class for the tests

			Adding object selectors

			// LoginPage.ts

			// HomePage.ts

			module.exports = new HomePage();Calling methods to be used in the test

			// TestName.ts

			Reducing code with common objects and methods

			POM using Klassi-js

			Project structure

			Cucumber feature files

			Page objects

			Cucumber step definitions

			Running tests

			Summary

			10

			Increased Flexibility – Writing Robust Selectors and Reducing Maintenance

			Technical requirements

			Reducing page object maintenance with generic selectors

			Anatomy of an XPath selector

			Relative selectors

			Node test functions – text() versus normalize-space()

			Broken strings

			Leveraging data-qa and ARIA attributes

			Finding an element only by text

			Writing an XPath element that contains a textual substring

			Finding an element relative to another element

			Case-insensitive partial matches

			Finding only visible elements

			Second chances – getting valid objects from stale selectors

			Self healing techniques

			On thin ice

			Summary

			11

			Echo Location – Skipping the Page Object Model

			A reduced code base

			Automation in plain English

			Getting a named button

			Getting a named input field

			Getting a named list

			Getting a visible button by name

			Getting a visible field by name

			Getting a visible list by name

			Getting a visible element from a collection

			Beware the endless rabbit hole!

			Summary

			12

			Superhero Landing – Setting Up Flexible Navigation Options

			Technical requirements

			Using system variables

			Adding data configuration files

			Where data is stored for test use

			Organizing test data

			Setting up TypeScript configuration

			Reading data from files

			Using test data in tests

			Beyond masking – making confidential data invisible

			Spec and Allure – cub reporter versus star journalist

			Configuring Allure reporting

			Adding custom comments to the Allure report

			Webhooks and screen captures

			Summary

			13

			The Multiverses – Cross-Browser Testing and Cross-Environment Testing

			Horizontal scaling – cross-browser testing

			Using built-in functionality via the wdio config file

			Extending the wdio config file so that it supports multiple browsers

			Handling browser-specific issues

			Test responsiveness

			Using LambdaTest online to automate the browser testing grid

			Live interactive testing

			Automated screenshot testing

			Using Selenium Standalone server to locally build the testing grid

			Cross-environment testing with a shared configuration file

			Avoiding the rabbit hole of horizontal scaling

			Handling environment-specific logic

			The multiverse – one test, two environments

			Summary

			14

			The Time-Traveler’s Dilemma – State-Driven End to End User Journeys

			Technical requirements

			Divide and conquer!

			Simplifying the complexities of a dynamic journey

			The happy path

			The big driver loop

			It’s all in the details

			Changing decision points

			Wash, rinse, repeat

			Why not generate these Artifacts with API calls?

			Summary

			15

			The Sentient Cape – Running Tests in a CI/CD Pipeline with Jenkins and LambdaTest

			 Technical requirements

			What are Jenkins and Slack?

			Installing OpenJDK for Jenkins

			Installing Jenkins as a standalone application

			Installing Jenkins

			Creating a WebdriverIO project with Jenkins

			Installing the Jenkins plugin for LambdaTest

			Configuring LambdaTest using Jenkins

			Creating a freestyle project and job

			Parameterizing

			Reporting in Slack from Jenkins

			Adding the Slack notifications plugin to Jenkins

			Adding the Jenkins CI app to Slack

			Adding the post-build Slack action

			On-demand and scheduled suite runs

			Types of debugging runs with Jenkins

			Additional suite categories

			Linking Allure reports to a Jenkins run

			CI/CD pipeline

			What is continuous testing?

			What does a CI/CD pipeline look like?

			Code repository

			CI

			Artifact generation

			Deployment

			CD

			Continuous feedback

			Jenkins for CI/CD

			Summary

			Appendix

			The Ultimate Guide to TypeScript Error Messages, Causes, and Solutions

			Problem: Install default WDIO settings by passing “--yes” parameter still asks configuration questions

			Problem: Missing script “wdio”

			Problem: “node : The term ‘node’ is not recognized as the name of a cmdlet, function, script file, or operable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again.”

			Problem: ‘wdio’ is not recognized as an internal or external command”

			Problems:

			Problem: The \node_modules folder is not created when installed in a new WDIO project folder.

			Problem: New project install fails with empty directory.

			Problem: Tests suddenly fail to run including the \specs\test.e2e.ts. sample test.

			Problem: “WARN webdriver: Request encountered a stale element - terminating request”

			Problem: “TypeError: elem[prop] is not a function”

			Problem: Statements execute out of order

			Problem: “ERROR @wdio/runner: Error: describe expects a function argument; received [object AsyncFunction]”

			Problem: “Unsupported engine”

			Problem: JavaScript Debug Terminal skips breakpoints

			Problem: Browser launches and locks up

			Problem: “SevereServiceError: Couldn’t start Chromedriver: timeout. Please check if port [<PortNumber>] is in use”

			This is how to do it using macOS: lsof -i :<PortNumber> : kill -9 <PID>

			Problem: MODULE_NOT_FOUND

			Problem: Error: Could not execute “run” due to missing configuration, file “C:\repos\wdio\test\wdio.conf.ts” not found! Would you like to create one?

			Problem: “report does not exist” when running an Allure report

			Problem: “[P]lugin “allure” reporter, neither as wdio scoped package “@wdio/allure-reporter” nor as community package “wdio-allure-reporter”. Please make sure you have it installed!”

			Problem: TypeError: Cannot read properties of undefined (reading ‘open’)

			Problem: Cannot read properties of undefined (reading ‘setWindowSize’)

			Problem: A service failed in the ‘onPrepare’ hookSevereServiceError: Couldn’t start Chromedriver: timeout. Please check if port 9515 is in use!

			Problem: “Cannot find name ‘describe’” and underlined in red

			Problem: “Cannot find name ‘it’”

			Problem: “Cannot find name ‘expect’. Do you need to install type definitions for a test runner?” but the test still runs.

			Problem: “An import path can only end with a ‘.ts’ extension when ‘allowImportingTsExtensions’ is enabled.ts(5097)”

			Problem: browser.debug() generates “Failed to read descriptor from node connection: A device attached to the system is not functioning.”

			Problem: Element implicitly has an ‘any’ type because type ‘typeof globalThis’ has no index signature

			Problem: Cannot find type definition file for ‘jasmine’

			Problem: “Execution of 0 workers” No tests get executed.

			Problems: Cannot find name ‘browser’ and Cannot find name ‘$’

			Problem: Property ‘toBeExisting’ does not exist on type

			Problem: ERR! [Error: EACCES: permission denied (Mac OSX)

			Problem: ERROR @wdio/selenium-standalone-service: Error: not found: java

			Problem: “ECONNREFUSED 127.0.0.1:9515” a service failed in the ‘onPrepare’ hook tcp-port-used

			Problem: Error: Cannot find module ‘C:\Program Files\nodejs\node_modules\npm\bin\npm-cli.js’

			Problem: “Note: Package.json must be actual JSON, not just JavaScript”

			Problem: Protocol error (Runtime.callFunctionOn) target closed

			Problem: “unexpected token” in tsconfig.json

			Problem: “TypeError: elem[prop] is not a function”

			Problem: “ServerServiceError in “onPrepare” Cannot find package ‘chromedriver’

			Problem: Property ‘{functionName}’ does not exist on type ‘({functionType<{argName>}) => void’

			Problem “Property ‘addCommand’ does not exist on type ‘Browser’.” (macOS)

			Problem: ConfigParser: pattern ./test/specs/**/*.ts did not match any file.

			Problem: Error: Timeout - Async function did not complete within 10000ms (set by jasmine.DEFAULT_TIMEOUT_INTERVAL)

			Problem: Error: Error: Couldn’t find page handle

			Problem: This expression is not callable. Type ‘void’ has no call signatures.ts Are you missing a semicolon?

			Problem: “File is not a module”

			Problem: “Couldn’t find page handle”

			Problem: “Error: {pageName} is not defined”

			Problem: Argument of type ‘ChainablePromiseElement<Element>’ is not assignable to parameter of type ‘Element’.

			Problem: Unable to delete or modify files or folders in the WebdriverIO project

			Problem: EJSONPARSE Unexpected token in JSON while parsing Failed to parse JSON data

			Problem: A long string of gibberish garbage characters is added to the wdio.config.ts file when running in JavaScript Debug Terminal in Windows

			Yarn and Node Package Manager (npm), Node Version Manager (nvm), and Node Package Executor (npx) Shell command cheat sheet

			Reference links

			Epilogue

			Index

			Why subscribe?

			Other Books You May Enjoy

			Packt is searching for authors like you

			Share Your Thoughts

			Download a free PDF copy of this book

		

	

		
			Preface

			Welcome, and let us embark on an extraordinary journey through the realm of coding with our superhero-themed technical manual! Bid farewell to the mundane as each chapter unfolds like an exciting comic book adventure. Unlike traditional superheroes, you won’t need a brush with a radioactive arachnid to unlock your coding powers. Instead, you will arm yourself with the essential tools to forge a formidable framework using WebdriverIO in TypeScript.

			For those stepping into the shoes of a Software Developer Engineer in Test (SDET), the allure of leaping into setting up your JavaScript coding environment, running that inaugural test, and hoping for a victorious pass result might be strong. We’ve been there, only to discover later that crucial tools were overlooked, tools that could have smoothed the path from the very beginning. That’s why the opening chapter dives into system specifications, tools, and configurations, laying the foundation for crafting superior code from day one.

			Prepare to be guided by the wisdom of authors who have spent over 20 years in the superhero league of SDETs. Discover tips, tricks, rules of thumb, and advanced techniques tailored to help you not only write more tests but also navigate debugging challenges with finesse. Elevate your testing framework to superhero status—stable, scalable, and requiring minimal code maintenance. Get ready to unleash your coding superpowers and make your mark in the coding superhero universe!

			Who this book is for

			This book serves as a superhero toolkit for test automation enthusiasts at all levels, from new recruits to seasoned champions in the digital realm. It empowers users with the superpowers of WebdriverIO with Jasmine in TypeScript, offering an arsenal of code examples, advanced strategies in Jenkins, and cloud-based automation tactics. Whether you’re just been bitten by the automation bug in the world of test automation or you’re a caped veteran looking to upgrade your utility belt gadgets, this book is your secret weapon to mastering the art of test automation.

			What this book covers

			Chapter 1, The Utility Belt – Tools Every Superhero SDET Needs, provides an overview of the initial preparation tools that need to be installed, including Node, Yarn, and the VS Code IDE configurations.

			Chapter 2, Fortress of Solitude – Configuring WebdriverIO, covers setting up the project workspace folder with an overview of the WDIO install options to run our first test.

			Chapter 3, Cybernetic Enhancements – WebdriverIO Config and Debug Tips, provides an in-depth look at the package file and WDIO configuration options for both Mac and Windows with the concept of a function wrapper for enhanced logging.

			Chapter 4, Super Speed – Time Travel Paradoxes and Broken Promises, provides an in-depth look at the challenges of multi-threaded execution that are resolved with async and await commands.

			Chapter 5, Alter Egos – Why Do We Need Function Wrappers?, introduces the helpers file, the Switchboard object, a smart click() wrapper that leverages the pageSync() function and resolves speed-related timing issues.

			Chapter 6, The setValue Wrapper – Entering Text and Dynamic Data Replacement, introduces the setValue() wrapper with dynamic data tags, which provides offset dates in multiple formatting.

			Chapter 7, The Select Wrapper – Choosing Values in Lists and Combo Boxes, introduces the select() wrapper, which handles multiple types of drop-down elements and advanced scrolling to avoid object overlap errors.

			Chapter 8, The Assert Wrapper – The Importance of Embedded Details, introduces a wrapper for soft asserts with custom Allure reporting with screenshots.

			Chapter 9, The Ancient Spell Book – Building the Page Object Model, introduces page classes with xPath and CSS locators and atomic actions.

			Chapter 10, Increased Flexibility – Writing Robust Selectors and Reducing Maintenance, provides a deep dive into advanced xPath tips and self-healing strategies to reduce maintenance.

			Chapter 11, Echo Location – Skipping the Page Object Model, enhances the three basic actions to find elements by text alone with a relative element location.

			Chapter 12, Superhero Landing – Setting Up Flexible Navigation Options, introduces concepts for running tests in different test environments where elements may have been removed or do not yet exist without failing.

			Chapter 13, The Multiverses – Cross-Browser and Cross-Environment Testing, provides an introduction to the risks and rewards of expanding coverage with horizontal testing of multiple operating systems and browsers.

			Chapter 14, The Time Traveler’s Dilemma – State-Driven End-to-End User Journeys, discusses advanced concepts to create end-to-end tests that do not rely on any specific page following another with custom decision points and error detection.

			Chapter 15, The Sentient Cape – Running Tests in a CI/CD Pipeline with Jenkins and LambdaTest, brings test automation back to the manual testers who can call for complex artifacts to be produced in the cloud with a simple descriptive statement and access video capture replay.

			Appendix, The Ultimate Guide to TypeScript Error Messages, Causes, and Solutions, provides an extensive collection of error messages, potential causes, and solutions gathered from years of project development.

			To get the most out of this book

			
				
					
					
				
				
					
							
							Software covered in the book

						
							
							Operating system requirements

						
					

					
							
							WebdriverIO v.8

						
							
							Windows, macOS, or Linux

						
					

					
							
							TypeScript v.5.1.6

						
							
					

					
							
							Java JDK @latest

						
							
					

					
							
							Node v.18

						
							
					

					
							
							Yarn @latest

						
							
					

					
							
							Git @latest

						
							
					

					
							
							GitHub Desktop latest version

						
							
							GUI frontend for GitHub and GitLab

						
					

					
							
							SelectorsHub 5.0 free edition

						
							
							Chrome extension

						
					

					
							
							EditThisCookie

						
							
							Chrome extension

						
					

					
							
							VS Code

						
							
					

					
							
							Belarc Advisor Profiler (optional)
free, single, personal-use license

						
							
							Windows only

						
					

				
			

			The authors have attempted to use freely available tools for readers’ benefit. There are other paid IDEs available that offer more coding features to make life easier. In addition, the free version of SelectorsHub does an exceptional job, but we recommend the paid Pro version for its advanced Shadow Dom features. Free GitHub accounts are public while paid repos are private.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			If you are new to test automation, we advise you to get machines equivalent to, or better than, the specification used by the product development team you will be supporting. There is a common misconception that automation is just “record and playback” and does not require heavy-duty resources. There is one simple fact to keep in mind: parallel browsers and virtual machine testing require more resources.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Enhanced-Test-Automation-with-WebdriverIO. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We have a host command and a ghost party. Writing this line of code could potentially take the host command from the ghost string.”

			A block of code is set as follows:

			
Set JOURNEY="Attend Ghost"; yarn ch15
if (journey.includes(" host").toLowerCase()) {
// Host path being taken in error.
}
			Any command-line input or output is written as follows:

			
[0-0] ---> Clicking button[type="submit"] ...
[0-0] ---> button clicked.
[0-0] ---> pageSync() completed in 25 ms
[0-0] ---> Clicking button[type="bogus"] ...
[0-0] ---> button[type="submit"] was not clicked.
[0-0] Error: Can't call click on element with selector "button[type="bogus"]" because element wasn't found
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “In this example, the user does not attend the party and instead clicks the I’m scared button.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Enhanced Test Automation with WebdriverIO, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/978-1-83763-018-9

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			1

			The Utility Belt – Tools Every Superhero SDET Needs

			This is not your ordinary technical manual, which can be dry and boring. This book is intended to be fun. That’s why many of the chapters share a comic book theme. But unlike some superheroes, you won’t need to be bitten by a radioactive arachnid to get these powers. We just need some tools to create a great framework using WebdriverIO in TypeScript.

			If you are just beginning your journey as a software developer engineer in test (SDET), you might be tempted to just skip ahead, install the TypeScript coding environment, run your first test, and hopefully see a Pass result. I’ve done that myself, only to realize later there were some tools I missed that could have helped make the journey easier from the start. That is why this first chapter speaks to the system specifications, tools, and configurations that will help us write better code from day one.

			Along the way, I’ll be providing tips and tricks from more than 20 years as an SDET. There will be rules of thumb and advanced techniques. These are designed to help you write more tests, debug more efficiently, and produce a testing framework that will be stable, scalable, and require far less code maintenance.

			The main topics covered in this chapter are:

			
					The Virgin machine setup

					Installing Visual Studio Code for your operating system

					Writing better code with Prettier, ESLint, and GitLens

					Installing Chrome extensions

					Installing WebdriverIO

			

			Virgin machine setup

			Before you can do anything in the world of test automation on a virgin machine, you must install some packages, so you will need admin rights to the machine. So, before going any further, please ensure you have the following packages installed globally with their most stable version:

			
					NodeJS

					Yarn

					Java JDK

					An integrated development environment (IDE) (IntelliJ, VSCode, and so on)

					Git

			

			Here are some extra steps if you are using a Windows machine:

			
					Set up the PATH environment for your node

					Reboot the machine for all the changes to take effect

			

			Before we get to running our first test, we need to check out system requirements and get our tools. In this chapter, we’re going to cover how to install and configure tools that will make our job easier, as follows:

			
					Hardware specifications

					Node.js

					A GitHub account and GitHub Desktop for code change management

					Microsoft Visual Studio Code

					Prettier, GitLens, and ESLint extensions

					The SelectorsHub and EditThisCookie Chrome extensions

			

			Note that to install these tools, you will need local admin rights or know someone in your IT security department who has the rights and can install them for you. Without local admin rights, you won’t get far. You should have the same rights as the product development team, whose applications you will be testing.

			This brings us to our first rule of thumb.

			Rule of thumb – the hardware resources and access rights must match the development team

			Throughout this book, I will be bringing up some rules of thumb that I use to keep us on the path and out of the thorn bushes.

			Let’s talk about why this is important. Upfront, you can assess if your automation project will succeed just by considering if you can install Chrome extensions. If your corporate IT security department prevents the installation of any browser extensions, your automation progress will be severely hindered. We all want to have a successful test automation project. We do not want to start our journey hamstrung. Test automation is code development; it requires developer tools, and you are a developer. Do not let anyone tell you differently.

			If your employer or client sees your project as just record and playback, you are at risk of having a project that is doomed to fail from the start. The biggest red flag that this is the case is that your computer resources and access do not match that of your developers.

			Question: What are the technical spec requirements for my WebdriverIO test automation system?

			The answer is a simple Do and Do not:

			Do not use the minimum requirements listed anywhere on the internet. Whatever it is, it is too small.

			Do match the CPU speed, the amount of RAM, the drive space, and the number of monitors on desks.

			This includes matching the version of the Mac or Windows operating system used by the development team. Windows should be 64-bit and probably the Professional edition.

			It also includes the local admin rights of your application developers. This allows you to install browser extensions that will save your team time. This means you might have to propose a business case to meet this requirement.

			It is simple, really: without these tools, you will spend time trying to write locators by hand and taking extra steps to clear cookies. The project will go slower, and the company will pay more for fewer tests in the same amount of time. In extreme cases, you may have to walk away from a project and find a new employer who is ready to take QA testing seriously. The only exception is if your application developers are using Eclipse, which is not recommended for professional-level code development.

			That said, let’s begin by installing the tools for WebdriverIO so that we’re heading in the right direction.

			We will start by emulating two heroes who have unlimited wealth and brilliant minds. To be effective at fighting crime, one has a utility belt with multiple tools and the other a metal suit with AI intelligence to help bring villains—or, in our case, bugs—to justice faster.

			Installing Node.js and npm

			Node.js is an open source, cross-platform runtime environment and an asynchronous library that is used for running web applications outside the client’s browser. This project was created with Node version 16.13.0 for several reasons. Earlier versions were only required to support synchronous mode, which was deprecated in WebDriverIO 7.0 and removed in version 8.0. While the latest version of Node as of this writing is 19.8.1, it is recommended to use 16.13.0 as it is the most compatible with most other modules and packages.

			Make sure you have enough hard drive space for the installation. It will take a minimum of 3 GB to install. By default, these tools are installed on the C: drive. If your drive is nearing capacity, consider installing it on a larger drive partition.

			Let’s begin by installing Node and npm. The following screenshot shows how you can do this:

			
				
					[image: Figure 1.1 – Downloading Node.js from https://nodejs.org/en/download/]
				

			

			Figure 1.1 – Downloading Node.js from https://nodejs.org/en/download/

			For Mac, install the latest .pkg file.

			For Windows, download the 64-bit version.

			The version of Node.js to install will be long-term support (LTS), which is version 18.0 as of this writing. Note that WebdriverIO deprecated the @wdio/sync synchronous mode, which is supported and stable only through Node.js version 12.0. This book will use asynchronous command execution with the async() and await() commands.

			The installation will also install the following:

			
					Chocolatey for Windows or Brew for Mac, a package installation tool

					Python

					Node.js

					npm

					Required system updates

			

			Reminder

			These all will require admin rights to complete successfully.

			Once completed, check whether the Node.js and Chocolatey paths have been added to the system’s PATH environment variables, as illustrated in the following screenshot. If not, they must be added manually:

			
				
					[image: Figure 1.2 – Node.js and Chocolatey paths in the PATH environment variable for Windows]
				

			

			Figure 1.2 – Node.js and Chocolatey paths in the PATH environment variable for Windows

			For both Mac and Windows, we will install a version of Node that is at least version 18.0. From the command shell, type these two commands:

			
> nvm install 18
Downloading node.js version 18.17.1 (64-bit)...
> nvm use 18
Now using node v18.17.1 (64-bit)
			While this completes the Node installation, we need to take note of alternative package managers that offer additional options.

			
			
			
						
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		
		Contents

			
						Enhanced Test Automation with WebdriverIO

						Foreword

						Contributors

						About the authors

						About the reviewers

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Chapter 1: The Utility Belt – Tools Every Superhero SDET Needs
					
								Virgin machine setup

								Rule of thumb – the hardware resources and access rights must match the development team
							
										Installing Node.js and npm

										Alternate node package managers – Yarn versus npm

										Configuring the coding environment with GitHub Desktop

										GitHub and the GitHub Desktop tool

										Getting a GitHub account

										Installing GitHub Desktop

										Choosing your TypeScript development environment – Microsoft Visual Studio Code versus JetBrains Aqua

							

						

								Installing Visual Studio Code for your operating system
							
										Initializing the Node project

										Configuring Visual Studio Code

							

						

								X-ray vision – writing better code with Prettier, ESLint, and GitLens
							
										Installing Visual Studio Code add-ons – Prettier

										Installing Visual Studio Code add-ons – GitLens

										Installing Visual Studio Code add-ons – ESLint

							

						

								Installing Chrome extensions
							
										Adding the SelectorsHub Chrome extension

										Adding the EditThisCookie Chrome extension

										Pinning Chrome extensions to the browser title bar

							

						

								Installing WebdriverIO

								Summary

					

				

						Chapter 2: Fortress of Solitude – Configuring WebdriverIO
					
								WebdriverIO setup
							
										Option 1 – cloning WebdriverIO from a boilerplate project

							

						

								Building and installing the project dependencies
							
										Making our first commit

							

						

								Summary

					

				

						Chapter 3: Cybernetic Enhancements – WebdriverIO Config and Debug Tips
					
								The three main files of a WebdriverIO node project
							
										The package.json file

										The yarn.lock file

										The wdio.conf.ts file and webhooks

							

						

								Rule of thumb – match your developer’s hardware

								Letting Yarn help keep files up to date

								Configuring debugging with VS Code
							
										browser.debug()

							

						

								Dynamic configuration
							
										A note about template strings

										Reducing the signal-to-noise ratio

							

						

								Our first custom wrapper method – global.log()

								Rules to enforce coding standards
							
										Strict mode

										Turning on individual TypeScript subset rule checks

										CodeGPT

							

						

								Summary

					

				

						Chapter 4: Super Speed – Time-Travel Paradoxes and Broken Promises
					
								Technical requirements

								The time-travel dilemma

								Schrödinger and the quantum mechanics of test automation

								Callbacks, promises, and async/await

								The death of fibers and synchronous mode
							
										Keep it simple with async and await

							

						

								Summary

					

				

						Chapter 5: Alter Egos – The ClickAdv Wrapper
					
								Adding a helpers file

								The “Hello, World!” of test automation

								ES6 helper modules versus overriding intrinsic methods
							
										Overriding intrinsic element methods

										Adding a custom element method

							

						

								Who tests the SDET’s code? Sanity testing of the automation framework

								Extending our ES module helper file with a custom click method

								Why are waits difficult to implement correctly?
							
										“I don’t always use Pause(), but when I do, It’s less than 1000 milliseconds”

										Highlighting elements

							

						

								Expanding the click method wrapper

								Supercharged scroll before a click event

								Expanding the click method wrapper

								The importance of metrics

								Self-healing elements

								Stubbing out methods with the “alreadyFailed” switchboard key

								Summary

					

				

						Chapter 6: The setValue Wrapper – Entering Text and Dynamic Data Replacement
					
								Normalizing the element type

								Adding the setValue() method wrapper

								Is this trip really necessary?

								Coal into diamonds – replacing dynamic data tags

								Injecting versus typing text into a field

								Checking whether the field is pre-populated for speed

								Behind the mask – SetValuePassword() to keep data secure
							
										Detecting and masking passwords in your output

							

						

								Putting it all together

								Summary

					

				

						Chapter 7: The Select Wrapper – Choosing Values in Lists and Comboboxes
					
								Adding the base functionality of clickAdv() and setValueAdv() to selectAdv()

								Selecting an item from the list

								Selecting from a combobox
							
										Using selectByVisibleText

										Using selectByAttribute

										Using selectByIndex

							

						

								Inspecting a list that closes when it loses focus with SelectorsHub

								Writing a locator that is an element inside a list

								Summary

					

				

						Chapter 8: The Assert Wrapper – the Importance of Embedded Details
					
								expect, assert, and should –how did we get here?
							
										What is Jasmine?

										What is Jest?

										What is Chai?

							

						

								Timeout – delay of game
							
										What is expect-webdriverio?

							

						

								What are hard and soft expect assertions?
							
										Putting it all together

										What are soft assertions and why would we need them?

										Soft asserts – allowing a test to continue after an assertion fails

							

						

								Introduction to Allure reports

								Summary

					

				

						Chapter 9: The Ancient Spell Book – Building the Page Object Model
					
								Technical requirements

								What is Page Object Model?

								What constitutes a good Page Object pattern?

								Creating a page class for the tests

								Adding object selectors
							
										// LoginPage.ts

										// HomePage.ts

							

						

								module.exports = new HomePage();Calling methods to be used in the test
							
										// TestName.ts

							

						

								Reducing code with common objects and methods

								POM using Klassi-js
							
										Project structure

										Cucumber feature files

										Page objects

										Cucumber step definitions

										Running tests

							

						

								Summary

					

				

						Chapter 10: Increased Flexibility – Writing Robust Selectors and Reducing Maintenance
					
								Technical requirements

								Reducing page object maintenance with generic selectors

								Anatomy of an XPath selector
							
										Relative selectors

										Node test functions – text() versus normalize-space()

										Broken strings

							

						

								Leveraging data-qa and ARIA attributes
							
										Finding an element only by text

							

						

								Writing an XPath element that contains a textual substring
							
										Finding an element relative to another element

										Case-insensitive partial matches

										Finding only visible elements

							

						

								Second chances – getting valid objects from stale selectors
							
										Self healing techniques

										On thin ice

							

						

								Summary

					

				

						Chapter 11: Echo Location – Skipping the Page Object Model
					
								A reduced code base

								Automation in plain English
							
										Getting a named button

										Getting a named input field

										Getting a named list

							

						

								Getting a visible button by name

								Getting a visible field by name

								Getting a visible list by name

								Getting a visible element from a collection

								Beware the endless rabbit hole!

								Summary

					

				

						Chapter 12: Superhero Landing – Setting Up Flexible Navigation Options
					
								Technical requirements

								Using system variables

								Adding data configuration files
							
										Where data is stored for test use

										Organizing test data

										Setting up TypeScript configuration

										Reading data from files

										Using test data in tests

										Beyond masking – making confidential data invisible

										Spec and Allure – cub reporter versus star journalist

							

						

								Configuring Allure reporting
							
										Adding custom comments to the Allure report

										Webhooks and screen captures

							

						

								Summary

					

				

						Chapter 13: The Multiverses – Cross-Browser Testing and Cross-Environment Testing
					
								Horizontal scaling – cross-browser testing

								Using built-in functionality via the wdio config file
							
										Extending the wdio config file so that it supports multiple browsers

										Handling browser-specific issues

										Test responsiveness

							

						

								Using LambdaTest online to automate the browser testing grid
							
										Live interactive testing

										Automated screenshot testing

							

						

								Using Selenium Standalone server to locally build the testing grid
							
										Cross-environment testing with a shared configuration file

							

						

								Avoiding the rabbit hole of horizontal scaling

								Handling environment-specific logic

								The multiverse – one test, two environments

								Summary

					

				

						Chapter 14: The Time-Traveler’s Dilemma – State-Driven End to End User Journeys
					
								Technical requirements

								Divide and conquer!

								Simplifying the complexities of a dynamic journey

								The happy path
							
										The big driver loop

										It’s all in the details

							

						

								Changing decision points

								Wash, rinse, repeat

								Why not generate these Artifacts with API calls?

								Summary

					

				

						Chapter 15: The Sentient Cape – Running Tests in a CI/CD Pipeline with Jenkins and LambdaTest
					
								 Technical requirements

								What are Jenkins and Slack?

								Installing OpenJDK for Jenkins

								Installing Jenkins as a standalone application

								Installing Jenkins

								Creating a WebdriverIO project with Jenkins

								Installing the Jenkins plugin for LambdaTest
							
										Configuring LambdaTest using Jenkins

							

						

								Creating a freestyle project and job
							
										Parameterizing

							

						

								Reporting in Slack from Jenkins
							
										Adding the Slack notifications plugin to Jenkins

										Adding the Jenkins CI app to Slack

										Adding the post-build Slack action

							

						

								On-demand and scheduled suite runs

								Types of debugging runs with Jenkins
							
										Additional suite categories

										Linking Allure reports to a Jenkins run

							

						

								CI/CD pipeline
							
										What is continuous testing?

										What does a CI/CD pipeline look like?

										Code repository

										CI

										Artifact generation

										Deployment

										CD

										Continuous feedback

										Jenkins for CI/CD

							

						

								Summary

					

				

						Appendix: The Ultimate Guide to TypeScript Error Messages, Causes, and Solutions
					
								Problem: Install default WDIO settings by passing “--yes” parameter still asks configuration questions

								Problem: Missing script “wdio”

								Problem: “node : The term ‘node’ is not recognized as the name of a cmdlet, function, script file, or operable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again.”

								Problem: ‘wdio’ is not recognized as an internal or external command”

								Problems:

								Problem: The \node_modules folder is not created when installed in a new WDIO project folder.

								Problem: New project install fails with empty directory.

								Problem: Tests suddenly fail to run including the \specs\test.e2e.ts. sample test.

								Problem: “WARN webdriver: Request encountered a stale element - terminating request”

								Problem: “TypeError: elem[prop] is not a function”

								Problem: Statements execute out of order

								Problem: “ERROR @wdio/runner: Error: describe expects a function argument; received [object AsyncFunction]”

								Problem: “Unsupported engine”

								Problem: JavaScript Debug Terminal skips breakpoints

								Problem: Browser launches and locks up

								Problem: “SevereServiceError: Couldn’t start Chromedriver: timeout. Please check if port [<PortNumber>] is in use”

								This is how to do it using macOS: lsof -i :<PortNumber> : kill -9 <PID>

								Problem: MODULE_NOT_FOUND

								Problem: Error: Could not execute “run” due to missing configuration, file “C:\repos\wdio\test\wdio.conf.ts” not found! Would you like to create one?

								Problem: “report does not exist” when running an Allure report

								Problem: “[P]lugin “allure” reporter, neither as wdio scoped package “@wdio/allure-reporter” nor as community package “wdio-allure-reporter”. Please make sure you have it installed!”

								Problem: TypeError: Cannot read properties of undefined (reading ‘open’)

								Problem: Cannot read properties of undefined (reading ‘setWindowSize’)

								Problem: A service failed in the ‘onPrepare’ hookSevereServiceError: Couldn’t start Chromedriver: timeout. Please check if port 9515 is in use!

								Problem: “Cannot find name ‘describe’” and underlined in red

								Problem: “Cannot find name ‘it’”

								Problem: “Cannot find name ‘expect’. Do you need to install type definitions for a test runner?” but the test still runs.

								Problem: “An import path can only end with a ‘.ts’ extension when ‘allowImportingTsExtensions’ is enabled.ts(5097)”

								Problem: browser.debug() generates “Failed to read descriptor from node connection: A device attached to the system is not functioning.”

								Problem: Element implicitly has an ‘any’ type because type ‘typeof globalThis’ has no index signature

								Problem: Cannot find type definition file for ‘jasmine’

								Problem: “Execution of 0 workers” No tests get executed.

								Problems: Cannot find name ‘browser’ and Cannot find name ‘$’

								Problem: Property ‘toBeExisting’ does not exist on type

								Problem: ERR! [Error: EACCES: permission denied (Mac OSX)

								Problem: ERROR @wdio/selenium-standalone-service: Error: not found: java

								Problem: “ECONNREFUSED 127.0.0.1:9515” a service failed in the ‘onPrepare’ hook tcp-port-used

								Problem: Error: Cannot find module ‘C:\Program Files\nodejs\node_modules\npm\bin\npm-cli.js’

								Problem: “Note: Package.json must be actual JSON, not just JavaScript”

								Problem: Protocol error (Runtime.callFunctionOn) target closed

								Problem: “unexpected token” in tsconfig.json

								Problem: “TypeError: elem[prop] is not a function”

								Problem: “ServerServiceError in “onPrepare” Cannot find package ‘chromedriver’

								Problem: Property ‘{functionName}’ does not exist on type ‘({functionType<{argName>}) => void’

								Problem “Property ‘addCommand’ does not exist on type ‘Browser’.” (macOS)

								Problem: ConfigParser: pattern ./test/specs/**/*.ts did not match any file.

								Problem: Error: Timeout - Async function did not complete within 10000ms (set by jasmine.DEFAULT_TIMEOUT_INTERVAL)

								Problem: Error: Error: Couldn’t find page handle

								Problem: This expression is not callable. Type ‘void’ has no call signatures.ts Are you missing a semicolon?

								Problem: “File is not a module”

								Problem: “Couldn’t find page handle”

								Problem: “Error: {pageName} is not defined”

								Problem: Argument of type ‘ChainablePromiseElement<Element>’ is not assignable to parameter of type ‘Element’.

								Problem: Unable to delete or modify files or folders in the WebdriverIO project

								Problem: EJSONPARSE Unexpected token in JSON while parsing Failed to parse JSON data

								Problem: A long string of gibberish garbage characters is added to the wdio.config.ts file when running in JavaScript Debug Terminal in Windows

								Yarn and Node Package Manager (npm), Node Version Manager (nvm), and Node Package Executor (npx) Shell command cheat sheet

								Reference links

					

				

						Epilogue

						Index
					
								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

						Index

			

		
	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Paul_photograph.png

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B19395_Figure_1.1.jpg

OEBPS/image/Packt_Logo_New.png

OEBPS/image/B19395_QR_Free_PDF.jpg

OEBPS/image/B19395_Figure_1.2.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Cover.png

OEBPS/image/Larry_photograph.jpg

