

 [image: Hands-On Data Structures and Algorithms with RUST]

Hands-On Data Structures and Algorithms with Rust

Learn programming techniques to build effective, maintainable, and readable code in Rust 2018

Claus Matzinger

BIRMINGHAM - MUMBAI

 Hands-On Data Structures and Algorithms with Rust

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi

Acquisition Editor: Shahnish Khan

Content Development Editor: Zeeyan Pinheiro

Technical Editor: Romy Dias

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Alishon Mendonsa

Production Coordinator: Tom Scaria

First published: January 2019

Production reference: 1230119

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-552-8

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Foreword

Rust is not an easy language to learn. Ask why, and you'll hear that Rust was designed to solve almost any complex problem in system programming, a complicated domain to begin with. It was designed to do it safely, to be incredibly fast, and be very strict; "ease of use" is a necessary sacrifice. Rust reads like any other imperative language, but it incorporates a number of special concepts that ask you to think through your problems in greater depth and with a different spin than you're used to. It's brutally honest about the complicated parts a system language has to address.

Those are the typical reasons cited for why Rust is hard. The more honest answer is that those people may not have the right teacher.

I met Claus at my first event as an open source developer for Microsoft. He had joined just a few months before, and could show me the ropes. It didn't occur to me until a few weeks later that, as his manager, I was supposed to be teaching him! I've discovered that this is a common situation for Claus: he falls naturally into a teaching role. Not a lecturing bore, either—the kind of teaching where the student doesn't realize that's what's happening until they find themselves using newly acquired knowledge. We've long since moved into other roles, but I've seen the pattern repeated over and over again.

Early in his career as an open source developer, Claus found himself diving deep into documentation. And fair enough: it's often the most important part of a project! "Just three lines," he said to me once. "I just lost a whole day of my life because someone didn't bother to write three lines of good documentation. I can fix that."

Claus's background was in academic software development, but in his professional life, he has rejected the dry, abstract computer science theory often taught in that environment. He is one of those rare developers who cares deeply about making this easy for people to understand. It's important that it makes sense, it's important that it looks nice, it's important that it's easy to follow—and how to make it that way is intuitive to him. I think it honestly doesn't occur to him that other people struggle to explain things the way he does naturally.

One of the aspects of this book that I appreciated the most when reading it is the balance Claus strikes. It stays focused on the teaching goal without getting sidetracked by more technical detail than is required. We all know the feeling of reading that kind of documentation—the kind that demands to be skimmed. Most readers, including myself, are simply confused by too much theory or detail at the outset. As Claus puts it, "most teachers make it sound like something really fancy is going on, but, in reality, it's quite simple."

This practical approach has made Claus an in-demand speaker, community member, and contributor in the Rust world. This book is his next step into teaching for a broader audience, and I'm excited to see its impact.

You've chosen a great teacher! Rust is difficult to learn, but it doesn't have to be. Just ask Claus.

Campbell Vertesi

Principal Software Engineer Manager

twitter: @ohthehugemanatee

ohthehugemanatee.org

 Contributors

 About the author

Claus Matzinger is a software engineer with a very diverse background. After working in a small company maintaining code for embedded devices, he joined a large corporation to work on legacy Smalltalk applications. This led to a great interest in programming languages early on, and Claus became the CTO for a health games start-up based on Scala technology.

Since then, Claus' roles have shifted toward customer-facing roles in the IoT database-technology start-up crate.io and, most recently, Microsoft. There, he hosts a podcast, writes code together with customers, and blogs about the solutions arising from these engagements. For more than 5 years, Claus has implemented software to help customers innovate, achieve, and maintain success.

Any large project is a joint effort, and many people have helped me create this book. There is the Rust community, who eagerly helped with my questions; the Packt team, who provided comments on my writing; my colleagues, with whom I kept discussing language details; and—above all—my future wife, who gave me the space and support to write every day.

Thank you, all!

 About the reviewer

Ivo Balbaert is a former lecturer in (web) programming and databases at CVO Antwerpen, a community college in Belgium. He received a Ph.D. in applied physics from the University of Antwerp in 1986. He worked in the software industry for 20 years, as a developer and consultant in several companies, and for 10 years as a project manager at Antwerp University Hospital. From 2000 onward, he switched to part-time teaching, developing software, and writing technical books.

In 2012, he authored The Way To Go, a book on the Go programming language. He also wrote a number of introductory books on new programming languages, including Dart, Crystal, Julia, Rust, and Red, most of them published by Packt.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Hands-On Data Structures and Algorithms with Rust

	
 About Packt

 	
 Why subscribe?

	
 Packt.com

	
 Foreword

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Download the color images

	
 Download the example code files

	
 Conventions used

	
 Get in touch

 	
 Reviews

	
 Hello Rust!

 	
 Rust in 2018

 	
 The 2018 edition

	
 The Rust language

 	
 Objects and behavior

	
 Going wrong

	
 Macros

	
 Unsafe

	
 Borrowing and ownership

 	
 Exceptional lifetimes

	
 Multiple owners

	
 Concurrency and mutability

 	
 Immutable variables

 	
 Shadowing

	
 Interior mutability

	
 Moving data

	
 Sharing data

	
 Send and Sync

	
 Deeper into Rust

 	
 Requests for Comments (RFCs)

	
 Summary

	
 Questions

	
 Further reading

	
 Cargo and Crates

 	
 Cargo

 	
 Project configuration

 	
 The manifest – Cargo.toml

 	
 Package

	
 Profiles

	
 Dependencies

	
 Dependencies – Cargo.lock

	
 Commands

 	
 The compile and run commands

	
 Testing

	
 Third-party subcommands

	
 Crates

 	
 Rust libraries and binaries

 	
 Static and dynamic libraries

	
 Linking and interoperability

 	
 FFI

	
 Wasm

	
 The main repository – crates.io

 	
 Publishing

	
 Summary

	
 Questions

	
 Further reading

	
 Storing Efficiently

 	
 Heaps and stacks

 	
 Sized and unsized

 	
 Generics

	
 Accessing the box

	
 Copying and cloning

	
 Immutable storage

 	
 States and reasoning

	
 Concurrency and performance

	
 Summary

	
 Questions

	
 Further reading

	
 Lists, Lists, and More Lists

 	
 Linked lists

 	
 A transaction log

	
 Adding entries

	
 Log replay

	
 After use

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Doubly linked list

 	
 A better transaction log

	
 Examining the log

 	
 Reverse

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Skip lists

 	
 The best transaction log

 	
 The list

	
 Adding data

 	
 Leveling up

	
 Jumping around

	
 Thoughts and discussion

 	
 Upsides

	
 Downsides

	
 Dynamic arrays

 	
 Favorite transactions

	
 Internal arrays

	
 Quick access

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Summary

	
 Questions

	
 Further reading

	
 Robust Trees

 	
 Binary search tree

 	
 IoT device management

	
 More devices

	
 Finding the right one

 	
 Finding all devices

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Red-black tree

 	
 Better IoT device management

	
 Even more devices

 	
 Balancing the tree

	
 Finding the right one, now

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Heaps

 	
 A huge inbox

	
 Getting messages in

	
 Taking messages out

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Trie

 	
 More realistic IoT device management

	
 Adding paths

	
 Walking

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 B-Tree

 	
 An IoT database

	
 Adding stuff

	
 Searching for stuff

 	
 Walking the tree

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Graphs

 	
 The literal Internet of Things

	
 Neighborhood search

	
 The shortest path

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Summary

	
 Questions

	
 Exploring Maps and Sets

 	
 Hashing

 	
 Create your own

	
 Message digestion

	
 Wrap up

	
 Maps

 	
 A location cache

 	
 The hash function

	
 Adding locations

	
 Fetching locations

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Sets

 	
 Storing network addresses

	
 Networked operations

 	
 Union

	
 Intersection

	
 Difference

	
 Wrap up

 	
 Upsides

	
 Downsides

	
 Summary

	
 Questions

	
 Further reading

	
 Collections in Rust

 	
 Sequences

 	
 Vec<T> and VecDeque<T>

 	
 Architecture

	
 Insert

	
 Look up

	
 Remove

	
 LinkedList<T>

 	
 Architecture

	
 Insert

	
 Look up

	
 Remove

	
 Wrap up

	
 Maps and sets

 	
 HashMap and HashSet

 	
 Architecture

	
 Insert

	
 Lookup

	
 Remove

	
 BTreeMap and BTreeSet

 	
 Architecture

	
 Insert

	
 Look up

	
 Remove

	
 Wrap up

	
 Summary

	
 Questions

	
 Further reading

	
 Algorithm Evaluation

 	
 The Big O notation

 	
 Other people's code

	
 The Big O

 	
 Asymptotic runtime complexity

	
 Making your own

 	
 Loops

	
 Recursion

	
 Complexity classes

 	
 O(1)

	
 O(log(n))

	
 O(n)

	
 O(n log(n))

	
 O(n²)

	
 O(2n)

	
 Comparison

	
 In the wild

 	
 Data structures

	
 Everyday things

	
 Exotic things

	
 Summary

	
 Questions

	
 Further reading

	
 Ordering Things

 	
 From chaos to order

 	
 Bubble sort

	
 Shell sort

	
 Heap sort

	
 Merge sort

	
 Quicksort

	
 Summary

	
 Questions

	
 Further reading

	
 Finding Stuff

 	
 Finding the best

 	
 Linear searches

	
 Jump search

	
 Binary searching

	
 Wrap up

	
 Summary

	
 Questions

	
 Further reading

	
 Random and Combinatorial

 	
 Pseudo-random numbers

 	
 LCG

	
 Wichmann-Hill

	
 The rand crate

	
 Back to front

 	
 Packing bags or the 0-1 knapsack problem

	
 N queens

	
 Advanced problem solving

 	
 Dynamic programming

 	
 The knapsack problem improved

	
 Metaheuristic approaches

 	
 Example metaheuristic – genetic algorithms

	
 Summary

	
 Questions

	
 Further reading

	
 Algorithms of the Standard Library

 	
 Slicing and iteration

 	
 Iterator

	
 Slices

	
 Search

 	
 Linear search

	
 Binary search

	
 Sorting

 	
 Stable sorting

	
 Unstable sorting

	
 Summary

	
 Questions

	
 Further reading

	
 Assessments

 	
 Chapter 1

	
 Chapter 2

	
 Chapter 3

	
 Chapter 4

	
 Chapter 5

	
 Chapter 6

	
 Chapter 7

	
 Chapter 8

	
 Chapter 9

	
 Chapter 10

	
 Chapter 11

	
 Chapter 12

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

When I first made the effort of learning one programming language a year, I started with Ruby, then learned a bit of Scala, until, in 2015, I started with a very new language: Rust. My first attempts at creating a Slack (a team chat program) bot were somewhat successful but very frustrating. Being used to Python's flexibility with JSON data and permissive compiler, Rust's steep learning curve quickly took its toll.

The next projects were more successful. A database driver, as well as my very own Internet of Things (IoT)-type client and server application for the Raspberry Pi, allowed me to collect temperature data in a rock-solid manner. Unlike Python, if the program compiled, it would almost certainly work as expected—and I loved it.

Since then, a lot has changed. Big companies such as Microsoft and Amazon are picking up Rust as a way to create safe and fast code on embedded devices as well as in the cloud. With WebAssembly (Wasm), Rust is gaining traction in the web frontend space, and gaming companies are starting to build game engines in Rust. 2018 has been a great year for the technology and the Rust community, both of which will continue to grow in 2019 (and beyond).

For this reason, I hope to provide a learning resource for creating more sophisticated Rust code from a practical angle. Wherever your journey leads you, learning about Rust and its various programming models will change your view of code for the better.

 Who this book is for

Rust has great tutorials for learning the fundamentals of the language. There are workshops at every conference, regular meetups in many cities, and a very helpful online community. However, many developers find themselves beyond these resources but still don't feel ready for more complex solutions. Especially coming from different backgrounds with years of experience, the transition can be daunting: examples on the one side feature some type of a "Hello World!" program; on the other side, there are huge Rust open source projects with thousands of lines of code – impossible to learn from quickly. If you feel like this, then this book is for you.

 What this book covers

Chapter 1, Hello Rust!, gives a short recap of the Rust programming language and what changed in the 2018 edition.

Chapter 2, Cargo and Crates, discusses Rust's cargo build tool. We will explore the configuration as well as the build process and modularization options.

Chapter 3, Storing Efficiently, looks at how in Rust, knowing where values are stored is not only important for performance, but also important for understanding error messages and the language in general. In this chapter, we think about stack and heap memory.

Chapter 4, Lists, Lists, and More Lists, covers the first data structures: lists. Using several examples, this chapter goes into variations of sequential data structures and their implementations.

Chapter 5, Robust Trees, continues our journey through popular data structures: trees are next on the list. In several detailed examples, we explore the inner workings of these efficient designs and how they improve application performance considerably.

Chapter 6, Exploring Maps and Sets, explores the most popular key-value stores: maps. In this chapter, techniques surrounding hash maps; hashing; and their close relative, the set; are described in detail.

Chapter 7, Collections in Rust, attempts to connect to the Rust programmer's daily life, going into the details of the Rust std::collections library, which contains the various data structures provided by the Rust standard library.

Chapter 8, Algorithm Evaluation, teaches you how to evaluate and compare algorithms.

Chapter 9, Ordering Things, will look at sorting values, an important task in programming—this chapter uncovers how that can be done quickly and safely.

Chapter 10, Finding Stuff, moves onto searching, which is especially important if there is no fundamental data structure to support it. In these cases, we use algorithms to be able to quickly find what we are looking for.

Chapter 11, Random and Combinatorial, is where we will see that, outside of sorting and searching, there are many problems that can be tackled algorithmically. This chapter is all about those: random number generation, backtracking, and improving computational complexities.

Chapter 12, Algorithms of the Standard Library, explores how the Rust standard library does things when it comes to everyday algorithmic tasks such as sorting and searching.

 To get the most out of this book

This book comes with a lot of code examples and implementations. For you to learn the most that you can, it is recommended to install Rust (any version later than 1.33 should do) and run all of the examples. Here are a few recommendations for text editors and other tools:

	Microsoft's Visual Studio Code (https://code.visualstudio.com/), arguably one of the best Rust code editors

	Rust support for Visual Studio Code via a plugin (https://github.com/rust-lang/rls-vscode)

	Rust Language Server (RLS), found at https://github.com/rust-lang/rls-vscode, installed via rustup (https://rustup.rs/)

	Debugging support using the LLDB frontend plugin (https://github.com/vadimcn/vscode-lldb) for Visual Studio Code

Having this environment set up and being familiar with it is great for your daily Rust programming, and will let you debug and inspect the workings of the code provided in this book. For you to get the most out of this book, we recommend that you do the following:

	Check out the source code in the repository to get the whole picture. The snippets are only isolated examples to show specifics.

	Don't blindly trust our results; run the tests and benchmarks of each sub-project (chapters) to reproduce the findings yourself.

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here https://www.packtpub.com/sites/default/files/downloads/9781788995528_ColorImages.pdf.

 Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packt.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Hands-On-Data-Structures-and-Algorithms-with-Rust. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The reason is that the passing_through variable outlives x."

A block of code is set as follows:

fn my_function() {
 let x = 10;
 do_something(x); // ownership is moved here
 let y = x; // x is now invalid!
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

fn main() {
 let mut a = 42;
 let b = &a; // borrow a
 let c = &mut a; // borrow a again, mutably
 // ... but don't ever use b
}

Any command-line input or output is written as follows:

$ cargo test

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Hello Rust!

First, thank you for picking up a copy of this book! Many of you will only have talked about the topic of algorithms and data structures back in university. In fact, regardless of whether this is your first endeavor in programming or not, we worked hard to make this book a great learning experience. Our primary focus will be the unique influence of Rust on algorithm and data structure design, so we would like to start with a recap of important fundamentals.

Starting off with the Rust 2018 edition changes, we will cover how borrowing and ownership, mutability, and concurrency influence how and where data can be held, and what algorithms can be executed. In this chapter, you can look forward to learning about the following:

	A quick refresh on Rust and what awaits in the 2018 edition (Rust 1.31)

	The latest and greatest about borrowing and ownership

	How we can leverage concurrency and mutability properly

	References (not pointers!) to where Rust lives

 Rust in 2018

How old is Rust? It started off in 2006 as a side project of Graydon Hoare, an engineer at Mozilla, and was later (in 2009) adopted by the company. Fast forward to less than a decade later to May 15, 2015, and the Rust team announced a stable version 1.0!

During its journey, there have been many features that have been added and removed again (for example, a garbage collector, classes, and interfaces) to help it become the fast and safe language that it is today.

Before getting deeper into borrowing and ownership, mutability, concurrency, safety, and so on in Rust, we would like to recap some major concepts in Rust and why they change architectural patterns significantly.

 The 2018 edition

Rust in the 2015 edition is essentially the 1.0 version with a few non-breaking additions. Between 2015 and 2018, however, features and Requests for Comments (RFCs), Rust's way of changing core features with the community, accumulated, and worries about backward compatibility arose.

With the goal of keeping this compatibility, editions were introduced and, with the first additional edition, many major changes made it into the language:

	Changes to the module path system

	dyn Trait and impl Trait syntax

	async/await syntax

	Simplifications to the lifetime syntax

With these additions, Rust will introduce asynchronous programming into its syntax (async/await keywords) and improve the language's usability. This book uses the Rust 2018, released on December 6, 2018 (https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html) edition by default, so all the following snippets will already include these new language features!

 The Rust language

Many of the established programming languages today are multi-paradigm languages, but still remain focused on the principles of object orientation. This means that they have classes, methods, interfaces, inheritance, and so on, none of which can be found in Rust, giving it a steep learning curve for many established developers.

More experienced readers will miss many aspects of what makes Rust an excellent language, such as static versus dynamic method invocation, memory layouts, and so on. I recognize the importance of those things, yet for brevity and focus chose to leave it to you to explore these things further. Check the Further reading section for resources.

As a multi-paradigm language, Rust has many functional concepts and paradigms that guide it, but they make traditional object-oriented patterns more difficult to apply. Other than organizing code without classes and interfaces, there are various methods to handle errors, change the code itself, or even work with raw pointers.

In the following sections, we want to explore a few concepts that make Rust unique and have a major influence on the way we develop algorithms and data structures.

 Objects and behavior

Organizing code in Rust is a bit different from regular object-oriented languages such as C#. There, an object is supposed to change its own state, interfaces are simple contract definitions, and specialization is often modeled using class inheritance:

class Door {
 private bool is_open = false;

 public void Open() {
 this.is_open = true;
 }
}

With Rust, this pattern would require constant mutability of any Door instance (thereby requiring explicit locking for thread safety), and without inheritance GlassDoor would have to duplicate code, making it harder to maintain.

Instead, it's recommended to create traits to implement (shared) behavior. Traits have a lot in common with abstract classes in traditional languages (such as default implementations of methods/functions), yet any struct in Rust can (and should) implement several of those traits:

struct Door {
 is_open: bool
}

impl Door {
 fn new(is_open: bool) -> Door {
 Door { is_open: is_open }
 }
}

trait Openable {
 fn open(&mut self);
}

impl Openable for Door {
 fn open(&mut self) {
 self.is_open = true;
 }
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn open_door() {
 let mut door = Door::new(false);
 door.open();
 assert!(door.is_open);
 }
}

This pattern is very common in the standard library, and often third-party libraries will even add behavior to existing types by implementing traits in their code (also known as extension traits).

Other than a typical class, where data fields and methods are in a single construct, Rust emphasizes the separation between those by declaring a struct for data and an impl part for the methods/functions. Traits name and encapsulate behaviors so they can easily be imported, shared, and reused.

 Going wrong

Other than classes, Rust comes without another well-known companion: null. In the absence of pointers and with a very different memory management model, there is no typical null pointer/reference.

Instead, the language works with Option and Result types that let developers model success or failure. In fact, there is no exception system either, so any failed execution of a function should be indicated in the return type. Only in rare cases when immediate termination is required does the language provide a macro for panicking: panic!().

Option<T> and Result<T, E> both encapsulate one (Option<T>) or two (Result<T, E>) values that can be returned to communicate an error or whether something was found or not. For example, a find() function could return Option<T>, whereas something like read_file() would typically have a Result<T, E> return type to communicate the content or errors:

fn find(needle: u16, haystack: Vec<u16>) -> Option<usize> {
 // find the needle in the haystack
}

fn read_file(path: &str) -> Result<String, io::Error> {
 // open the path as a file and read it
}

Handling those return values is often done with match or if let clauses in order to handle the cases of success or failure:

match find(2, vec![1,3,4,5]) {
 Some(_) => println!("Found!"),
 None => println!("Not found :(")
}

// another way
if let Some(result) = find(2, vec![1,2,3,4]) {
 println!("Found!")
}

// similarly for results!
match read_file("/tmp/not/a/file") {
 Ok(content) => println!(content),
 Err(error) => println!("Oh no!")
}

This is due to Option<T> and Result<T, E> both being enumerations that have generic type parameters; they can assume any type in their variants. Matching on their variants provides access to their inner values and types to allow a branch of the code to be executed and handle the case accordingly. Not only does this eliminate the need for constructs such as try/catch with multiple—sometimes cast—exception arms, it makes failure part of the normal workflow that needs to be taken care of.

 Macros

Another aspect of Rust is the ability to do metaprogramming—basically programming programming—using macros! Macros are expanded in Rust code before compilation, which gives them more power than a regular function. The generated code can, for instance, create functions on the fly or implement traits for a structure.

These pieces of code make everyday life a lot easier by reducing the need to create and then initialize vectors, deriving the ability to clone a structure, or simply printing stuff to the command line.

This is a simplified example for the declarative vec![] macro provided in the Rust Book (second edition, Appendix D):

#[macro_export]
macro_rules! vec {
 ($($x:expr),*) => {
 {
 let mut temp_vec = Vec::new();
 $(temp_vec.push($x);)*
 temp_vec
 }
 };
}

Declarative macros work on patterns and run code if that pattern matches; the previous example matches 0 - n expressions (for example, a number, or a function that returns a number) and inserts temp_vec.push(...) n times, iterating over the provided expressions as a parameter.

The second type, procedural macros, operate differently and are often used to provide a default trait implementation. In many code bases, the #[derive(Clone, Debug)] statement can be found on top of structures to implement the Clone and Debug traits automatically.

Later in this chapter, we are going to use a structure, FileName, to illustrate reference counting, but for printing it to the command line using the debug literal "{:?}", we need to derive Debug, which recursively prints all members to the command line:

#[derive(Debug)]
struct FileName {
 name: Rc<String>,
 ext: Rc<String>
}

The Rust standard library provides several macros already, and by creating custom macros, you can minimize the boilerplate code you have to write.

 Unsafe

Rust's code is "safe" because the compiler checks and enforces certain behavior when it comes to memory access and management. However, sometimes these rules have to be forgone, making the code unsafe. unsafe is a keyword in Rust and declares a section of code that can do most of the things the C programming language would let you do. For example, it lets the user do the following (from the Rust Book, chapter 19.1):

	Dereference a raw pointer

	Call an unsafe function or method

	Access or modify a mutable static variable

	Implement an unsafe trait

These four abilities can be used for things such as very low-level device access, language interoperability (the compiler can't know what native libraries do with their memory), and so on. In most cases, and certainly in this book, unsafe is not required. In fact, the Rustonomicon (https://doc.rust-lang.org/nomicon/what-unsafe-does.html) defines a list of issues the language is trying to prevent from happening by providing the safe part:

	Dereferencing null, dangling, or unaligned pointers.

	Reading uninitialized memory.

	Breaking the pointer aliasing rules.

	Producing invalid primitive values:

	Dangling/null references

	Null fn pointers

	A bool that isn't 0 or 1

	An undefined enum discriminant

	A char outside the ranges [0x0, 0xD7FF] and [0xE000, 0x10FFFF]

	A non-UTF8 string

	Unwinding into another language.

	Causing a data race.

The fact that these potential issues are prevented in safe Rust certainly makes the life of a developer easier, especially when designing algorithms or data structures. As a consequence, this book will always work with safe Rust.

 Borrowing and ownership

Rust is famous for its memory management model, which replaces runtime garbage collection with compile-time checks for memory safety. The reason why Rust can work without a garbage collector and still free the programmer from error-prone memory management is simple (but not easy): borrowing and ownership.

While the particulars are quite complex, the high-level view is that the compiler inserts any "provide x amounts of memory" and "remove x amounts of memory" (somewhat like malloc() and free() for C programmers) statements for the developer. Yet how can it do that?

The rules of ownership are as follows:

	The owner of a value is a variable

	At any time, only a single owner is allowed

	The value is lost once the owner goes out of scope

This is where Rust's declarative syntax comes into play. By declaring a variable, the compiler knows—at compile time—that a certain amount of memory needs to be reserved. The lifetime is clearly defined too, from the beginning to end of a block or function, or as long as the struct instance lives. If the size of this variable is known at compile time, the compiler can provide exactly the necessary amount of memory to the function for the time required. To illustrate, let's consider this snippet, where two variables are allocated and removed in a deterministic order:

fn my_func() {
 // the compiler allocates memory for x
 let x = LargeObject::new();
 x.do_some_computation();
 // allocate memory for y
 let y = call_another_func();
 if y > 10 {
 do_more_things();
 }
} // deallocate (drop) x, y

Is this not what every other compiler does? The answer is yes—and no. At compile time, the "provide x amounts of memory" part is fairly simple; the tricky part is keeping track of how much is still in use when references can be passed around freely. If, during the course of a function, a particular local reference becomes invalid, a static code analysis will tell the compiler about the lifetime of the value behind the reference. However, what if a thread changes that value at an unknown time during the function's execution?

At compile time, this is impossible to know, which is why many languages do these checks at runtime using a garbage collector. Rust forgoes this, with two primary strategies:

	Every variable is owned by exactly one scope at any time

	Therefore, the developer is forced to pass ownership as required

Especially when working with scopes, the nature of stack variables comes in handy. There are two areas of memory, stack and heap, and, similar to other languages, the developer uses types to decide whether to allocate heap (Box, Rc, and so on) or stack memory.

Stack memory is usually short-lived and smaller, and operates in a first-in, last-out manner. Consequently, a variable's size has to be known before it is put on the stack:

Heap memory is different; it's a large portion of the memory, which makes it easy to allocate more whenever needed. There is no ordering, and memory is accessed by using an addresses. Since the pointer to an address on the heap has a known size at compile time, it fits nicely on the stack:

Stack variables are typically passed by value in other languages, which means that the entire value is copied and placed into the stack frame of the function. Rust does the same, but it also invalidates further use of that variable in the—now parent—scope. Ownership moves into the new scope and can only be transferred back as a return value. When trying to compile this snippet, the compiler will complain:

fn my_function() {
 let x = 10;
 do_something(x); // ownership is moved here
 let y = x; // x is now invalid!
}

Borrowing is similar but, instead of copying the entire value, a reference to the original value is moved into the new scope. Just like in real life, the value continues to be owned by the original scope; scopes with a reference are just allowed to use it as it was provided. Of course, this comes with drawbacks for mutability, and some functions will require ownership for technical and semantic reasons, but it also has advantages such as a smaller memory footprint.

These are the rules of borrowing:

	Owners can have immutable or mutable references, but not both

	There can be multiple immutable references, but only one mutable reference

	References cannot be invalid

By changing the previous snippet to borrow the variable to do_something() (assuming this is allowed, of course), the compiler will be happy:

fn my_function() {
 let x = 10;
 do_something(&x); // pass a reference to x
 let y = x; // x is still valid!
}

Borrowed variables rely heavily on lifetimes. The most basic lifetime is the scope it was created in. However, if a reference should go into a struct field, how can the compiler know that the underlying value has not been invalidated? The answer is explicit lifetimes!

 Exceptional lifetimes

Some lifetimes are different and Rust denominates them with a '. While this could be the predefined 'static, it's equally possible to create your own, something that is often required when working with structures.

This makes sense when thinking about the underlying memory structure: if an input parameter is passed into the function and returned at the end, its lifetime surpasses the function's. While the function owns this part of the memory during its lifetime, it cannot borrow a variable for longer than it actually exists. So, this snippet cannot work:

fn another_function(mut passing_through: MyStruct) -> MyStruct {
 let x = vec![1, 2, 3];

 // passing_through cannot hold a reference
 // to a shorter lived x!
 // the compiler will complain.
 passing_through.x = &x;

 return passing_through;
} // x's life ends here

The reason is that the passing_through variable outlives x. There are several solutions to this problem:

	Change the type definition of MyStruct to require ownership. This way, the structure now owns the variable and it will live as long as the structure:

fn another_function(mut passing_through: MyStruct) -> MyStruct {
 let x = vec![1, 2, 3];

 // passing_through owns x and it will be
 // dropped together with passing_through.
 passing_through.x = x;

 return passing_through;
}

	Clone x to pass ownership into passing_through:

fn another_function(mut passing_through: MyStruct) -> MyStruct {
 let x = vec![1, 2, 3];
 let y = &x;

 // passing_through owns a deep copy of x'value that is be
 // dropped together with passing_through.
 passing_through.x = y.clone();

 return passing_through;
}

	In this case, vec![] is statically defined, so it could make sense to add it as a function parameter. This is not only more allocation-efficient, but also can enforce an appropriate lifetime:

fn another_function<'a>(mut passing_through: MyStruct<'a>, x: &'a Vec<u32>) -> MyStruct<'a> {

 // The compiler knows and expects a lifetime that is
 // at least as long as the struct's
 // of any reference passed in as x.
 passing_through.x = x;

 return passing_through;
}

Lifetimes cause a lot of strange errors for many Rust users, and in the 2018 edition there is one less to worry about. With the introduction of non-lexical lifetimes, the borrow checker got a lot smarter and it is now able to check—up to a certain degree—semantically whether the variable was used. Recall from the rules of borrowing that, if a mutable reference is created, no immutable references can exist.

This code did not compile before Rust 1.31:

fn main() {
 let mut a = 42;
 let b = &a; // borrow a
 let c = &mut a; // borrow a again, mutably
 // ... but don't ever use b
}

Now it will compile since the compiler does not just check the beginning and ending of a scope, but also if the reference was used at all.

 Multiple owners

As powerful as single ownership is, it does not work for every use case. Large objects or shared objects that other instances need to own are examples where immutable ownership makes life easier. Consider a function that requires an owned object to be passed in:

#[derive(Debug)]
struct FileName {
 name: String,
 ext: String
}

fn no_ref_counter() {
 let name = String::from("main");
 let ext = String::from("rs");

 for _ in 0..3 {
 println!("{;?}", FileName {
 name: name,
 ext: ext
 });
 }
}

When trying to compile no_ref_counter(), the compiler creates a scope for each iteration of the loop and owns any value that is used within it. This works exactly once, since afterward, the variable has been moved and is inaccessible for subsequent iterations.

Consequently, these values (in this case, name and ext) are gone and compilation will yield two errors, one for each "second" move of a string:

error[E0382]: use of moved value: `name`
 --> src/main.rs:63:33
 |
63 | let _ = FileName { name: name, ext: ext };
 | ^^^^ value moved here in previous iteration of loop
 |
 = note: move occurs because `name` has type `std::string::String`, which does not implement the `Copy` trait

error[E0382]: use of moved value: `ext`
 --> src/main.rs:63:44
 |
63 | let _ = FileName { name: name, ext: ext };
 | ^^^ value moved here in previous iteration of loop
 |
 = note: move occurs because `ext` has type `std::string::String`, which does not implement the `Copy` trait

One solution is to clone the object in every iteration, but that causes a lot of slow memory allocations. For this, the Rust standard library provides a solution: reference counting.

A reference counter (std::rc::Rc<T>) encapsulates a variable of type T allocated on the heap and returns an immutable reference when created. This reference can be cloned with low overhead (it's only a reference count that is incremented) but never transformed into a mutable reference. Regardless, it acts just like owned data, passing through function calls and property lookups.

While this requires a change to the variable types, a call to clone() is now far cheaper than cloning the data directly:

use std::rc::Rc;

#[derive(Debug)]
struct FileName {
 name: Rc<String>,
 ext: Rc<String>
}

fn ref_counter() {
 let name = Rc::new(String::from("main"));
 let ext = Rc::new(String::from("rs")));

 for _ in 0..3 {
 println!("{;?}", FileName {
 name: name.clone(),
 ext: ext.clone()
 });
 }
}

Running this snippet prints the debug version of the FileName object three times:

FileName { name: "main", ext: "rs" }
FileName { name: "main", ext: "rs" }
FileName { name: "main", ext: "rs" }

This approach works great for single-threaded and immutable scenarios, but will refuse to compile multithreaded code. The solution to this will be discussed in the next section.

 Concurrency and mutability

Rust's approach to managing memory is a powerful concept. In fact, it is powerful enough to also facilitate concurrency and parallel execution. However, first things first: how do threads work in the Rust standard library?

Concurrency and parallelism are two different modes of execution. While concurrency means that parts of a program run independently of each other, parallelism refers to these parts executing at the same time. For simplicity, we will refer to both concepts as concurrency.

Due to its low-level nature, Rust provides an API to the operating system's threading capabilities (for example, POSIX on Linux/Unix systems). If no variables are passed into the scope, their usage is very straightforward:

use std::thread;

fn threading() {
 // The to pipes (||) is the space where parameters go,
 // akin to a function signature's parameters, without
 // the need to always declare types explicitly.
 // This way, variables can move from the outer into the inner scope
 let handle = thread::spawn(|| {
 println!("Hello from a thread");
 });
 handle.join().unwrap();
}

However, when passing data back and forth, more work has to be done to hold up Rust's safety guarantees, especially when mutability comes into play. Before getting into that, it is important to recap immutability.

OEBPS/assets/99ae5479-55be-4a3e-8b68-296f1210ccfc.png
Mapt

OEBPS/assets/04d4f181-3289-4b0a-97ed-7942ad366875.png
STACK

Ox5FF

0x0...

LOCAL
VARIABLES

RETURN ADDR

PARAMETERS
FUNCTION

Co

LOCAL
VARIABLES

RETURN ADDR

PARAMETERS
FUNCTION

—

BO

——

. In C(x:f32, y:f32) {

letv = x+vy;

_. fn B(a:i32, b:u64) {

letx = 10.5;
lety = 13.4;
Cxy);

oy

OEBPS/assets/6cf5ee2f-213f-41a4-a41f-fa8322027dd6.png

OEBPS/assets/70659056-9047-457b-8b69-06c4d1bb897d.png

OEBPS/assets/c936dbc1-449f-44ed-a47c-cdace66f636c.png
Packb

OEBPS/assets/914d7730-c2d3-4930-b7b2-a47ee7106587.png
Data Structures
and Algorithms
with Rust

Learn programming techniques to build effective, maintainable,
and readable code in Rust 2018

Claus Matzinger

OEBPS/assets/f30496bb-f144-45a9-befa-4e66a0f8b4cf.png
STACK

z: Box <String> Ox05ff
x:f32 10.1

HEAP

y: 32 42.0
RETURN ADDRESS

PARAMETERS

Box

s: Ox15ff
len: 10

HELLO
WORLD

