
		
			[image: Cover.png]
		

	
		
			Fedora Linux System Administration

			Install, manage, and secure your Fedora Linux environments

			Alex Callejas

			[image:]

			BIRMINGHAM—MUMBAI

			Fedora Linux System Administration

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Neha Sharma

			Senior Editor: Sayali Pingale

			Technical Editor: Arjun Varma

			Copy Editor: Safis Editing

			Project Manager: Ashwin Kharwa

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Vijay Kamble

			Marketing Coordinators: Marylou De Mello and Shruthi Shetty

			First published: November 2023

			Production reference: 1271023

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80461-840-0

			www.packtpub.com.

			To Mayra, my beloved sidekick and wife –

			thank you for being there and being the right spark.

			To Angel and Gael – never stop dreaming.

			To Mom, Dad, and my brothers forever.

			– Alex Callejas

			Contributors

			About the author

			Alex Callejas is a services content architect at Red Hat, the world’s leading provider of enterprise open source solutions, including Linux, the cloud, containers, and Kubernetes. He is based in Mexico City and is a free and open source software contributor. With more than 20 years of experience as a system administrator, he has strong expertise in infrastructure hardening and automation. An enthusiast of open source solutions, he supports the community by sharing his knowledge at different public-access and university events.

			Geek by nature, Linux by choice, and Fedora of course.

			About the reviewers

			Ben Cotton has been active in Fedora and other open source communities for over a decade. His career has taken him through the public and private sector in roles that include desktop support, high-performance computing administration, marketing, and program management. Ben is the author of Program Management for Open Source Projects, and he has contributed to the book Human at a Distance and to articles for The Next Platform, Opensource.com, Scientific Computing, and others.

			Jose “Kaz” Casimiro Rios has been working with Linux since 1994. He has been a jack-of-all-trades in the IT industry, covering roles as diverse as system administrator, DBA, developer, support engineer, and instructor. Kaz currently works for Red Hat as a systems design engineer for the Certification team, helping them with the building, development, and support for the certification exams.

			I want to thank my wife for always bringing her support and understanding into my life. I’d also like to thank my cats for making my life fun every day.

			Iván Chavero

		

	
		
			Table of Contents

			Preface

			Part 1: The Fedora Project

			1

			Linux and Open Source Projects

			A brief history of Linux

			Understanding Linux distributions

			The Fedora Project

			The Red Hat contribution path

			Fedora’s mission and foundations

			Contributing to the project

			Fedora as a system administration tool

			The command-line interface

			The basics

			Guided example – releasing space in the filesystem

			Desktop environments

			Summary

			Further reading

			Part 2: Workstation Configuration

			2

			Best Practices for Installation

			Technical requirements

			Creating the boot media

			Fedora Media Writer

			Booting

			Partitioning local storage

			The first startup

			Package management

			Extra package selection

			Summary

			Further reading

			3

			Tuning the Desktop Environment

			Technical requirements

			Initial system tuning

			Tuning the swappiness value

			Tuning the desktop experience

			GNOME Tweak Tool

			Customizing the panel and the taskbar

			The taskbar

			Making tasks easy with widgets

			Conky

			Handy applications with docks

			Summary

			Further reading

			4

			Optimizing Storage Usage

			Technical requirements

			Understanding file formats and filesystems

			Creating a Btrfs filesystem

			Optimizing storage space size

			Space allocation check

			Using the btrfs-usage-report command

			Deep diving into Logical Volume Manager

			Differences between snapshots

			Discovering Stratis storage

			Creating a Stratis pool

			Summary

			Further reading

			5

			Network and Connectivity

			Technical requirements

			Walking through the basics

			NetworkManager command-line interface (nmcli)

			Tuning wireless connectivity

			Identifying the device

			Finding the best quality network connection

			nm-connection-editor

			What about security?

			Improving network connectivity using a VPN

			IPSec-based VPN

			OpenVPN

			Configuring a VPN client with the Control Center

			Network performance monitoring

			nmon

			bpytop

			Summary

			Further reading

			Part 3: Productivity Tools

			6

			Sandbox Applications

			Technical requirements

			Inspecting sandbox applications

			SELinux sandbox

			Diving deep into AppImage apps

			Running an AppImage

			Developing AppImages

			Examining Flatpak applications

			Using Flatpak applications

			Building Flatpak applications

			Summary

			Further reading

			7

			Text Editors

			Technical requirements

			Text editors and the command line

			Emacs overview

			The basics

			Mastering GNU Emacs

			Nano basics

			The mighty vim

			The basics

			Mastering vim

			Summary

			Further reading

			8

			LibreOffice Suite

			Technical requirements

			Exploring office tools on Fedora Linux

			WPS Office

			ONLYOFFICE

			Calligra

			Fonts

			LibreOffice

			Getting used to Writer and Calc

			Writer

			Calc

			Creating slides and image management

			Summary

			Further reading

			9

			Mail Clients and Browsers

			Technical requirements

			Mailing with Evolution

			Mailing with Thunderbird

			Trusty old Firefox

			Customizing Firefox

			Expanding browsing with Google Chrome

			Summary

			Further reading

			Part 4: System Administration Tools

			10

			System Administration

			Technical requirements

			The three laws of the SysAdmin

			The KISS principle

			Knowing the basic tasks

			A little bit of Git and programming

			Bash scripting

			Git

			The basics

			Don’t forget to back up

			Archiving and compression

			Version management with Git

			Automating with Ansible

			The basics

			First steps

			Never-ending study

			Summary

			11

			Performance Tuning Best Practices

			Technical requirements

			Understanding kernel tuning

			Tuning kernel parameters

			Main tuning – CPU and memory

			Overview of monitoring tools

			Improving CPU usage

			Improving memory usage

			Don’t ignore storage tuning

			Improving storage space usage

			Boosting performance with network tuning

			Analyzing metrics

			Summary

			12

			Untangling Security with SELinux

			Technical requirements

			Learning about mandatory access control

			Labeling and type enforcement

			How SELinux works

			How to troubleshoot SELinux issues

			Labeling

			SELinux needs to know

			Policy bugs

			Hack attack

			Summary

			Further reading

			13

			Virtualization and Containers

			Technical requirements

			Virtualization with QEMU, KVM, and libvirt

			Management tools

			Streamlining the creation of virtual machines

			Using GNOME Boxes

			Discovering OCI containers with Podman

			Summary

			Further reading

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Linux system administration is a job that requires you to always be on the cutting edge. That is why you need to have the right tools to perform properly.

			Fedora Linux, being a distribution based on the development of Red Hat Enterprise Linux, provides the tools that can help us with this task.

			In this book, I will share with you how to use Fedora Linux as a workstation operating system to manage Linux systems.

			Through advice, best practices, tips, and even some tricks based on my 20 years of experience as a system administrator, I will help you set up a workstation that allows you to optimize a system administrator’s tasks.

			Who this book is for

			This book is for all those who want to start using Fedora Linux as a workstation to perform daily tasks as a system administrator. It will also help you learn how to optimize the distribution’s tools for administration tasks.

			You need to understand the basics of Linux and system administration, but extensive knowledge is not required.

			This book provides a real-world context to use workstations for the most common system administration tasks.

			What this book covers

			Chapter 1, Linux and Open Source Projects, introduces the most popular open source projects and Linux distributions in use today, highlighting their main uses and differences.

			Chapter 2, Best Practices for Installation, examines the best practices for installing Fedora Linux and optimizing its use as a workstation.

			Chapter 3, Tuning the Desktop Environment, provides an overview of the different applets and plug-ins that enhance the usability of the working environment.

			Chapter 4, Optimizing Sorage Usage, offers an analysis of the different types of local storage as well as their configurations to optimize performance.

			Chapter 5, Network and Connectivity, provides an overview of network connectivity management as well as performance monitoring tools.

			Chapter 6, Sandbox Applications, explores the use and configuration of desktop sandbox applications.

			Chapter 7, Text Editors, summarizes the features of the most popular and widely used text editors included in Fedora Linux.

			Chapter 8, LibreOffice Suite, offers an overview of the office tools of the LibreOffice suite and summarizes the main options for each application in the suite – Writer for word processing , Calc for spreadsheets, Impress for slides, and Draw for images.

			Chapter 9, Mail Clients and Browsers, explores the internet productivity tools, mail clients, and browsers included in Fedora Linux, such as Evolution, Thunderbird, Firefox, and Google Chrome.

			Chapter 10, System Administration, provides the basics of system administration, plus some useful tricks and shortcuts. It also looks at the basics of applying best practices.

			Chapter 11, Performance Tuning Best Practices, explores the best practices for operating system tuning as a method of improving system administration performance.

			Chapter 12, SELinux, introduces the basics of policy-based access control as a security enforcement module in Fedora Linux.

			Chapter 13, Virtualization and Containers, offers an overview of the different Fedora Linux virtualization resources. It provides the basics of virtualization and the methods available in Fedora Linux – virtualization based on KVM/libvirt or containers with Podman.

			To get the most out of this book

			Although basic knowledge of Linux is required to administer systems, no in-depth knowledge is needed to follow the installation and configuration guides shown in each chapter.

			
				
					
					
				
				
					
							
							Operating system

						
							
							Download link

						
					

					
							
							Fedora Linux workstation

						
							
							https://fedoraproject.org/workstation/download/

						
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Fedora-Linux-System-Administration. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

			A block of code is set as follows:

			
for <variable> in <list>
do
command <variable>
done
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
if <condition>;
then
<statement 1>
...
<statement n>
else
<statement alternative>
fi
			Any command-line input or output is written as follows:

			
$ sudo grep -E 'svm|vmx' /proc/cpuinfo
$ sudo dnf install qemu-kvm virt-manager virt-viewer guestfstools virt-install genisoimage
			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the Administration panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Fedora Linux System Administration, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/978-1-80461-840-0

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1:The Fedora Project

			This part introduces you to today’s most popular open source projects and Linux distributions, highlighting their main uses and differences. It focuses on the benefits of the Fedora Project and how you can collaborate with it.

			This part contains the following chapter:

			
					Chapter 1, Linux and Open Source Projects

			

		

		
			
			

		

		
			
			

		

	
		
			1

			Linux and Open Source Projects

			System administration is a job that requires the right tools to achieve the required process optimization. To administrate GNU/Linux-based systems, you must have a workstation that facilitates this aforementioned optimization. A Linux workstation provides many advantages in this regard. In my experience, Fedora Linux, a community-developed distribution sponsored by Red Hat, has a recommended set of tools for Linux-based system administration.

			Before learning how to configure a workstation for system administration, we’ll review the history of this operating system so that we have a better context and, above all, know how we can help develop the distribution so that we can improve it.

			In this chapter, we will learn a little more about the following:

			
					A brief history of Linux

					Understanding Linux distributions

					The Fedora Project

					The command-line interface

					Desktop environments

			

			Let’s get started!

			A brief history of Linux

			Before getting into the subject, I would like to provide a little background on the history of the operating system. As we know, the history of personal computing is somewhat short – only about 50 years, and, speaking of GNU/Linux in particular, a little less than that.

			It was dark times at the end of the 1960s when Ken Thompson wrote the first version of Unix on a PDP-7 minicomputer based on Multics, composed of a kernel, a shell, an editor, and an assembler.

			In 1970, the development of the operating system continued at AT&T Bell Labs. Now on a PDP-11 machine, Brian Kernighan suggested the name Uniplexed Information & Computing Service (UNICS). However, the BCPL and B languages that were used presented several implementation problems on the new platform. In 1972, Denis Ritchie, using both languages, developed a new high-level language, now known as the C language, adding data typing and other powerful functions. With that, the Unix system was born.

			Software development for this platform continues, with important additions to the operating system. In 1976, Richard Stallman, a student at MIT, while working in a group that used free software exclusively, wrote the first version of Emacs in Text Editor & Corrector (TECO).

			In the early 1980s, almost all software was proprietary because technology companies focused their efforts individually, without thinking about collaborative development. This led Stallman to create the GNU Project (meaning GNU is not Unix) in 1983, which pursued the creation of a free operating system that was based on Unix. This was because the general design was already proven and portable, bringing back the spirit of cooperativity that had prevailed in the computer community in earlier days.

			Stallman started GNU Emacs by distributing the code for 150 USD. He then used this money to fund the creation of the Free Software Foundation in 1985. Emacs was distributed under the Emacs General Public License, which allowed it to be distributed and used freely while preserving its copyright and restricting him to preserve it even through modifications or additions to the code that could be made later.

			Under this same concept, in 1989, the first version of the GNU General Public License (GPL) was released, extending the use and distribution of free software to all programming developments that adopted it as part of the GNU Project.

			The second version of the license was published in 1991, with the main difference being that the license’s obligations couldn’t be separated due to conflicting obligations. This provision was intended to discourage any party from using a claim of patent infringement or other litigation to prejudice the freedom of users to use the earlier version.

			In the same year, Linus Torvalds, a Finnish student, used Tanenbaum’s 1987 book [Operating Systems: Design and Implementation], Bach’s 1986 book [Design of the UNIX Operating System. Bach, Maurice J. Pearson Education. 1986], and the Jolitz articles [Porting UNIX to the 386: A Practical Approach. William Jolitz. Dr. Dobb’s Journal, Volume 16, Issue 1, Jan. 1991. pp 16–46.], to port some basic tools to create a (free) operating system … for 386(486) AT clones as a hobby and asked for help on the Usenet group comp.os.minix (https://groups.google.com/g/comp.os.minix/c/dlNtH7RRrGA/m/SwRavCzVE7gJ), which became what we know today as Linux:

			
				
					[image: Figure 1.1 – Original post by Linus Torvalds in the Usenet group comp.os.minix]
				

			

			Figure 1.1 – Original post by Linus Torvalds in the Usenet group comp.os.minix

			Linux was not always open source. The first Linux licenses prohibited commercial redistribution. It was with version 0.12, released in early 1992, that the Linux kernel was released under the GPL. According to Linus Torvalds, open sourcing Linux was the best thing he ever did.

			Inspired by the success of this effort, various new software development projects emerged to boost the newly created operating system. These developments provided new functionalities and tools that complemented and facilitated the use of Linux, besides expanding the use of the platform to different areas such as business and personal use.

			The use of the GPL was the driving force behind the development based on the cooperative nature of the computing community.

			This spirit of collaboration founded the basis of what we know today as Linux, but it took a push to make the fruits of these efforts reach everyone. This came with Linux distributions, known as distros.

			Understanding Linux distributions

			The GNU Project experienced some problems implementing the kernel it had officially developed. Known as Hurd, this kernel is a collection of protocols that formalizes how different components should interact with each other (https://www.gnu.org/software/hurd/index.html). The tools worked well but did not have the right cohesion to integrate with the operating system. When Linus Torvalds released the Linux kernel, many enthusiastic developers ported the GNU code, including the compiler to run on it. These efforts filled in the remaining gaps to get a completely free operating system.

			In 1992, Linux and the GNU Project joined forces (http://laurel.datsi.fi.upm.es/~ssoo/IG/download/timeline.html), and Richard Stallman urged to call it GNU/Linux since many of its tools were integrated from the GNU project. This led to the creation of new projects that integrated these GNU tools and the Linux kernel into what we know today as Linux distributions.

			Distributions consist of the Linux kernel, the GNU tools, and a lot of other packages; many distributions also provide an installation system like that of other modern operating systems. Distributions are usually segmented into packages, some of which provide only the kernel binary, compilation tools, and an installer. Packages come as compiled code, with the installation and removal of packages handled by a package management system (PMS) rather than a simple file archiver.

			Some distributions are even delivered as embedded operating systems on some devices, except for mobile distributions, which are based on Android. These distributions are created separately for mobile phones.

			Throughout the years, there have been different GNU/Linux distribution projects, with the ones that have lasted over time being the most important. Besides that, they have led to the birth of new distributions, including the following:

			
					Slackware: Released in 1993, it was originally named Softlanding Linux System (SLS) and included the X Window System. It was the most complete distribution for a short period (1992). With the newest tools of the time, Slackware Linux offered both new and experienced users a full-featured system, suited for use for any need, as a desktop workstation or as a server. Web, FTP, and email services were ready to go out of the box, as was a wide selection of popular desktop environments. A full range of development tools, editors, and libraries was included for users wishing to develop or compile additional software. It was the first distribution to benefit from the work of millions of developers around the world.

					Debian: In 1993, Ian Murdock, disappointed with the poor maintenance and the prevalence of bugs in SLS (later known as Slackware), released what he initially called the Debian Linux Release. Debian is a portmanteau (a blend of words in which parts of several words are combined into a new word) of his then-girlfriend Debra Lynn’s first name and his name. The stable branch of Debian is the most used in personal computers and servers. The release included the Debian Linux Manifesto, with Murdock’s vision for his operating system, in which he called to keep it “open in the spirit of Linux and GNU.” Debian releases are codenamed based on characters from the Toy Story movies. Debian is also the basis for many other distributions, with Ubuntu being the most notable of them. Debian uses dpkg (Debian Package) as a package management system, as well as its numerous derivations.

					Red Hat: Also in 1993, Marc Ewing was creating, debugging, and circulating his own Linux distribution on CD from his home in Raleigh, North Carolina. The name Red Hat came from his computer lab days in college; he always wore a red hat and users would say. “If you need help, look for the guy in the red hat.” Bob Young met him at a tech conference and started buying his CDs for resale due to the growing interest in Linux. In 1995, they joined forces to create Red Hat Software. Red Hat uses rpm (named Red Hat Package Manager initially; as it became popular among various Linux distributions, it changed to RPM Package Manager) as a package management system, as well as its numerous derivations.

			

			Now, it is time to learn about the distribution we use, which has several interesting precepts.

			The Fedora Project

			Red Hat Linux was released every 6 months and was even available at Best Buy. After several releases, it began to have large enterprise customers, partly thanks to the monopoly lawsuit suffered by Microsoft around 2000, but it did not have a defined support cycle to meet these customers’ needs. The company realized that they were trying to develop their product on two different fronts – on the one hand, looking for the stability required by the industry, while on the other hand, looking for innovation using the latest open source developments.

			Thus, they opted to split their efforts into two fundamentally separate entities – Red Hat Enterprise Linux (RHEL) and the Fedora Project – each of which addressed its own problems as best it could.

			For RHEL, the job was to make it a solid, stable platform that its customers and partners could count on for 5 to 7-year support cycles. Red Hat first offered an enterprise Linux support subscription for Red Hat Linux 6.1. This was not a standalone product; rather, the subscription offering was called Red Hat 6.2E. Subsequently, Red Hat began building a standalone product with commercial service-level agreements and a longer life cycle based on Red Hat Linux.

			Fedora Linux is developed by the Fedora Project (originally named Fedora.us) and sponsored by Red Hat. It follows its own release schedule, with a new version every 6 months (in April and October). Fedora provides a modern Linux operating system that uses many of the latest technologies.

			To create a new version of RHEL, most development happens in upstream projects. This new version is then integrated into Fedora Linux, with additional “productization” happening in CentOS Stream, which becomes RHEL.

			This process, known as Red Hat’s contribution path, is important to delve into to understand the distribution’s development flow. It will also help us understand the importance of the distribution in that flow.

			The Red Hat contribution path

			In December 2020, Red Hat announced the discontinuation of the development of the CentOS Project, a project it had sponsored since 2014 and which, in its version 2 of 2004, was forked from RHEL 2.1AS, which from that moment on was integrated as CentOS Stream, to the RHEL development contribution path.

			The development of RHEL starts in community projects, where the latest and most innovative technologies in the industry are developed. Fedora’s role is to take these technologies and adapt them in each new release of the distribution.

			Every 3 years, a new major version of RHEL is released. When the next major release of RHEL is about 1 year away, these innovations reach an optimal level of development, fueled by feedback between Fedora Project developers and integrators and independent software and hardware vendors, providing the stability required by the industry. CentOS Stream then branches from Fedora Linux. The CentOS Stream code becomes the next release of RHEL, meaning that users can contribute to the product and test their workloads before it is released. This becomes a continuous integration of RHEL development, thus shortening the feedback loop that should be considered in future RHEL releases.

			The following figure shows this flow:

			
				
					[image: Figure 1.2 – The Red Hat contribution path]
				

			

			Figure 1.2 – The Red Hat contribution path

			The role of Fedora Linux is essential in the development of RHEL, as described previously, but Fedora Linux is a usable operating system in its own right, with the most modern and innovative tools in the industry. As a side result, it is also widely used in enterprise environments to manage RHEL-based systems. This is due to the facilities provided by the Red Hat contribution path, described above.

			Fedora’s mission and foundations

			The Fedora Project works to build a free and open source software platform that collaborates and shares end user-focused solutions.

			Since the Fedora community includes thousands of individuals with different views and approaches, they base their cooperativeness on what they call the four foundations:

			
				
					[image: Figure 1.3 – The four foundations of Fedora]
				

			

			Figure 1.3 – The four foundations of Fedora

			Let’s look at them in detail:

			
					Freedom

			

			“We are dedicated to free software and content.”

			(https://docs.fedoraproject.org/en-US/project/)

			The goal is to produce a usable operating system that includes only free software. Avoid proprietary or patented content and use free alternatives that allow you to provide a distribution that can bring the most innovative software to everyone so that anyone can use it, legally.

			
					Friends

			

			“We are a strong, caring community.”

			(https://docs.fedoraproject.org/en-US/project/)

			The Fedora community is multidisciplinary and diverse with a common goal: pushing free software forward. Anyone who wants to help, regardless of their skills, can have a place in the community, a friendly and collaborative environment, so long as they believe in its core values.

			
					Features

			

			“We care about excellent software.”

			(https://docs.fedoraproject.org/en-US/project/)

			Many of the features that have empowered Linux come from the Fedora community, making it flexible and useful for many people around the world. The Fedora community is a fervent believer in free software development, whether it’s used or not in the distribution. It allows features to be developed clearly and transparently, making them available to anyone who wants to take part in the distribution.

			
					First

			

			“We are committed to innovation.”

			(https://docs.fedoraproject.org/en-US/project/)

			The Fedora Project offers the latest in stable and robust free software and is a platform that showcases the future of operating system usage. It advances such software to demonstrate collaborative technical progress. Fedora always thinks about providing for the future before anything else.

			Besides these four foundations, the Fedora Project has a very clear vision and mission.

			Vision

			“The Fedora Project envisions a world where everyone benefits from free and open source software built by inclusive, welcoming, and open-minded communities.”

			(https://docs.fedoraproject.org/en-US/project/#_our_vision)

			Fedora’s vision follows the precepts of the GNU Project, where the benefit of using free and open source software extends to all those who need to use it, in a way that is inclusive of all communities and open to all possibilities.

			Mission

			“Fedora creates an innovative platform for hardware, clouds, and containers that enables software developers and community members to build tailored solutions for their users.”

			(https://docs.fedoraproject.org/en-US/project/#_our_mission)

			Fedora’s mission focuses on innovating and adapting technology on existing and future platforms for solutions that enhance the end user experience.

			Contributing to the project

			The Fedora community contributes to building and developing free and open source software and making advances of importance to the community in general. It quickly and regularly incorporates these advances into the distribution or even into other GNU/Linux distributions. Fedora integrates the free and open source approach and ease of use in the short term.

			Software development not only involves programmers – it also requires designers, artists, writers, speakers, translators, system administrators, and others. Coordinating all this effort requires leadership throughout the community, which allows for decision-making without excessive dragging.

			Important

			You don’t have to be a contributor to use Fedora Linux. In the following chapters, you will learn how to use Fedora Linux for system administration. But, if you want to contribute to the project, here’s how!

			The leadership of the project is provided by the Fedora Council, which is made up of eight positions, two of which are held by elected community contributors. Besides the council, there are several leadership groups:

			
					Fedora Engineering Steering Committee (FESCo): Manages the technical features of the Fedora distribution and specific implementations of the policy in the Fedora Project.

					Fedora Mindshare Committee: Represents leadership for user and contributor community growth and support.

			

			Besides working groups, where various editions of the distribution are developed, such as Workstation, Server, IoT, Cloud, and CoreOS, some subprojects develop opportunity areas under the Fedora model. There are also other interest groups (SIGs) that are more informal, where they adopt a framework or lightweight desktop for the distribution.

			Code of Conduct

			Fedora aims for the best interaction between its collaborators and members of its community through a set of guidelines contained in a document known as the Code of Conduct, whose decisions are applied using all the information and context available in pursuit of having the best environment for its members. It does not intend to restrict expressions or penalize any member of the community; it only details the type of behavior that is considered acceptable or unacceptable.

			Note

			For the full Code of Conduct, refer to the Fedora Docs at https://docs.fedoraproject.org/en-US/project/code-of-conduct/.

			Getting started with Fedora

			To contribute to the Fedora Project, follow these steps:

			
					The first step is to create a user account at https://accounts.fedoraproject.org/:

			

			
				
					[image: Figure 1.4 – Fedora Accounts]
				

			

			Figure 1.4 – Fedora Accounts

			
					After filling out the registration form, the system will ask you to verify the registered email address:

			

			
				
					[image: Figure 1.5 – Fedora Accounts – Account creation]
				

			

			Figure 1.5 – Fedora Accounts – Account creation

			
					Upon clicking on the link you received via mail, the system will ask you to create a password:

			

			
				
					[image: Figure 1.6 – Fedora Accounts – set password]
				

			

			Figure 1.6 – Fedora Accounts – set password

			
					Once you’ve accessed your profile, click on the Agreements tab to sign the Fedora Project Contributor Agreement document:

			

			
				
					[image: Figure 1.7 – Fedora Accounts – profile settings]
				

			

			Figure 1.7 – Fedora Accounts – profile settings

			
					Click on the Sign button to sign the agreement:

			

			
				
					[image: Figure 1.8 – Fedora Accounts – Fedora Project Contributor Agreement]
				

			

			Figure 1.8 – Fedora Accounts – Fedora Project Contributor Agreement

			After signing the agreement, continue to the profile configuration area and join a development or collaboration group of interest.

			If needed, Fedora provides an online tool at https://whatcanidoforfedora.org/ that guides you to the appropriate group(s) that match your interests, based on the questions you ask:

			
				
					[image: Figure 1.9 – What can I do for Fedora?]
				

			

			Figure 1.9 – What can I do for Fedora?

			Note

			This page, although very useful for a first approach, is already deprecated by the documentation of the project. For further reference, please refer to a group of interest (SIG) at https://docs.fedoraproject.org/en-US/project/join/.

			Now that we know how to contribute to the Fedora project, let’s learn how to use the distribution to administrate Linux-based systems.

			Fedora as a system administration tool

			Using Fedora Linux as the main distribution, in work or study, also supports the development of the Fedora Project, as an end user. You can contribute with feedback on the use of the tools and services included in the distribution, and also take advantage of these innovations to become more productive and efficient in day-to-day activities.

			One of the most important activities in the IT industry is system administration, where the main responsibility is to maintain, configure, and ensure the reliable operation of computer systems, especially multi-user computers such as servers. The system administrator tries to ensure that the uptime, performance, resources, and security of the computers that are managed meet the needs of the users, without exceeding a set target budget during this process.

			Managing Linux systems using a Linux workstation provides many advantages that lead to a high level of efficiency and productivity since, from the host operating system, you can automate tasks or perform functional tests based on an operating system, such as the one being managed.

			Fedora, given its privileged position within the contributory development of RHEL, becomes a highly profitable tool in the administration of similar platforms, such as its variants (CentOS Stream, Rocky, and AlmaLinux), as well as any distribution that uses rpm packages.

			At the same time, when using this approach for Linux system administration, it is possible to contribute to the development of the distribution since continuously testing the platform and its various packages and projects within it takes place here.

			So, if you wish to use Fedora Linux to manage Linux-based systems, you could support the Fedora Project by reporting unexpected behaviors or contributing to the improvement of system performance. This includes making suggestions for new features. Before reporting a bug, it is recommended to consult the Ask Fedora website at https://ask.fedoraproject.org/, the community support forum, in case this unexpected behavior has occurred before:

			
				
					[image: Figure 1.10 – Ask Fedora]
				

			

			Figure 1.10 – Ask Fedora

			Note

			For more information on how to file a bug, refer to the Fedora Docs at https://docs.fedoraproject.org/en-US/quick-docs/howto-file-a-bug/.

			Before we customize the distribution as our system administration workstation, let’s review how to use our main tool.

			The command-line interface

			As the development of graphical user interfaces progressed, the use of the command line was often discarded. However, it is the main tool for operating system administration in general, whether it’s for system administrators or Advanced and Power users. Apart from Linux-based systems, the CLI is also used on Windows or Mac systems. The use of the command line extends system management and administration capabilities.

			Achieving the fluency necessary for maximum efficiency requires practice at every opportunity. Using Linux as a workstation allows us to practice this skill so that we can improve our productivity and efficiency when performing daily tasks.

			The default command-line interpreter (shell) in Fedora Linux is Bourne Again Shell (Bash) and can be accessed through different Terminal emulators available with the distribution:

			
					xterm: This is the original terminal emulator program for the X Window System.

					Konsole: The terminal emulator program for the Konsole Desktop Environment (KDE).

					gnome-terminal: The terminal emulator program for the GNOME desktop environment.

					Alacritty: This is a lightweight, OpenGL-based terminal emulator program that focuses on performance.

					yakuake (guake): This is a drop-down terminal emulator program that can easily be accessed via a keyboard shortcut. guake is the version that’s used for the GNOME desktop environment.

					Terminator: This is based on gnome-terminal. It provides multiple instances of the terminal emulator in a single window, generating a terminal console that fills the size of the screen area and divides it into a resizable grid.

			

			Now that we know about the different terminal emulator options, let’s dive into the topics that will help us get into system administration.

			The basics

			Practice is the only way to develop our console skills, but there is a path that can help with such improvement. This path consists of four sections with three levels each; following it as a guide while practicing should help you develop fluency in the console.

			1. Ask the one who knows

			Upon encountering an unexpected behavior or requiring a tool to make a task more efficient, it is a very common mistake to first look it up on the internet; it has even become a common term: Google it. But open source projects offer us reference material (that is, man and info pages) explaining the options, and, in most cases, the use of the packages, commands, processes, and services that follow it. The flow of information search is the first paradigm we have to break to develop efficiency as a system administrator.

			Basic level

			Use the built-in help command. If you do not know or remember how to use a command, use the built-in help module. To do so, add the --help or -h parameter or even run the command without parameters. The command may have one of these basic help options.

			Note

			Not all commands have a built-in help option. In some cases, they may offer one or two. Just test which one comes with the command. If not, use the next level.

			Let’s look at an example of each of them:

			
					A command run with the built-in help module:

			

			
				
					[image: Figure 1.11 – Built-in help module]
				

			

			Figure 1.11 – Built-in help module

			
					A command run with the -h parameter:

			

			
				
					[image: Figure 1.12 – Command run with the -h parameter]
				

			

			Figure 1.12 – Command run with the -h parameter

			
					A command run without parameters:

			

			
				
					[image: Figure 1.13 – Command run without parameters]
				

			

			Figure 1.13 – Command run without parameters

			These are the basic recommended options included in most of the commands. Now let’s look at a more elaborate type of help. Unfortunately, sometimes it is not included as part of the package or requires a separate package to be installed to get this help. In each case, there is mention of it.

			Intermediate level

			man is your friend. Most of the commands, besides the built-in help command, come with a user manual, which details the use of each of the options and parameters that are available with it. To consult the manual, run the man <command> command:

			
				
					[image: Figure 1.14 – Command user manual]
				

			

			Figure 1.14 – Command user manual

			In some cases, the commands may include info pages. These may reference the same man pages or, in some cases, have more detailed information on the usage and options of the command. To consult the info pages, run the info <command> command.

			Advanced level

			The operating system provides a directory where the documentation for packages and services resides – for example, in /usr/share/doc. You should consider installing the kernel documentation, which includes documentation for the drivers shipped with the kernel, and references to various configuration options. The kernel-doc package contains the kernel documentation for installing and running several tasks as a root user:

			
[root@workstation ~]# dnf -y install kernel-doc
...output omitted…
[root@workstation ~]# ls /usr/share/doc/kernel-doc-6.0.9-300/Documentation/
ABI atomic_t.txt crypto features ia64 kernel-hacking memory-barriers.txt
...output omitted...
[root@workstation ~]# cat \
> /usr/share/doc/kernel-doc-6.0.9-300/Documentation/networking/bonding.rst
...output omitted...
Introduction
============
The Linux bonding driver provides a method for aggregating
multiple network interfaces into a single logical "bonded" interface.
The behavior of the bonded interfaces depends upon the mode; generally
speaking, modes provide either hot standby or load balancing services.
Additionally, link integrity monitoring may be performed.
...output omitted...
			After exhausting the options that the operating system contains, you can access the different online options. The community is very helpful if you haven’t found a suitable solution. To do so, you can access mailing lists, telegram channels, and IRC sites such as Reddit, Stack Overflow, or the ones provided by the Fedora Project itself, such as Ask Fedora. Using these options, you can get in touch with the community, which will always offer a helping hand.

			2. Use the console

			Having a Linux-based workstation brings with it the ability to use the console in all circumstances, even in your free time. The idea is to take advantage of any opportunity to use it to launch applications or tasks and reduce the use of the mouse and graphic solutions as much as possible.

			The use of the console depends on the privileges of the users who use it. A privileged account is a user account that has more privileges than regular users. Privileged accounts can, for example, install or remove software, update the operating system, or change system or application settings. They might also have access to files that non-privileged users can’t access.

			The command prompt provides information on the privileges of the user using it.

			If, upon opening the console, the prompt shows $, this means that the user is logged on to this system as a non-privileged user. The $ prompt is the default for normal users:

			
[user@workstation ~]$
			The root user’s prompt is #. Logging in as a root user can be done in two ways:

			
					By logging in with the root user’s username and password

					By switching to the root user

			

			This last point could involve the same username and password of the privileged user. Use the su – command to become the root user:

			
[user@workstation ~]$ su -
Password: [root password]
[root@workstation ~]#
			Alternatively, we can use the sudo (Super User DO) command, which is a program that helps us provide privileges to normal users.

			Most Linux distributions have sudo installed by default. In some cases, even root access is turned off. When this happens, we can only access it through the sudo command.

			While installing the operating system, when creating the user, we can choose to add them as part of the system administration group. This will allow them to switch to the root user by using the sudo command and their own password.

			To find out if your user has access to different privileges with sudo, run the following code:

			
[user@workstation ~]$ sudo -l
Password: [user password]
Matching Defaults entries for user on workstation:
...output omitted...
User user may run the following commands on workstation:
 (ALL) PASSWD: ALL
...output omitted...
			(ALL) PASSWD: ALL indicates that the user can gain access to any command of the operating system by using the sudo command and their password. To switch to the root user, run the following code:

			
[user@workstation ~]$ sudo -i
Password: [user password]
[root@workstation ~]#
			So, now that we know how to use the console, depending on our activities and privileges, let’s learn how to improve our console skills.

			Basic level

			Just use it. Type as much as you can to list, search for, and open applications.

			Intermediate level

			Chain, redirect, and concatenate. After typing commands and understanding the result of their output, we can start playing with them and put them together in such a way that they simplify tasks. By using pipes (|) and redirecting the output and input with > and <, we can generate a string of commands that we know as one-liners. Bash-one-liners are famous in the computer world, and it is even considered an art to be able to chain commands for certain tasks. There are many internet sites and even social networks where we can find them. Some of them use such redirection to interpret pattern processing written in the AWK programming language as output.

			Example: Send the output of the following command to a new file:

			
[user@workstation ~]$ ip link show > link.txt
[user@workstation ~]$ cat link.txt
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:f9:69:14 brd ff:ff:ff:ff:ff:ff
			Example: Get the open and listening TCP ports and the processes related to them, separated by commas:

			
[root@workstation ~]# ss -tulpn | grep tcp | awk '{ print $1","$2","$5","$7 }'
tcp,LISTEN,0.0.0.0:22,users:(("sshd",pid=844,fd=3))
tcp,LISTEN,127.0.0.54:53,users:(("systemd-resolve",pid=707,fd=19))
tcp,LISTEN,0.0.0.0:5355,users:(("systemd-resolve",pid=707,fd=11))
tcp,LISTEN,127.0.0.1:6010,users:(("sshd",pid=1514,fd=9))
tcp,LISTEN,127.0.0.53%lo:53,users:(("systemd-resolve",pid=707,fd=17))
tcp,LISTEN,127.0.0.1:631,users:(("cupsd",pid=842,fd=7))
tcp,LISTEN,[::]:22,users:(("sshd",pid=844,fd=4))
tcp,LISTEN,[::]:5355,users:(("systemd-resolve",pid=707,fd=13))
tcp,LISTEN,[::1]:6010,users:(("sshd",pid=1514,fd=8))
tcp,LISTEN,[::1]:631,users:(("cupsd",pid=842,fd=6))
			Advanced level

			If you typed it twice, you should have scripted it once.

			In system administration, it is very common for tasks to become repetitive. The first step in automating them, and with this, reducing the time taken to perform them, is to put them together and turn them into a series of instructions, known as a shell script. This script or series of instructions can contain the commands to run complex tasks, such as using outputs as variable settings and reusing them in the same execution.

			There is a lot of documentation on how to create shell scripts. They should have a structure similar to the following:

			
#!/bin/bash ← [1]
#
IDENTITY ← [2]
#
VARIABLES ← [3]
COMMANDS ← [4]
			Let’s look at what the highlighted text indicates in each section:

			
					[1]: Shebang. This indicates the command-line interpreter that uses the instructions; the functional tests of the script must confirm its use.

					[2]: The script must contain identification information – what it works for, who the author is, what version is being used, and even the date of creation and the changes it has undergone. This documentation will help you use it and identify its scope.

					[3]: In this section, the variables used to execute the instructions are set.

					[4]: In this section, you will find the instructions that will be executed.

			

			3. Edit text files

			On Linux, everything is a file. Thus, we must use a text editor to help us perform configuration or administration tasks. Knowing about the editor of choice in more depth helps make this activity more efficient, especially if some of them have specialized add-ons or plugins for cases such as identifying or validating syntax in files written in diverse programming languages or formats.

			Basic level

			GNU Nano is a simple, lightweight, open source command-line text editor written in C. Developed as part of the GNU Project, it emulates the Pico text editor, part of the Pine mail client:

			
				
					[image: Figure 1.15 – The Nano editor]
				

			

			Figure 1.15 – The Nano editor

			GNU Nano does not have many add-ons, but it does have built-in features, such as one to highlight different programming languages.

			Intermediate level

			Vim is an open source command-line text editor (licensed under its charityware license), written in C and with a scripting language called Vim (or VimL). It was developed in the 1970s as the visual mode (vi, its base) of the ex line editor. The original vi was a modal text editor that had no syntax highlighting, was written in C, and had only a command-line interface. Later, in the 1980s, vim was released as a clone of the vi text editor for personal computers, ported as Vi IMproved (Vim). Eventually, Vim got a graphical user interface (along with a CLI) called gVim, syntax highlighting, a scripting language (to customize and extend it), and support for many more computer platforms:

			
				
					[image: Figure 1.16 – The Vim editor]
				

			

			Figure 1.16 – The Vim editor

			vim has many add-ons and plugins to enhance its use. It is even possible to create special add-ons for specific or special needs.

			Advanced level

			GNU Emacs is a free, open source, extensible, self-documenting text editor written in C and its own Lisp programming language (Emacs Lisp). It was developed by Richard Stallman and Guy L. Steele Jr.. Its initial release was in 1985 and it has been ported to all major operating systems. Developed as part of the GNU Project, its use is extended through plugins written in Emacs Lisp, which are available in the official Fedora repositories. It also runs on Fedora via an AppImage package (sandboxed application):

			
				
					[image: Figure 1.17 – The GNU Emacs editor]
				

			

			Figure 1.17 – The GNU Emacs editor

			4. Handle regular expressions

			The bash command interpreter has many ways to handle regular expressions, which it does by expanding the power of the command line.

			Basic level

			At a basic level, it is important to use pattern matching (wildcards), loops, and exit codes. With wildcards, it is easier to handle many files. By using metacharacters as wildcards that expand to match the filenames and paths searched for, commands act on one set of files at a time.

			The following table shows the characters that are used as wildcards in terms of basic usage:

			
				
					
					
				
				
					
							
							Character

						
							
							Description

						
					

					
							
							*

						
							
							Matches any number of characters – for example, list all .txt files in a directory:

							
$ ls *.txt
						
					

					
							
							?

						
							
							Matches any single character – for example, list the .sh files that start with the compar string:

							$ ls compar*.sh

							
compare.sh
						
					

					
							
							[]

						
							
							Matches one of the characters between the brackets – for example, list files in a directory and filter out files starting with letters:

							$ ls | grep ^[a-z]

							compare.sh

							conkyrc

							labkey

							labkey.pub

						
					

					
							
							{ }

						
							
							Contains a comma-separated list of strings or a sequence. If so, use double-dot syntax. An example is to create five empty files and list them:

							
$ touch file{1..5}
							
$ ls file?
							
file1 file2 file3 file4 file5
						
					

					
							
							~

						
							
							Match the current user’s home directory – for example, list the Downloads directory in the user’s home directory:

							$ ls ~/Downloads/

						
					

					
							
							$

						
							
							Denotes a string as a variable – for example, print the user’s PATH variable on the screen:

							
$ echo $PATH
							
/home/user/.local/bin:/home/user/bin::/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin
						
					

				
			

			Loops help us perform repetitive tasks simply. In Bash, a for loop is built from the following syntax:

			
for <variable> in <list>
do
command <variable>
done
			You could add a condition to these loops so that they run different actions, depending on the situation:

			
if <condition>;
 then
 <statement 1>
 ...
 <statement n>
 else
 <statement alternative>
fi
			Running a script provides an output and passes control to the calling process. The script may exit before finishing if it encounters an error condition, for example. The exit command shown in the following code, with an optional argument between 0 and 255, represents an exit code:

			
[user@workstation ~]$ cat test.sh
#!/bin/bash
echo "Hello, I'm a test"
exit 0
[user@workstation ~]$./test.sh
Hello, I'm a test
[user@workstation ~]$ echo $?
0
			In the output, the exit code’s value of 0 indicates that the script ran successfully with no errors; any other value indicates an error output.

			Intermediate level

			Regular expressions provide a pattern-matching mechanism that helps you search for specific content. The grep, less, and vim commands support regular expressions in their use. Most programming languages also support them, although the syntax in each may differ. As mentioned previously, these commands can be chained and converted into a search for more complex structures.

			At the end of this section, you will find a guided example that better illustrates this level.

			Advanced level

			Write scripts with regular expressions and patterns in an optimized way.

			Be careful when handling regular expressions within scripts since chained commands use a certain amount of memory and CPU processing that should not be underestimated. The battery and functional testing phase should be planned carefully and never on a productive server; at this point, it is highly profitable to have a Linux workstation to manage our servers. We can recreate the production environment in an instance based on a local virtual machine and perform the first functional tests of our super-script.

			“This is the way.”

			“Patience, young Padawan.”

			It may seem a very laborious journey, but it is not. A lot of it depends on practice, incorporating the characteristics mentioned, and thus, developing the necessary skills. It is not a matter of 1 day of practice – it requires effort and dedication, so you must go one step at a time.

			Next, we will perform a guided exercise where I will show, step by step, how to go from a simple command to a chained command with a defined purpose. This will show you how the tools shown below can be incorporated as the need arises.

			Guided example – releasing space in the filesystem

			Description: A ticket gets assigned to us because a managed server shows the root filesystem at 92% disk use. It is necessary to determine various responsibilities and provide evidence so that we can document the issue and resolve it so that we can close it.

			Analysis: Since the server has no separate directories in the filesystems, it is necessary to determine which directory or directories have used the most disk space and identify which application or service it is relative to.

			Solution:

			
					As root, switch to the root directory (/) and list the available directories:
[root@workstation ~]# cd /
[root@workstation /]# ls
afs bin boot dev etc home lib lib64 lost+found media
mnt opt proc root run sbin srv sys tmp usr var

					Run the following command to list the directories. Use the -l parameter to run a long list and identify the directories only:
[root@workstation /]# ls -l | grep ^d
dr-xr-xr-x. 1 root root 0 Aug 9 08:27 afs
dr-xr-xr-x. 6 root root 4096 Nov 22 13:12 boot
drwxr-xr-x. 21 root root 4000 Nov 22 13:12 dev
drwxr-xr-x. 1 root root 5186 Nov 22 13:12 etc
drwxr-xr-x. 1 root root 18 Nov 21 21:41 home
drwx------. 1 root root 0 Nov 5 02:18 lost+found
drwxr-xr-x. 1 root root 0 Aug 9 08:27 media
drwxr-xr-x. 1 root root 0 Aug 9 08:27 mnt
drwxr-xr-x. 1 root root 0 Aug 9 08:27 opt
dr-xr-xr-x. 329 root root 0 Nov 22 13:12 proc
dr-xr-x---. 1 root root 188 Nov 22 01:45 root
drwxr-xr-x. 58 root root 1580 Nov 22 13:14 run
drwxr-xr-x. 1 root root 0 Aug 9 08:27 srv
dr-xr-xr-x. 13 root root 0 Nov 22 13:12 sys
drwxrwxrwt. 20 root root 460 Nov 23 00:06 tmp
drwxr-xr-x. 1 root root 168 Nov 5 02:4.0 usr
drwxr-xr-x. 1 root root 200 Nov 5 03:15 var

					Use awk to select only the names of the directories (column 9):
[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }'
afs
boot
dev
etc
home
lost+found
media
mnt
opt
proc
root
run
srv
sys
tmp
usr
var

					Determine the disk space used by each directory with the xargs and du commands:
[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | xargs du -sk
0 afs
293680 boot
0 dev
33212 etc
176728 home
0 lost+found
0 media
0 mnt
0 opt
du: cannot read directory 'proc/3945/task/3945/net': Invalid argument
du: cannot read directory 'proc/3945/net': Invalid argument
du: cannot read directory 'proc/3946/task/3946/net': Invalid argument
du: cannot read directory 'proc/3946/net': Invalid argument
du: cannot access 'proc/7762/task/7762/fd/3': No such file or directory
du: cannot access 'proc/7762/task/7762/fdinfo/3': No such file or directory
du: cannot access 'proc/7762/fd/3': No such file or directory
du: cannot access 'proc/7762/fdinfo/3': No such file or directory
0 proc
32 root
du: cannot access 'run/user/1000/doc': Permission denied
1632 run
0 srv
0 sys
8 tmp
8371056 usr
6576996 var

					To avoid confusion, send the standard error output (stderr) to /dev/null:
[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null
0 afs
293680 boot
0 dev
33212 etc
176728 home
0 lost+found
0 media
0 mnt
0 opt
0 proc
32 root
1632 run
0 srv
0 sys
8 tmp
8371056 usr
6576996 var

					Sort the results:
[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null | sort -n
0 afs
0 dev
0 lost+found
0 media
0 mnt
0 opt
0 proc
0 srv
0 sys
8 tmp
32 root
1632 run
33212 etc
176728 home
293680 boot
6576996 var
8371056 usr

					Discard the directories with the lowest disk space usage and keep only the Top 5:
[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null | sort -n | tail -5
33212 etc
176728 home
293680 boot
6576996 var
8371056 usr

					Now that we have found the Top 5 directories with the highest disk usage, we will only deal with this order so that we can use it as evidence:
[root@workstation /]# ls -l | grep ^d | awk '{ print $9 }' | \
> xargs du -sk 2> /dev/null | sort -n | tail -5 \
> awk '{ print $2 }' | xargs du -sh
33M etc
173M home
287M boot
6.3G var
8.0G usr

			

			The same steps should be executed for each of the Top 5 directories so that we can find the subdirectory that occupies the most disk space and is the one causing the issue. Finding out which service determines who handles releasing the issue depends on the directory.

			Now that these concepts are clear, we can start thinking about how to install our workstation for system administration purposes. However, before that, we should take a moment to select the desktop environment we want to use.

			Desktop environments

			Fedora’s default desktop environment is GNOME, but it provides us with the alternative of using other desktop environments, either lightweight ones or those with special features, such as those that use different graphic engines and specialized libraries or are focused on performance. These alternatives are offered by the Fedora Project as Spin distributions. You can download a Spin with a preconfigured desktop environment based on Fedora:

			Note

			For more information about alternative desktops for Fedora, refer to Fedora Spins at https://spins.fedoraproject.org/.

			With this, we have come to the end of Chapter 1. Let’s quickly recap what we learned.

			Summary

			In this chapter, we briefly walked through the history of the Unix operating system, which taught us about the beginning and development of Linux and its distributions. Apart from teaching us how the project that develops the distribution that we will use as a workstation for system administration operates, it helped us learn how we can be part of it and improve the distribution while we perform our day-to-day tasks.

			In the next chapter, we will learn about some best practices and tips that will help ensure we have a good installation that will help us develop our work.

			Further reading

			To learn more about the topics that were covered in the chapter, please visit the following links:

			
					Timeline of GNU/Linux and Unix: http://laurel.datsi.fi.upm.es/~ssoo/IG/download/timeline.html

					Overview of the GNU System, GNU Operating System: https://www.gnu.org/gnu/gnu-history.html

					Linux and GNU – GNU Project – Free Software Foundation: https://www.gnu.org/gnu/linux-and-gnu.html

					Red Hat brand standards – Our history: https://www.redhat.com/en/about/brand/standards/history

					A Short History of Fedora Linux (Video), YouTube: https://www.youtube.com/watch?v=NlNlcLD2zRM

					CentOS Stream: A contribution path to Red Hat Enterprise Linux: https://www.redhat.com/en/resources/centos-stream-datasheet

			

		

	
		
			Part 2:Workstation Configuration

			In this part, you will learn how to set up a computer as a workstation for the tasks of a system administrator – from the best practices for the installation of an operating system and tools to configuring and optimizing resources, such as storage and networks.

			This part contains the following chapters:

			
					Chapter 2, Best Practices for Installation

					Chapter 3, Tuning the Desktop Environment

					Chapter 4, Optimizing Storage Usage

					Chapter 5, Network and Connectivity

			

		

		
			
			

		

		
			
			

		

	

		
			2

			Best Practices for Installation

			Now that we have a very complete context of the history and development of the Linux distribution, let’s see what the recommendations and best practices for the installation of an operating system (OS) are on the computer that will be our workstation. The most advisable thing, in this case, is that our OS is a portable computer with good resources of memory and CPU, since if we can virtualize with it, it will help us a lot with functional tests.

			The topics that will be covered in this chapter are as follows:

			
					Creating the boot media

					Partitioning local storage

					The first startup

					Package management

			

			Let’s get started!

			Technical requirements

			According to the Fedora documentation (https://getfedora.org/en/workstation/download/), a Fedora Linux image requires a USB flash drive of 2 GB for the creation of the boot media. To install Fedora Linux, it requires at least 20 GB of local storage and 2 GB of RAM; the recommended amount is double the amount of both.

			Visit https://getfedora.org to get the image of the Fedora Edition to be installed. Fedora images are hybrid ISOs, so you can test them in live mode before installing them.

			In this chapter, we will cover the best practices to install our workstation, in terms of performance and flexibility for the applications that help us to administer Linux systems.

			To create the bootable media, we will use Fedora Linux. However, the creation of the bootable media is possible from any Linux distribution, preferably rpm-based, as well as on Windows or Mac systems.

			For our installation, we will select the Fedora Workstation image as the best edition to use, as it is an OS that is refined and simple to use on laptops and desktops, with a full set of tools for developers and all kinds of users. After downloading the corresponding image, we will create a boot media, of which there are different methods.

			Creating the boot media

			There are many methods to create the boot media, from the dd command to applications such as Unetbootin or balenaEtcher that work on different platforms. However, these applications extract files from the image and write the syslinux bootloader to the device. This process builds a bootloader based on Fedora Linux, but it’s different from the one contained in the image, so the boot media build is inconsistent with the image, which results in boot errors.

			Fedora Media Writer is the official supported application to create Fedora bootable media. It works on different platforms. It is built with Qt (https://www.qt.io/). According to the official Fedora Project documentation, this is the recommended option to create bootable media. To install the tool, on an rpm-based Linux distribution, run the dnf or yum command as a root user:

						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
						
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B19121_01_12.jpg

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/B19121_01_16.jpg

OEBPS/toc.xhtml

		
		Contents

			
						Fedora Linux System Administration

						Contributors

						About the author

						About the reviewers

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts
							
										Download a free PDF copy of this book

							

						

					

				

						Part 1:The Fedora Project

						Chapter 1: Linux and Open Source Projects
					
								A brief history of Linux

								Understanding Linux distributions

								The Fedora Project
							
										The Red Hat contribution path

										Fedora’s mission and foundations

										Contributing to the project

										Fedora as a system administration tool

							

						

								The command-line interface
							
										The basics

										Guided example – releasing space in the filesystem

							

						

								Desktop environments

								Summary

								Further reading

					

				

						Part 2:Workstation Configuration

						Chapter 2: Best Practices for Installation
					
								Technical requirements

								Creating the boot media
							
										Fedora Media Writer

										Booting

							

						

								Partitioning local storage

								The first startup

								Package management

								Extra package selection

								Summary

								Further reading

					

				

						Chapter 3: Tuning the Desktop Environment
					
								Technical requirements

								Initial system tuning
							
										Tuning the swappiness value

										Tuning the desktop experience

										GNOME Tweak Tool

							

						

								Customizing the panel and the taskbar
							
										The taskbar

							

						

								Making tasks easy with widgets
							
										Conky

							

						

								Handy applications with docks

								Summary

								Further reading

					

				

						Chapter 4: Optimizing Storage Usage
					
								Technical requirements

								Understanding file formats and filesystems
							
										Creating a Btrfs filesystem

							

						

								Optimizing storage space size
							
										Space allocation check

										Using the btrfs-usage-report command

							

						

								Deep diving into Logical Volume Manager
							
										Differences between snapshots

							

						

								Discovering Stratis storage
							
										Creating a Stratis pool

							

						

								Summary

								Further reading

					

				

						Chapter 5: Network and Connectivity
					
								Technical requirements

								Walking through the basics
							
										NetworkManager command-line interface (nmcli)

							

						

								Tuning wireless connectivity
							
										Identifying the device

										Finding the best quality network connection

										nm-connection-editor

										What about security?

							

						

								Improving network connectivity using a VPN
							
										IPSec-based VPN

										OpenVPN

										Configuring a VPN client with the Control Center

							

						

								Network performance monitoring
							
										nmon

										bpytop

							

						

								Summary

								Further reading

					

				

						Part 3:Productivity Tools

						Chapter 6: Sandbox Applications
					
								Technical requirements

								Inspecting sandbox applications
							
										SELinux sandbox

							

						

								Diving deep into AppImage apps
							
										Running an AppImage

										Developing AppImages

							

						

								Examining Flatpak applications
							
										Using Flatpak applications

										Building Flatpak applications

							

						

								Summary

								Further reading

					

				

						Chapter 7: Text Editors
					
								Technical requirements

								Text editors and the command line

								Emacs overview
							
										The basics

										Mastering GNU Emacs

							

						

								Nano basics

								The mighty vim
							
										The basics

										Mastering vim

							

						

								Summary

								Further reading

					

				

						Chapter 8: LibreOffice Suite
					
								Technical requirements

								Exploring office tools on Fedora Linux
							
										WPS Office

										ONLYOFFICE

										Calligra

										Fonts

										LibreOffice

							

						

								Getting used to Writer and Calc
							
										Writer

										Calc

							

						

								Creating slides and image management

								Summary

								Further reading

					

				

						Chapter 9: Mail Clients and Browsers
					
								Technical requirements

								Mailing with Evolution

								Mailing with Thunderbird

								Trusty old Firefox
							
										Customizing Firefox

							

						

								Expanding browsing with Google Chrome

								Summary

								Further reading

					

				

						Part 4:System Administration Tools

						Chapter 10: System Administration
					
								Technical requirements

								The three laws of the SysAdmin
							
										The KISS principle

										Knowing the basic tasks

							

						

								A little bit of Git and programming
							
										Bash scripting

										Git

										The basics

							

						

								Don’t forget to back up
							
										Archiving and compression

										Version management with Git

							

						

								Automating with Ansible
							
										The basics

										First steps

							

						

								Never-ending study

								Summary

					

				

						Chapter 11: Performance Tuning Best Practices
					
								Technical requirements

								Understanding kernel tuning
							
										Tuning kernel parameters

							

						

								Main tuning – CPU and memory
							
										Overview of monitoring tools

										Improving CPU usage

										Improving memory usage

							

						

								Don’t ignore storage tuning
							
										Improving storage space usage

							

						

								Boosting performance with network tuning
							
										Analyzing metrics

							

						

								Summary

					

				

						Chapter 12: Untangling Security with SELinux
					
								Technical requirements

								Learning about mandatory access control

								Labeling and type enforcement
							
										How SELinux works

							

						

								How to troubleshoot SELinux issues
							
										Labeling

										SELinux needs to know

										Policy bugs

										Hack attack

							

						

								Summary

								Further reading

					

				

						Chapter 13: Virtualization and Containers
					
								Technical requirements

								Virtualization with QEMU, KVM, and libvirt
							
										Management tools

										Streamlining the creation of virtual machines

							

						

								Using GNOME Boxes

								Discovering OCI containers with Podman

								Summary

								Further reading

					

				

						Index
					
								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Share Your Thoughts
							
										Download a free PDF copy of this book

							

						

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

						Index

			

		
	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B19121_01_09.jpg

OEBPS/image/B19121_01_03.jpg

OEBPS/image/B19121_01_07.jpg

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/image/B19121_01_02.jpg

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B19121_01_10.jpg

OEBPS/image/B19121_01_11.jpg

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B19121_01_15.jpg

OEBPS/image/B19121_01_06.jpg

OEBPS/image/B19121_01_14.jpg

OEBPS/image/B19121_01_01.jpg

OEBPS/image/Packt_Logo_New.png

OEBPS/image/B19121_01_05.jpg

OEBPS/image/B19121_01_13.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Cover.png

OEBPS/image/B19121_QR_Free_PDF.jpg

OEBPS/image/B19121_01_04.jpg

OEBPS/image/B19121_01_08.jpg

OEBPS/image/B19121_01_17.jpg

