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			Foreword

			It’s a developer’s paradise: it's easy to test the domain logic, it's easy to mock out infrastructure and technology, there's a crystal-clear separation of domain code and technical code, and even migrating from one technology to another seems easy. No more endless discussion about in which part of your code you should implement this tricky new feature in that the business people need by tomorrow. It’s called Clean Architecture,” and Tom will guide you on your journey toward this.

			For a few years, the foundation of clean architecture has been documented under various names (Hexagonal Architecture, ports and adapters, onion architecture, and clean architecture). The basic idea looks simple: two concentric circles separating domain stuff and technical stuff within the software. Dependencies flow inward, from technology to the domain. Domain classes are not allowed any dependencies upon technical classes.

			Too bad that most of the original sources missed out on explaining how packages and code should be organized. Tom’s book perfectly fills this gap. He uses an illustrative example to guide you toward a highly maintainable and clear architectural structure.

			Do yourself and your development colleagues a favor and give the clean architecture approach a chance. I promise you won’t regret it!


			Gernot Starke

			Cologne, June 2023

			Pragmatic software architect since the 1990s, founder of arc42, co-founder of iSAQB, and nerd
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			Preface

			If you have picked up this book, you care about the architecture of the software you’re building. You want your software to not only fulfill the customer’s explicit requirements but also the hidden requirement of maintainability, and your own requirements concerning structure and aesthetics.

			It’s hard to fulfill these requirements because software projects (or projects in general, for that matter) usually don’t go as planned. Managers draw deadlines all around the project team1, external partners build their APIs differently from what they had promised, and the software products we depend on don’t work as expected.

			
				1	The word “deadline” presumably originates from the 19th century and described a line drawn around a prison or a camp of prisoners. A prisoner that crossed that line was shot. Think about this definition the next time someone “draws a deadline” around you... it will certainly open up new perspectives. See https://www.merriam-webster.com/words-at-play/your-deadline-wont-kill-you.

			

			And then there is our own software architecture. It was so nice in the beginning. Everything was clear and beautiful. Then the deadlines pressed us into taking shortcuts. Now, the shortcuts are all that’s left of the architecture, and it takes longer and longer to deliver new features.

			Our shortcut-driven architecture makes it hard to react to an API that had to be changed because an external partner screwed up. It seems easier to just send our project manager into battle with that partner to tell them to deliver the API we had agreed upon.

			Now, we have given up all control over the situation. In all likelihood, one of the following things will happen:

			
					The project manager is not strong enough to win the battle against the external partner

					The external partner finds a loophole in the API specs, proving them right

					The external partner needs another <enter number here> months to fix the API

			

			All of this leads to the same result – we have to change our code quickly because the deadline is looming.

			We add another shortcut.

			Instead of letting external factors govern the state of our software architecture, this book takes the stance of taking control ourselves. We gain this control by creating an architecture that makes the software soft, as in “flexible,” “extensible,” and “adaptable.” Such an architecture will make it easy to react to external factors and take a lot of pressure off our backs.

			The goal of this book

			I wrote this book because I was disappointed with the practicality of the resources available on domain-centric architecture styles, such as Robert C. Martin’s Clean Architecture and Alistair Cockburn’s Hexagonal Architecture.

			Many books and online resources explain valuable concepts but not how we can actually implement them.

			That’s probably because there is more than one way to implement any architecture style.

			With this book, I am trying to fill this void by providing a hands-on-code discussion about creating a web application in the Hexagonal Architecture or “Ports and Adapters” style. In order to live up to that goal, the code examples and concepts discussed in this book provide my interpretation of how to implement a Hexagonal Architecture. There are certainly other interpretations out there, and I do not claim that mine is authoritative.

			I certainly hope, however, that you will get some inspiration from the concepts in this book so that you can create your own interpretation of Hexagonal/Clean Architecture.

			Who this book is for

			This book is aimed at software developers of all experience levels involved in creating web applications.
As a junior developer, you’ll learn about how to design software components and complete applications in a clean and maintainable manner. You will also learn some arguments for when to apply a certain technique. You should, however, have participated in building a web application in the past to get the most out of this book.
If you’re an experienced developer, you’ll enjoy comparing the concepts from the book with your own way of doing things and, hopefully, incorporating bits and pieces into your own software development style.
The code examples in this book are in Java and Kotlin, but all discussions are equally applicable to other object-oriented programming languages. If you’re not a Java programmer but can read object-oriented code in other languages, you’ll be fine. In the few places where we need some Java or framework specifics, I will explain them.

			The example application

			To have a recurrent theme throughout the book, most of the code examples show code from an example web application for transferring money online. We’ll call it “BuckPal.”2

			
				2	BuckPal: a quick online search has revealed that a company named PayPal has stolen my idea and even copied part of the name. Joking aside: try to find a name similar to “PayPal” that is not the name of an existing company. It’s hilarious!

			

			The BuckPal application allows a user to register an account, transfer money between accounts, and view the activities (deposits and withdrawals) on the account.

			I’m not a finance specialist by any means, so please don’t judge the example code based on legal or functional correctness. Rather, judge it on structure and maintainability.

			The curse of example applications for software engineering books and online resources is that they’re too simple to highlight the real-world problems we struggle with every day. On the other hand, an example application must stay simple enough to effectively convey the discussed concepts.

			I hope to have found a balance between “too simple” and “too complex” as we discuss the use cases of the BuckPal application throughout this book.

			The code of the example application can be found on GitHub.3

			
				3	The BuckPal GitHub repository: https://github.com/thombergs/buckpal.

			

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. Check the notes at the end of the book.4

			
				4	PDF with color images used in this book: https://packt.link/eBKMn.

			

			Get in touch

			If you have anything to say about this book, I’d love to hear it! Get in touch with me directly via email to tom@reflectoring.io or on Twitter via @TomHombergs.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share your thoughts

			Once you’ve read Get Your Hands Dirty on Clean Architecture–Second Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below
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			https://packt.link/free-ebook/9781805128373

			2.	Submit your proof of purchase

			3.	That’s it! We’ll send your free PDF and other benefits to your email directly

		


		
			1

			Maintainability

			This book is about software architecture. One of the definitions of architecture is the structure of a system or process. In our case, it’s the structure of a software system.

			Architecture is designing this structure with a purpose. We’re consciously designing our software system to fulfill certain requirements. There are functional requirements that the software has to fulfill to create value for its users. Without functionality, software is worthless, because it produces no value.

			There are also quality requirements (also called non-functional requirements) that the software should fulfill to be considered high quality by its users, developers, and stakeholders. One such quality requirement is maintainability.

			What would you say if I told you that maintainability as a quality attribute, in a way, is more important than functionality and that we should design our software for maintainability over everything else? Once we have established maintainability as an important quality, we will use the rest of this book to explore how we can improve the maintainability of our software by applying the concepts of Clean and Hexagonal Architecture.

			What does maintainability even mean?

			Before you write me off as a lunatic and start looking for options to return this book, let me explain what I mean by maintainability.
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