
		
			[image: 9781805128373.jpg]
		


		
			

			Get Your Hands Dirty on Clean Architecture

			Build ‘clean’ applications with code examples in Java	

			Tom Hombergs

			[image: ]

			BIRMINGHAM—MUMBAI

			Get Your Hands Dirty on Clean Architecture

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Gebin George

			Publishing Product Manager: Kunal Sawant

			Senior Editor: Ruvika Rao

			Technical Editor: Jubit Pincy

			Copy Editor: Safis Editing

			Project Coordinator: Manisha Singh

			Proofreader: Safis Editing

			Indexer: Tejal Daruwale Soni

			Production Designer: Joshua Misquitta

			Marketing Coordinator: Sonia Chauhan

			First published: September 2019

			Second edition: July 2023

			Production reference: 1300623

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80512-837-3

			www.packtpub.com

			To my wife, Rike, and my kids, Nora and Niklas, for regularly reminding me that there is a life outside of software development.

			– Tom Hombergs

			Foreword

			It’s a developer’s paradise: it's easy to test the domain logic, it's easy to mock out infrastructure and technology, there's a crystal-clear separation of domain code and technical code, and even migrating from one technology to another seems easy. No more endless discussion about in which part of your code you should implement this tricky new feature in that the business people need by tomorrow. It’s called Clean Architecture,” and Tom will guide you on your journey toward this.

			For a few years, the foundation of clean architecture has been documented under various names (Hexagonal Architecture, ports and adapters, onion architecture, and clean architecture). The basic idea looks simple: two concentric circles separating domain stuff and technical stuff within the software. Dependencies flow inward, from technology to the domain. Domain classes are not allowed any dependencies upon technical classes.

			Too bad that most of the original sources missed out on explaining how packages and code should be organized. Tom’s book perfectly fills this gap. He uses an illustrative example to guide you toward a highly maintainable and clear architectural structure.

			Do yourself and your development colleagues a favor and give the clean architecture approach a chance. I promise you won’t regret it!


			Gernot Starke

			Cologne, June 2023

			Pragmatic software architect since the 1990s, founder of arc42, co-founder of iSAQB, and nerd

			Contributors

			About the author

			Tom Hombergs is a software engineer, author, and simplicity nerd. Complexity is his kryptonite, so he works hard on breaking complex things down into simple pieces that he can understand. If he can understand it, everyone else can, too. He simplifies code as well as text, creating articles, books, and developer documentation that are a joy to read. Tom currently works at Atlassian in Sydney, Australia, where he is responsible for the Developer Experience (DX) of the tech stacks used by other Atlassian developers.

			About the reviewers

			Alexandros Trifyllis is a freelance software engineer with 15 years of experience. He has been part of large enterprise projects for the public, private, and European sectors.

			His areas of interest include backend development (Spring Boot), frontend development (Angular), and various architecture practices (hexagonal/DDD). He also likes to get involved with DevOps tasks (AWS, Terraform, and Kubernetes). Finally, in the past few years, he has taken an interest in DX and Developer Productivity Engineering (DPE) and generally in thinking about how to make the job of developers easier and more pleasant.

			Artem Gorbounov is a Java full-stack developer with a passion for clean architecture and 5 years of industry experience. Currently working at OneUp, he specializes in building robust and scalable web applications. Artem holds an Amazon certification, demonstrating his expertise in cloud computing technologies. He believes that a real full stack programmer should have a comprehensive understanding of the entire technological stack, from the database to the infrastructure, with a clear understanding of application architecture.

			Dr. Gernot Starke is a coach and consultant for software architecture, an INNOQ fellow, the co-founder of arc42 and iSAQB, the founder of aim42, the former technical director of the Sun Microsystems Object-Reality-Center, and a nerd who enjoys bulletproof coffee.

			Jonas Havers is a freelance full stack software engineer with more than 15 years of professional experience working for international e-commerce companies. As a solution and application architect, he helps clients design and build custom large-scale business software systems that help them respond quickly to change and become more successful in their market. He is adept at using a variety of tools, methodologies, and programming languages, including Java, Kotlin, and JavaScript. Jonas regularly explains, discusses, and implements various software designs and software architectures and loves to share all his knowledge and experience with his project team members as well as with his students as a sought-after university guest lecturer.

			Jörg Gellien helps teams in an innovative company to design and develop modern, highly scalable applications to achieve the right business needs. He is an expert on software architecture and Java/Spring development. The ideas of end-to-end responsibility for a product and the use of cloud-based services are strong drivers for his work.

			Jo Vanthournout has been a Java developer and architect for nearly 20 years. He was fortunate to start his career as a developer on one of the first extreme programming projects in Belgium. Ever since, he had tried to live and breathe the values of agile development. Jo has an avid interest in DDD and uses its principles and techniques on a daily basis. He will never be the best developer on the team, but having a pragmatic helicopter view of the problem domain at hand, asking nasty questions, and holding members accountable to the team values are tasks you can entrust him with. He has a wonderful wife and two daughters. When not coding, he is out in the woods running, visiting a battleground from the Second World War, or playing Minecraft with his kids.

			K. Siva Prasad Reddy is a software architect with more than 18 years of experience in building scalable software systems, primarily using the Java platform.

			He is an avid follower of agile practices and takes a pragmatic approach to software design and architecture. He shares his learning and thoughts at https://sivalabs.in.

			Lorenzo Bettini (https://www.lorenzobettini.it) is an associate professor in computer science at DISIA, Università di Firenze, Italy. His research covers the design, theory, and implementation of programming languages, with IDE support.

			He is the author of more than 90 research papers, published in international conferences and international journals, of two editions of the book Implementing Domain-Specific Languages with Xtext and Xtend (Packt Publishing), and the book Test-Driven Development, Build Automation, Continuous Integration (with Java, Eclipse and friends) (Leanpub).

			Maria Luisa Della Vedova is a passionate software developer dedicated to creating meaningful and user-centric solutions, continuously learning and collaborating to have a positive impact on people’s lives.

			Matt Penning has provided companies with technical direction and software development for over three decades. He has a proven track record of creating well-defined and innovative architectures that solve real-world problems and is currently working as a senior technical leader at Cisco Systems, Inc., where he is immersed in Java microservice development, software quality, and developer productivity.

			Mike Davidson is a lead developer and application architect. He works with New Zealand-based, Canadian, and US start-ups and financial institutions to help them build maintainable, cleanly structured software.

			Octavian Nita has dabbled professionally and for fun in Java for over 18 years, moving from language implementation and software automation to desktop and web-based applications. He still enjoys doing that very much.
Brussels-based, these days, he helps European public administration bodies implement so-called “enterprise applications” using domain-centric architecture styles.

			Sven Woltmann has been a Java developer since the early days. He works as an independent developer, coach, and course instructor, specializing in highly scalable Java enterprise applications, algorithm optimization, clean code, and clean architecture. He also shares his knowledge through videos, a newsletter, and his blog, HappyCoders.eu.

			Thomas Buss is an IT consultant at codecentric in Germany. He helps teams reduce the complexity of software products and thus speed up the development process. Coming from a Java background, he enjoys looking into other paradigms and languages as well. He’s also interested in domain-driven modeling, serverless technologies, and ways to reduce the carbon footprint of systems. Also, he likes TV shows that start with “Star.”

			Vivek Ravikumar currently works as a member of the technical staff at PayPal India and has almost a decade of experience in developing enterprise web applications. He has held multiple seminars and lectures across educational institutions and universities in India advocating the importance and best practices involved in the software development life cycle, mentoring students, and fostering industrial knowledge.

			Recently, he has been recognized as a legend of Jakarta EE, MicroProfile, and the Payara platform for securing the top spot in the first-ever Payara global hackathon in building an enterprise web application.

			Wim Deblauwe is a freelance Java developer with over 20 years of Java experience. He is the author of Taming Thymeleaf and Practical Guide to Building an API Back End with Spring Boot. He also started and contributed to various open source projects such as error-handling-spring-boot-starter and testcontainers-cypress.

		


		
			Table of Contents

			Preface

			1

			Maintainability

			What does maintainability even mean?

			Maintainability enables functionality

			Maintainability generates developer joy

			Maintainability supports decision-making

			Maintaining maintainability

			2

			What’s Wrong with Layers?

			They promote database-driven design

			They’re prone to shortcuts

			They grow hard to test

			They hide the use cases

			They make parallel work difficult

			How does this help me build maintainable software?

			3

			Inverting Dependencies

			The Single Responsibility Principle

			A tale about side effects

			The Dependency Inversion Principle

			Clean Architecture

			Hexagonal Architecture

			How does this help me build maintainable software?

			4

			Organizing Code

			Organizing By Layer

			Organizing by feature

			An architecturally expressive package structure

			The role of dependency injection

			How does this help me build maintainable software?

			5

			Implementing a Use Case

			Implementing the domain model

			A use case in a nutshell

			Validating input

			The power of constructors

			Different input models for different use cases

			Validating business rules

			Rich versus anemic domain model

			Different output models for different use cases

			What about read-only use cases?

			How does this help me build maintainable software?

			6

			Implementing a Web Adapter

			Dependency Inversion

			Responsibilities of a web adapter

			Slicing controllers

			How does this help me build maintainable software?

			7

			Implementing a Persistence Adapter

			Dependency inversion

			Responsibilities of a persistence adapter

			Slicing port interfaces

			Slicing persistence adapters

			An example with Spring Data JPA

			What about database transactions?

			How does this help me build maintainable software?

			8

			Testing Architecture Elements

			The test pyramid

			Testing a domain entity with unit tests

			Testing a use case with unit tests

			Testing a web adapter with integration tests

			Testing a persistence adapter with integration tests

			Testing main paths with system tests

			How much testing is enough?

			How does this help me build maintainable software?

			9

			Mapping between Boundaries

			The “No Mapping” strategy

			The “Two-Way” mapping strategy

			The “Full” mapping strategy

			The “One-Way” mapping strategy

			When to use which mapping strategy?

			How does this help me build maintainable software?

			10

			Assembling the Application

			Why even care about assembly?

			Assembling via plain code

			Assembling via Spring’s classpath scanning

			Assembling via Spring’s Java Config

			How does this help me build maintainable software?

			11

			Taking Shortcuts Consciously

			Why shortcuts are like broken windows

			The responsibility of starting clean

			Sharing models between use cases

			Using domain entities as the input or output model

			Skipping incoming ports

			Skipping services

			How does this help me build maintainable software?

			12

			Enforcing Architecture Boundaries

			Boundaries and dependencies

			Visibility modifiers

			Post-compile fitness function

			Build artifacts

			How does this help me build maintainable software?

			13

			Managing Multiple Bounded Contexts

			One hexagon per bounded context?

			Decoupled bounded contexts

			Appropriately coupled bounded contexts

			How does this help me build maintainable software?

			14

			A Component-Based Approach to Software Architecture

			Modularity through components

			 Case study – building a “Check Engine” component

			Enforcing component boundaries

			How does this help me build maintainable software?

			15

			Deciding on an Architecture Style

			Start simple

			Evolve the domain

			Trust your experience

			It depends

			Index

			Other Books You May Enjoy

		



		
			Preface

			If you have picked up this book, you care about the architecture of the software you’re building. You want your software to not only fulfill the customer’s explicit requirements but also the hidden requirement of maintainability, and your own requirements concerning structure and aesthetics.

			It’s hard to fulfill these requirements because software projects (or projects in general, for that matter) usually don’t go as planned. Managers draw deadlines all around the project team1, external partners build their APIs differently from what they had promised, and the software products we depend on don’t work as expected.

			
				1	The word “deadline” presumably originates from the 19th century and described a line drawn around a prison or a camp of prisoners. A prisoner that crossed that line was shot. Think about this definition the next time someone “draws a deadline” around you... it will certainly open up new perspectives. See https://www.merriam-webster.com/words-at-play/your-deadline-wont-kill-you.

			

			And then there is our own software architecture. It was so nice in the beginning. Everything was clear and beautiful. Then the deadlines pressed us into taking shortcuts. Now, the shortcuts are all that’s left of the architecture, and it takes longer and longer to deliver new features.

			Our shortcut-driven architecture makes it hard to react to an API that had to be changed because an external partner screwed up. It seems easier to just send our project manager into battle with that partner to tell them to deliver the API we had agreed upon.

			Now, we have given up all control over the situation. In all likelihood, one of the following things will happen:

			
					The project manager is not strong enough to win the battle against the external partner

					The external partner finds a loophole in the API specs, proving them right

					The external partner needs another <enter number here> months to fix the API

			

			All of this leads to the same result – we have to change our code quickly because the deadline is looming.

			We add another shortcut.

			Instead of letting external factors govern the state of our software architecture, this book takes the stance of taking control ourselves. We gain this control by creating an architecture that makes the software soft, as in “flexible,” “extensible,” and “adaptable.” Such an architecture will make it easy to react to external factors and take a lot of pressure off our backs.

			The goal of this book

			I wrote this book because I was disappointed with the practicality of the resources available on domain-centric architecture styles, such as Robert C. Martin’s Clean Architecture and Alistair Cockburn’s Hexagonal Architecture.

			Many books and online resources explain valuable concepts but not how we can actually implement them.

			That’s probably because there is more than one way to implement any architecture style.

			With this book, I am trying to fill this void by providing a hands-on-code discussion about creating a web application in the Hexagonal Architecture or “Ports and Adapters” style. In order to live up to that goal, the code examples and concepts discussed in this book provide my interpretation of how to implement a Hexagonal Architecture. There are certainly other interpretations out there, and I do not claim that mine is authoritative.

			I certainly hope, however, that you will get some inspiration from the concepts in this book so that you can create your own interpretation of Hexagonal/Clean Architecture.

			Who this book is for

			This book is aimed at software developers of all experience levels involved in creating web applications.
As a junior developer, you’ll learn about how to design software components and complete applications in a clean and maintainable manner. You will also learn some arguments for when to apply a certain technique. You should, however, have participated in building a web application in the past to get the most out of this book.
If you’re an experienced developer, you’ll enjoy comparing the concepts from the book with your own way of doing things and, hopefully, incorporating bits and pieces into your own software development style.
The code examples in this book are in Java and Kotlin, but all discussions are equally applicable to other object-oriented programming languages. If you’re not a Java programmer but can read object-oriented code in other languages, you’ll be fine. In the few places where we need some Java or framework specifics, I will explain them.

			The example application

			To have a recurrent theme throughout the book, most of the code examples show code from an example web application for transferring money online. We’ll call it “BuckPal.”2

			
				2	BuckPal: a quick online search has revealed that a company named PayPal has stolen my idea and even copied part of the name. Joking aside: try to find a name similar to “PayPal” that is not the name of an existing company. It’s hilarious!

			

			The BuckPal application allows a user to register an account, transfer money between accounts, and view the activities (deposits and withdrawals) on the account.

			I’m not a finance specialist by any means, so please don’t judge the example code based on legal or functional correctness. Rather, judge it on structure and maintainability.

			The curse of example applications for software engineering books and online resources is that they’re too simple to highlight the real-world problems we struggle with every day. On the other hand, an example application must stay simple enough to effectively convey the discussed concepts.

			I hope to have found a balance between “too simple” and “too complex” as we discuss the use cases of the BuckPal application throughout this book.

			The code of the example application can be found on GitHub.3

			
				3	The BuckPal GitHub repository: https://github.com/thombergs/buckpal.

			

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. Check the notes at the end of the book.4

			
				4	PDF with color images used in this book: https://packt.link/eBKMn.

			

			Get in touch

			If you have anything to say about this book, I’d love to hear it! Get in touch with me directly via email to tom@reflectoring.io or on Twitter via @TomHombergs.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share your thoughts

			Once you’ve read Get Your Hands Dirty on Clean Architecture–Second Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			 

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781805128373

			2.	Submit your proof of purchase

			3.	That’s it! We’ll send your free PDF and other benefits to your email directly

		


		
			1

			Maintainability

			This book is about software architecture. One of the definitions of architecture is the structure of a system or process. In our case, it’s the structure of a software system.

			Architecture is designing this structure with a purpose. We’re consciously designing our software system to fulfill certain requirements. There are functional requirements that the software has to fulfill to create value for its users. Without functionality, software is worthless, because it produces no value.

			There are also quality requirements (also called non-functional requirements) that the software should fulfill to be considered high quality by its users, developers, and stakeholders. One such quality requirement is maintainability.

			What would you say if I told you that maintainability as a quality attribute, in a way, is more important than functionality and that we should design our software for maintainability over everything else? Once we have established maintainability as an important quality, we will use the rest of this book to explore how we can improve the maintainability of our software by applying the concepts of Clean and Hexagonal Architecture.

			What does maintainability even mean?

			Before you write me off as a lunatic and start looking for options to return this book, let me explain what I mean by maintainability.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		





















































OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/image/9781805128373.jpg
<packd

Get Your Hands Dirty
on Clean Architecture

Build ‘clean’ applications with code examples in Java

<> TOM HOMBERGS
Foreword by Gernot Starke





OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/toc.xhtml


		

		Contents



			

						Get Your Hands Dirty on Clean Architecture



						Foreword



						Contributors



						About the author



						About the reviewers



						Preface

					

								The goal of this book



								Who this book is for



								The example application



								Download the color images



								Get in touch



								Share your thoughts



								Download a free PDF copy of this book



					



				



						Chapter 1: Maintainability

					

								What does maintainability even mean?



								Maintainability enables functionality



								Maintainability generates developer joy



								Maintainability supports decision-making



								Maintaining maintainability



					



				



						Chapter 2: What’s Wrong with Layers?

					

								They promote database-driven design



								They’re prone to shortcuts



								They grow hard to test



								They hide the use cases



								They make parallel work difficult



								How does this help me build maintainable software?



					



				



						Chapter 3: Inverting Dependencies

					

								The Single Responsibility Principle



								A tale about side effects



								The Dependency Inversion Principle



								Clean Architecture



								Hexagonal Architecture



								How does this help me build maintainable software?



					



				



						Chapter 4: Organizing Code

					

								Organizing By Layer



								Organizing by feature



								An architecturally expressive package structure



								The role of dependency injection



								How does this help me build maintainable software?



					



				



						Chapter 5: Implementing a Use Case

					

								Implementing the domain model



								A use case in a nutshell



								Validating input



								The power of constructors



								Different input models for different use cases



								Validating business rules



								Rich versus anemic domain model



								Different output models for different use cases



								What about read-only use cases?



								How does this help me build maintainable software?



					



				



						Chapter 6: Implementing a Web Adapter

					

								Dependency Inversion



								Responsibilities of a web adapter



								Slicing controllers



								How does this help me build maintainable software?



					



				



						Chapter 7: Implementing a Persistence Adapter

					

								Dependency inversion



								Responsibilities of a persistence adapter



								Slicing port interfaces



								Slicing persistence adapters



								An example with Spring Data JPA



								What about database transactions?



								How does this help me build maintainable software?



					



				



						Chapter 8: Testing Architecture Elements

					

								The test pyramid



								Testing a domain entity with unit tests



								Testing a use case with unit tests



								Testing a web adapter with integration tests



								Testing a persistence adapter with integration tests



								Testing main paths with system tests



								How much testing is enough?



								How does this help me build maintainable software?



					



				



						Chapter 9: Mapping between Boundaries

					

								The “No Mapping” strategy



								The “Two-Way” mapping strategy



								The “Full” mapping strategy



								The “One-Way” mapping strategy



								When to use which mapping strategy?



								How does this help me build maintainable software?



					



				



						Chapter 10: Assembling the Application

					

								Why even care about assembly?



								Assembling via plain code



								Assembling via Spring’s classpath scanning



								Assembling via Spring’s Java Config



								How does this help me build maintainable software?



					



				



						Chapter 11: Taking Shortcuts Consciously

					

								Why shortcuts are like broken windows



								The responsibility of starting clean



								Sharing models between use cases



								Using domain entities as the input or output model



								Skipping incoming ports



								Skipping services



								How does this help me build maintainable software?



					



				



						Chapter 12: Enforcing Architecture Boundaries

					

								Boundaries and dependencies



								Visibility modifiers



								Post-compile fitness function



								Build artifacts



								How does this help me build maintainable software?



					



				



						Chapter 13: Managing Multiple Bounded Contexts

					

								One hexagon per bounded context?



								Decoupled bounded contexts



								Appropriately coupled bounded contexts



								How does this help me build maintainable software?



					



				



						Chapter 14: A Component-Based Approach to Software Architecture

					

								Modularity through components



								 Case study – building a “Check Engine” component



								Enforcing component boundaries



								How does this help me build maintainable software?



					



				



						Chapter 15: Deciding on an Architecture Style

					

								Start simple



								Evolve the domain



								Trust your experience



								It depends



					



				



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share your thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/CourierStd.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/image/B19916_QR_Free_PDF.jpg





OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/image/Packt_Logo-01.png
<PACKD





