
		
			[image: Cover.png]
		

	
		
			.NET MAUI Cross-Platform Application Development

			Leverage a first-class cross-platform UI framework to build native apps on multiple platforms

			Roger Ye

			[image:]

			BIRMINGHAM—MUMBAI

			.NET MAUI Cross-Platform Application Development

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Nitin Nainani

			Senior Editor: Keagan Carneiro

			Senior Content Development Editor: Debolina Acharyya

			Technical Editor: Simran Udasi

			Copy Editor: Safis Editing

			Project Coordinator: Sonam Pandey

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Aparna Bhagat

			Marketing Coordinator: Nivedita Pandey

			First published: February 2023

			Production reference: 1050123

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80056-922-5

			www.packt.com

			To my family: my wife Bo Quan and my daughter Yuxin Ye, and the memory of my father and my mother.

			– Roger Ye

			Contributors

			About the author

			Roger Ye is a software engineering manager who has worked in the software industry for many years.

			Roger started his career as a software engineer in embedded system development at companies such as Motorola, Emerson, and Intersil. During this period, he wrote two books about embedded system programming, Embedded Programming with Android and Android System Programming.

			In 2013, Roger joined McAfee as a software engineering manager. He recently started working at EPAM Systems, moving from system programming to application programming. His first book on application programming is on .NET MAUI.

			I want to thank the team at Packt, who worked very hard with me to keep to schedule.

			About the reviewers

			Glenn Stephens is a software developer and product designer, implementing solutions for the mobile-, desktop-, and cloud-centered worlds we all live in. Glenn has worked in many different roles, such as managing director, chief executive officer, solution architect, software development manager, and programmer; has worked in fields spanning high-end security, e-health, education, and finance; and has won several awards along the way. Glenn has a bachelor’s degree in computer science, an MBA with a specialization in e-business, and a Graduate Certificate in Arts in theatre and performance. He considers himself a lifelong learner.

			An author, speaker, and product builder, he has been writing code since the 80s, with the musical taste to match. When he’s not working, he enjoys playing the piano, reading, and spending time with his children.

			Rohit Vinod Kelkar is an artist, a techie, and an experienced mobile application developer who is enthusiastic about cross-platform mobile application technologies. He has expertise in technologies such as Xamarin, Flutter, native iOS, and .NET as a full stack developer. He was an early adopter of .NET MAUI and works with a community of developers to share updates and blog about the technology. He also shares an interest in consulting and helping products in their initial stages.

			Siddharth Singh has over 12 years of software development experience, having worked on a variety of platforms such as Windows, web, and mobile applications. Having worked at Expedia, Adobe, and Salesforce, his experience ranges from COM-/ASP-based legacy apps to React/ASP.NET Core modern applications. While working on Xamarin apps, he developed a passion for the Microsoft cross-platform framework.

			He currently works at Microsoft as a senior developer for Azure Data Factory, writing data integration applications. When not at work, you can find him reading about theoretical computer science and artificial general intelligence.

		

	
		
			Table of Contents

			Preface

			Part 1: Exploring .NET MAUI

			1

			Getting Started with .NET MAUI

			An overview of cross-platform technologies

			Native applications

			Web applications

			Backend services

			Cross-platform technologies

			A comparison of .NET, Java, and JavaScript

			Exploring the .NET landscape

			.NET Framework

			Mono

			.NET Core

			.NET Standard and portable class libraries

			Using Xamarin for mobile development

			Xamarin.Forms

			Xamarin.Essentials

			Moving to .NET MAUI

			.NET MAUI Blazor apps

			Choosing XAML versus Razor in .NET MAUI

			Development environment setup

			Installing .NET MAUI on Windows

			Installing .NET MAUI on macOS

			What you will learn in this book

			The app that we will build in this book

			Summary

			Further reading

			2

			Building Our First .NET MAUI App

			Technical requirements

			Managing the source code in this book

			Setting up a new .NET MAUI project

			Creating a new project using Visual Studio

			Creating a new project using the dotnet command

			App startup and lifecycle

			Lifecycle management

			Configuring the resources

			App icon

			Splash screen

			Setting custom font icons

			Building and debugging

			Windows

			Android

			iOS and macOS

			Scaffolding a Model-View-ViewModel project

			Migrating and reusing a Shell template from Xamarin.Forms

			Visual Studio project template

			Summary

			3

			User Interface Design with XAML

			Technical requirements

			Creating a XAML page

			XAML syntax

			Element

			Attribute

			XML namespaces and XAML namespaces

			XAML markup extensions

			Master-detail UI design

			Side-by-side

			Stacked

			Controls in .NET MAUI

			Layouts in .NET MAUI

			Navigation in the master-detail UI design

			Supporting multiple languages – localization

			Creating a .resx file

			Localizing text

			Summary

			Further reading

			4

			Exploring MVVM and Data Binding

			Technical requirements

			Understanding MVVM and MVC

			MVVM in PassXYZ.Vault

			Data binding

			Binding mode

			Changing notifications in viewmodels

			Improving the data model and service

			KPCLib

			PassXYZLib

			Updating the model

			Updating the service

			Binding to collections

			Summary

			Further reading

			5

			Navigation using .NET MAUI Shell and NavigationPage

			Technical requirements

			Implementing navigation

			INavigation interface and NavigationPage

			Using the navigation stack

			Manipulating the navigation stack

			Using Shell

			Flyout

			Tabs

			Shell navigation

			Improving our model

			Understanding the data model and its services

			Improving the login process

			The Command interface

			Summary

			6

			Introducing Dependency Injection and Platform-Specific Services

			Technical requirements

			A quick review of design principles

			Exploring types of design principles

			Using design principles

			Using DI

			Dependency Service

			Using built-in MS.DI DI service

			Connecting to the database

			Initializing the database

			Performing CRUD operations

			Summary

			Further reading

			Part 2: Implementing .NET MAUI Blazor

			7

			Introducing Blazor Hybrid App Development

			Technical requirements

			What is Blazor?

			Learning about Blazor Server

			Understanding Blazor Wasm

			Exploring Blazor Hybrid

			Creating a new .NET MAUI Blazor project

			Generating a .NET MAUI Blazor project with the dotnet command line

			Creating a .NET MAUI Blazor project using Visual Studio on Windows

			Running the new project

			The startup code of the .NET MAUI Blazor app

			Migrating to a .NET MAUI Blazor app

			Understanding Razor syntax

			Code blocks in Razor

			Implicit Razor expressions

			Explicit Razor expressions

			Expression encoding

			Directives

			Directive attributes

			Creating a Razor component

			Redesigning the login page using a Razor component

			The Model-View-ViewModel (MVVM) pattern in Blazor

			Dependency injection in Blazor

			CSS isolation

			Summary

			8

			Understanding the Blazor Layout and Routing

			Technical requirements

			Understanding client-side routing

			Setup of BlazorWebView

			Setup of Router

			Defining routes

			Using Blazor layout components

			Applying a layout to a component

			Nesting layouts

			Implementing navigation elements

			Implementing a list view

			Adding a new item and navigating back

			Summary

			9

			Implementing Blazor Components

			Technical requirements

			Understanding Razor components

			Inheritance

			Creating a Razor class library

			Using static assets in the Razor class library

			Creating reusable Razor components

			Creating a base modal dialog component

			Data binding

			Component parameters

			Nested components

			Two-way data binding

			Communicating with cascading values and parameters

			Understanding the component lifecycle

			SetParametersAsync

			OnInitialized and OnInitializedAsync

			OnParametersSet and OnParametersSetAsync

			ShouldRender

			OnAfterRender and OnAfterRenderAsync

			Implementing CRUD operations

			CRUD operations of items

			CRUD operations of fields

			Summary

			10

			Advanced Topics in Creating Razor Components

			Technical requirements

			Creating more Razor components

			Creating the Navbar component

			Creating a Dropdown component for the context menu

			Using templated components

			Creating a ListView component

			Using the ListView component

			Built-in components and validation

			Using built-in components

			Using the EditForm component

			Creating an EditFormDialog component

			Summary

			Further reading

			Part 3: Testing and Deployment

			11

			Developing Unit Tests

			Technical requirements

			Unit testing in .NET

			Setting up the unit test project

			Creating test cases to test the IDataStore interface

			Sharing context between tests

			Razor component testing using bUnit

			Changing project configuration for bUnit

			Creating a bUnit test case

			Creating test cases in Razor files

			Using the RenderFragment delegate

			Testing Razor pages

			Summary

			Further reading

			12

			Deploying and Publishing in App Stores

			Technical requirements

			Preparing application packages for publishing

			What to prepare for publishing

			Publishing to Microsoft Store

			Publishing to the Google Play Store

			Publishing to Apple’s App Store

			GitHub Actions

			Understanding GitHub Actions

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			In 2017, when we hit performance issues in one of our projects using Cordova, I started to look for an alternative cross platform programming solution. Xamarin was one of the solutions that I investigated at that time. From then until now, I have spent many years on the development of Xamarin and its descendant .NET MAUI. It’s one of the technologies that I love.

			Even though we have more cross platform programming options today, such as Flutter or React Native, .NET MAUI has some particularly unique features that we may consider when we are looking for a cross-platform solution.

			.NET MAUI uses a single project structure, which is a major improvement compared to Xamarin.Forms. With a single project, we can see the improvement in the following areas:

			
					Better debug and test experience – We can select and debug multiple targets in one project. We don’t have switch to different projects to debug or test different targets.

					Sharing resources – In Xamarin, we have to manage resources in each platform individually. With the improvement of .NET MAUI, we can share most resources cross-platform, such as fonts, images, icons, and so on.

					Simplified configuration – We can use a single app manifest most of time, so we don’t need to manage platform configuration files separately, such as AndroidManifest.xml, Info.plist, or Package.appxmanifest.

			

			In Flutter or React Native, you can use the Flutter plugin or React Native module to access native device features. To use plugins or native modules, you have to rely on the developer community, or you have to develop your own. These interfaces are designed by developers, so they are not standardized. In .NET MAUI, Microsoft has done the job of standardizing APIs for the most frequently used native device features as part of the .NET MAUI release.

			In .NET MAUI, we not only can develop apps using the traditional XAML-based UI, but we also can develop Blazor-based UIs as Blazor Hybrid apps. This opens a door for a higher-level reuse of source code. If you are working on a project that includes a web and mobile app, you can even share the user interface (UI) design and source code between the web and mobile app.

			Since .NET MAUI is part of the .NET platform release now, we can always use the latest .NET platform and C# language features with each release of .NET. We can use advanced features, such as .NET generic hosting, dependency injection, or the MVVM Toolkit from the latest .NET release.

			In this book, I will share my journey in .NET MAUI development with you using the open source app that I have developed. Both .NET MAUI and .NET platform features will be covered in this book.

			Who this book is for

			This book is for frontend developers or native app developers who want to explore cross platform programming technology. This book assumes the audiences have C# programming knowledge or knowledge of any object-oriented programming language similar to C#.

			What this book covers

			Chapter 1, Getting Started with .NET MAUI, provides an introduction to cross-platform technologies. As part of the introduction, .NET MAUI is compared with other cross-platform technologies. The .NET MAUI development environment setup is also covered in this chapter. You will be given an overview of cross-platform technologies that can help you to make the choice for your own project.

			Chapter 2, Building Our First .NET MAUI App, is about setting up the new project for the development work in this book. The .NET MAUI project structure and application life cycle will be discussed as well. You will learn how to create a new project and some basic debugging skills for a .NET MAUI app.

			Chapter 3, User Interface Design with XAML, covers the UI design using XAML. Basic knowledge of the XAML and .NET MAUI UI elements will be discussed. By the end of this chapter, you will be able to work on your own UI design.

			Chapter 4, MVVM and Data Binding, explains some key topics in .NET MAUI app development, including the MVVM pattern and data binding. We will start with the theory first and then apply what we have learned to the development work of the password management app. You will learn how to use data binding and apply it to the MVVM pattern.

			Chapter 5, Introducing Shell and Navigation, introduces Shell and navigation in .NET MAUI. We use Shell to build the skeleton and navigation hierarchy of our app. You will learn about the usage of navigation stack and the Shell elements, which can help you to create your application layout and navigation hierarchy.

			Chapter 6, Dependency Injection and Refining Design, discusses design principles and provides an overview of SOLID design principles. After that, we explain the usage of dependency injection in .NET MAUI. We also apply it in our app development. In this chapter, you will get an overview of the SOLID design principles and see a deep dive into dependency injection.

			Chapter 7, Introducing .NET MAUI Blazor, takes .NET MAUI Blazor application development as its central topic. We will demonstrate how to create a new Blazor Hybrid app and teach you how to convert a .NET MAUI XAML app into a .NET MAUI Blazor Hybrid app. You will learn about the basic environment setup and Razor syntax in this chapter.

			Chapter 8, Understanding Blazor Layout and Routing, explores the layout and routing of Blazor Hybrid apps. We will learn about the router setup and layout components. You will learn how to create a layout and set up routing for your own application.

			Chapter 9, Razor Components and Data Binding, clarifies what a Razor component is and how to use data binding in a Razor component. You will learn how to create a Razor class library and how to refine existing Razor code to create reusable Razor components.

			Chapter 10, Advanced Topics in Creating a Razor Components, brings in some more advanced topics on Razor components. You will learn how to use templated Razor components and built-in Razor components. You will also learn what data validation is and how to perform data validation using built-in components.

			Chapter 11, Unit Test Development using xUnit, presents the unit test frameworks available for .NET MAUI. You will learn how to use xUnit and bUnit to develop unit test cases. You will also learn how to create unit test cases for the .NET class and how to create unit test cases for Razor components using bUnit.

			Chapter 12, Preparing for Deployment in App Stores, discusses how to prepare packages for app stores and how to set up a CI/CD workflow using GitHub Actions. You will learn how to create packages for Google Play, the App Store, and Microsoft Store. You will also learn how to automate the package creation process using GitHub Actions.

			To get the most out of this book

			After you have read the first chapter, you can continue with Part 1 or move on to Part 2. In the first part of this book, we discuss classic .NET MAUI app development using a XAML UI. In the second part of this book, we introduce Blazor Hybrid app development, which is new in .NET MAUI. In the third part, we introduce unit tests and deployment.

			Both Windows and macOS computers are necessary to build the projects in this book. Visual Studio 2022 and the .NET 6 SDK are used in this book. To build iOS and macOS targets on Windows, you need to connect to a network-accessible Mac, referring to the following Microsoft document:

			https://learn.microsoft.com/en-us/dotnet/maui/ios/pair-to-mac?view=net-maui-6.0

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							OS requirements

						
					

					
							
							Visual Studio 2022

						
							
							Windows

						
					

					
							
							Visual Studio 2022 for Mac

						
							
							macOS

						
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development. If there’s an update to the code, it will be updated in the GitHub repository.

			My working repository is https://github.com/shugaoye/PassXYZ.Vault2.

			I will update the source code in my working repository first and then push the commits to Packt repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/nvY4N.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Blazor apps are built using Razor components. The first Razor component in our app is Main and it is defined in Main.razor.”

			A block of code is set as follows:

			
private async Task<bool> UpdateItemAsync(string key, string value)
{
 if (listGroupItem == null) return false;
 if (string.IsNullOrEmpty(key) || string.IsNullOrEmpty(value))
 return false;
 listGroupItem.Name = key;
 listGroupItem.Notes = value;
 if (_isNewItem) {...}
 else {...}
 StateHasChanged();
 return true;
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

			Any command-line input or output is written as follows:

			
git clone -b chapter09
https://github.com/PacktPublishing/.NET-MAUI-Cross-Platform-Application-Development

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “We can right-click on the project node and select Add -> New Item… -> Razor Component in the project template.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read .NET MAUI Cross-Platform Application Development, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content..

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781800569225

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: Exploring .NET MAUI

			In the first part of this book, we will learn about .NET MAUI programming. We will start with the introduction of .NET MAUI and its ancestor Xamarin.Forms. After that, we will create a code base using the Visual Studio template for our application. We will build a password manager app called PassXYZ.Vault step by step in this book. During the development of this app, we will introduce user interface design using XAML, the MVVM pattern, data binding, the shell, dependency injection, and so on. By the end of Part 1, we will have a fully functional password manager application.

			This section comprises the following chapters:

			
					Chapter 1, Getting Started with .NET MAUI

					Chapter 2, Building Our First .NET MAUI App

					Chapter 3, User Interface Design with XAML

					Chapter 4, Exploring MVVM and Data Binding

					Chapter 5, Navigation using .NET MAUI Shell and NavigationPage

					Chapter 6, Introducing Dependency Injection and Platform-Specific Services

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Getting Started with .NET MAUI

			Since the release of .NET 5, Microsoft has been trying to unify different .NET implementations into one .NET release. .NET Multi-platform App UI (or .NET MAUI) is an effort to provide a unified cross-platform UI framework. We will learn how to use .NET MAUI to develop cross-platform applications in this book.

			The following is what we will learn in this chapter:

			
					An overview of cross-platform technologies

					A comparison of cross-platform technologies (.NET, Java, and JavaScript)

					The .NET landscape and the history of Xamarin

					.NET MAUI features

					.NET MAUI Blazor apps

					A development environment setup

			

			If you’re new to .NET development, this chapter will help you to understand the .NET landscape. For Xamarin developers, many topics in this book may sound familiar, and this chapter will give you an overview of what we will discuss in this book.

			An overview of cross-platform technologies

			Before discussing cross-platform technologies, let’s review the application development landscape first to understand the different cross-platform technologies better.

			.NET MAUI is a cross-platform development framework from Microsoft for building apps, targeting both mobile and desktop form factors on Android, iOS, macOS, Windows, and Tizen.

			Generally, software development can be divided into two categories – systems programming and application programming. Application programming aims to produce software that provides services to the user directly, whereas system programming aims to produce software and software platforms that provide services to other software. In the .NET domain, the development of the .NET platform itself belongs to systems programming, whereas the application development on top of the .NET platform belongs to application programming.

			The design or architecture in a modern system includes the client and server side of software, which we can refer to as the frontend and backend.

			For the software on the client side, we can further divide it into two categories – native applications and web applications.

			Native applications

			In native application development, we usually refer to application development for a particular operating system. With desktop applications, this could be Windows applications, macOS applications, or Linux applications. With mobile applications, this could be Android or iOS.

			When we develop a native application, we have to develop it for each platform (Windows, Linux, Android, or macOS/iOS). We need to use different programming languages, tools, and libraries to develop each of them individually.

			Web applications

			Web application development has gone through several generations of evolution over the past few decades, from a Netscape browser with static web pages to a modern single-page application (SPA) using JavaScript frameworks (such as React or Angular). In web application development, JavaScript and various JavaScript-based frameworks dominate the market. In the .NET ecosystem, Blazor is trying to catch up in this area.

			Backend services

			Both native applications and web applications usually need some backend services to access business logic or a database. For backend development, many languages and frameworks can be used, such as Java/Spring, .NET, Node.js, Ruby on Rails, or Python/Django. Usually, native applications and web applications can share the same backend service. Java and .NET are the most popular choices for backend service developments.

			Cross-platform technologies

			Technologies used in web application development and backend services development are not platform-specific and can be used on different platforms as they are. When we talk about cross-platform development, we usually refer to native application development. In native application development, cross-platform development technologies can help to reduce costs and improve efficiency. The most popular cross-platform development technologies in this category include Flutter, .NET MAUI/Xamarin, and React Native. Table 1.1 provides an overview of available cross-platform technologies and alternative solutions from Microsoft. The technologies listed here are not exhaustive. I just want to give you a feeling of what kind of technologies exist in each category and what Microsoft solution can be used as an alternative.

			
				
					
					
					
					
				
				
					
							
							Category

						
							
							Cross-platform technologies

						
							
							Microsoft solution

						
					

					
							
							Language

						
							
							Framework

						
					

					
							
							Web application

						
							
							JavaScript

						
							
							React, Angular, or Vue

						
							
							Blazor/Razor Pages

						
					

					
							
							Native application

						
							
							JavaScript

						
							
							React Native, Cordova, Ionic, Electron, or NW.js

						
							
							.NET MAUI/Blazor/Xamarin

						
					

					
							
							Dart

						
							
							Flutter

						
					

					
							
							Java/Kotlin

						
							
							Swing/Codename One

						
					

					
							
							Backend services

						
							
							Java

						
							
							Spring

						
							
							ASP.NET Core

						
					

					
							
							JavaScript

						
							
							Node.js

						
					

					
							
							Python

						
							
							Diango/Flask/Tornado

						
					

				
			

			Table 1.1: A comparison of languages and frameworks with Microsoft solutions

			There is no best choice of cross-platform tool or framework. The final choice is usually decided according to business requirements. However, from the preceding table, we can see that the .NET ecosystem provides a full spectrum of tools for your requirements. The development team for a large system usually requires people with experience in different programming languages and frameworks. With .NET, the complexity of programming languages and frameworks can be dramatically simplified.

			A comparison of .NET, Java, and JavaScript

			We had an overview of the tools and frameworks used in web apps, native apps, and backend services development. If we look at a higher level, that is, at the .NET ecosystem level, the ecosystem of Java or JavaScript can match almost what we have in a .NET solution. Java, JavaScript, or .NET solutions can provide tools or frameworks at nearly all layers. It would be interesting to compare Java, JavaScript, and .NET at a higher level.

			Java is developed as a language with the goal to write once and run anywhere. It is built around the Java programming language and the Java Virtual Machine (JVM). The JVM is a mechanism to run on supported platforms that helps to remove platform dependency for developers. With this cross-platform capability, Java becomes a common choice for cross-platform applications and services development.

			JavaScript is a language created for web browsers, and its capability is extensive due to the demands of web development. The limitation of JavaScript is that it is a scripting language, so it lacks the language features that can be found in Java or C#. However, this limitation doesn’t limit its usage and popularity. Table 1.2 offers a comparison of three technologies:

			
				
					
					
					
					
				
				
					
							
							Area of comparison

						
							
							.NET

						
							
							Java

						
							
							JavaScript

						
					

					
							
							Programming languages

						
							
							C#, F#, VB, C++, PHP, Ruby, Python, and more

						
							
							Java, Kotlin, Clojure, Groovy, Scala, and more

						
							
							JavaScript, TypeScript, CoffeeScript, and more

						
					

					
							
							Runtime

						
							
							CLR

						
							
							JVM

						
							
							V8/SpiderMonkey/JavaScriptCore

						
					

					
							
							Supported IDE

						
							
							Microsoft Visual Studio, Rider, MonoDevelop, and Visual Studio Code

						
							
							Eclipse, IntelliJ Idea, Oracle NetBeans, and Oracle JDeveloper

						
							
							Visual Studio Code, Webstorm, and Atom

						
					

					
							
							Frontend framework

						
							
							ASP.NET Core Razor/Blazor

						
							
							Only supports server-side rendering such as JSP or Thymeleaf

						
							
							React, Angular, or Vue

						
					

					
							
							Desktop apps

						
							
							WinForms, Win UI, WPF, UWP, and more

						
							
							Swing, JavaFX, and more

						
							
							Electron, NW.js, and more

						
					

					
							
							Mobile apps

						
							
							.NET MAUI/Xamarin

						
							
							Codename One

						
							
							React Native, Cordova, Iconic, and more

						
					

					
							
							Backend framework

						
							
							ASP.NET Core

						
							
							The Spring Framework

						
							
							Node.js

						
					

				
			

			Table 1.2: A comparison of Java, JavaScript, and .NET

			From Table 1.2, we can see that both .NET and Java have a good infrastructure to support multiple languages. JavaScript has its limitation as a scripting language, so TypeScript and CoffeeScript were invented to enhance it. TypeScript was developed by Microsoft to bring modern object-oriented language features to JavaScript. TypeScript is compiled into JavaScript for execution, so it can work well with existing JavaScript libraries.

			Java is built around the JVM while .NET is built around the Common Language Runtime (CLR) and the Common Type System (CTS). With the CTS and CLR as the core of a .NET implementation, it supports multiple languages naturally with the capability to share a Base Class Library (BCL) in all supported languages.

			While there are multiple languages that use the JVM as the abstraction layer for cross-platform capability, the interoperation between Java-derived languages is not at the same level as .NET languages. All .NET languages are built on one architecture and share the same BCL, while Java languages, such as Java, Kotlin, or Scala, are developed separately for very different purposes.

			This comparison helps us to choose or evaluate a tech stack for cross-platform development. As a .NET MAUI developer, this analysis can help you understand your choice better. To understand where .NET MAUI is located in the .NET ecosystem, let’s have a quick overview of the history of the .NET landscape in the next section.

			Exploring the .NET landscape

			Before we dive into the details of .NET MAUI, let’s have an overview of the .NET landscape. This section is relevant if you are new to .NET. If you are a .NET developer, you can skip this section.

			Since Microsoft introduced the .NET platform, it has evolved from a proprietary software framework for Windows to a cross-platform and open source platform.

			There are many ways to look at the .NET technology stack. Basically, it contains the following components:

			
					Common infrastructure (Compiler and tools suite)

					BCLs

					Runtime (Windows Runtime (WinRT) or Mono)

			

			.NET Framework

			The history of .NET history begins with .NET Framework. It is a proprietary software framework developed by Microsoft that runs primarily on Microsoft Windows. .NET Framework started as a future-oriented application framework to standardize the software stack in the Windows ecosystem. It is built around a Common Language Infrastructure (CLI) and C#. Even though the primary programming language is C#, it is designed to be a language-agnostic framework. Supported languages can share the same CTS and CLR. Most Windows desktop applications are developed using .NET Framework, and it is shipped as a part of the Windows operating system.

			Mono

			The first attempt to make .NET an open source framework was made by a company called Ximian. When the CLI and C# were ratified by ECMA in 2001 and ISO in 2003, it provided a potential opportunity for independent implementations.

			In 2001, the open source project Mono was launched, aimed at implementing .NET Framework on Linux desktop software.

			Since .NET Framework was a proprietary technology at that time, .NET Framework and Mono had their own compiler, BCL, and runtime.

			Over time, Microsoft moved toward open source, and .NET source code became open source. The Mono project adopted some source code and tools from the .NET code base.

			At the same time, Mono projects went through many changes as well. At the time that Mono was owned by the Xamarin company, Xamarin developed the Xamarin platform based on Mono to support the .NET platform on Android, iOS, Universal Windows Platform (UWP), and macOS. In 2016, Microsoft acquired Xamarin, which became the cross-platform solution in the .NET ecosystem.

			.NET Core

			Before the acquisition of Xamarin, Microsoft has already started work to make .NET a cross-platform framework. The first attempt was the release of .NET Core 1.0 in 2016. .NET Core is a free and open source framework, available for Windows, Linux, and macOS. It can be used to create modern web apps, microservices, libraries, and console applications. Since .NET Core applications can run on Linux, we can build microservices using containers and cloud infrastructure.

			After .NET Core 3.x was released, Microsoft worked toward integrating and unifying .NET technology on various platforms. This unified version was to supersede both .NET Core and .NET Framework. To avoid confusion with .NET Framework 4.x, this unified framework was named .NET 5. Since .NET 5, a common BCL can be used on all platforms. In .NET 5, there are still two runtimes, which are WinRT (used for Windows) and the Mono runtime (used for mobile and macOS).

			In this book, we use will the .NET 6 release.

			.NET Standard and portable class libraries

			Before the .NET 5 releases, with .NET Framework, Mono, and .NET Core, we had a different subset of BCLs on different platforms. In order to share code between different runtimes or platforms, a technique called Portable Class Libraries (PCLs) was used. When you create a PCL, you have to choose a combination of platforms that you want to support. The level of compatibility choices is decided by the developers. If you want to reuse any PCL, you must carefully study the list of platforms that can be supported.

			Even though a PCL provides a way to share code, it cannot resolve compatibility issues nicely. To overcome the compatibility issues, Microsoft introduced .NET Standard.

			.NET Standard is not a separate .NET release but instead a specification of a set of .NET APIs that must be supported by most .NET implementations (.NET Framework, Mono, .NET Core, .NET 5 or 6, and so on).

			After .NET 5 and later versions, a unified BCL is available, but .NET Standard will be still part of this unified BCL. If your applications only need to support .NET 5 or later, you don’t really need to care too much about .NET Standard. However, if you want to be compatible with old .NET releases, .NET Standard is still the best choice for you. We will use .NET Standard 2.0 in this book to build our data model, since this is a version that can support most existing .NET implementations and all future .NET releases.

			There will be no new versions of .NET Standard from Microsoft, but .NET 5, .NET 6, and all future versions will continue to support .NET Standard 2.1 and earlier. Table 1.3 shows the platforms and versions that .NET Standard 2.0 can support, and this is also the compatible list for our data model in this book.

			
				
					
					
				
				
					
							
							.NET implementation

						
							
							Version support

						
					

					
							
							.NET and .NET Core

						
							
							2.0, 2.1, 2.2, 3.0, 3.1, 5.0, and 6.0

						
					

					
							
							.NET Framework 1

						
							
							4.6.1 2, 4.6.2, 4.7, 4.7.1, 4.7.2, and 4.8

						
					

					
							
							Mono

						
							
							5.4 and 6.4

						
					

					
							
							Xamarin.iOS

						
							
							10.14 and 12.16

						
					

					
							
							Xamarin.Mac

						
							
							3.8 and 5.16

						
					

					
							
							Xamarin.Android

						
							
							8.0 and 10.0

						
					

					
							
							UWP

						
							
							10.0.16299, TBD

						
					

					
							
							Unity

						
							
							2018.1

						
					

				
			

			Table 1.3: .NET Standard 2.0-compatible implementations

			The open-source project KPCLib is a .NET Standard 2.0 library, and we will use it in our app. In Table 1.3, we can see that .NET Standard libraries can be used in both Xamarin and .NET MAUI apps.

			Using Xamarin for mobile development

			As we mentioned in an earlier section, Xamarin was part of the Mono project and was an effort to support .NET on Android, iOS, and macOS. Xamarin.Forms is a cross-platform UI framework from Xamarin. .NET MAUI is an evolution of Xamarin.Forms. Before we discuss .NET MAUI and Xamarin.Forms, let us review the following diagram of Xamarin implementation on various platforms.

			
				
					[image: Figure 1.1: Xamarin implementations]
				

			

			Figure 1.1: Xamarin implementations

			Figure 1.1 shows the overall architecture of Xamarin. Xamarin allows developers to create native UIs on each platform and write business logic in C# that can be shared across platforms.

			On supported platforms, Xamarin contains bindings for nearly the entire underlying platform SDKs. Xamarin also provides facilities for directly invoking the Objective-C, Java, C, and C++ libraries, giving you the power to use a wide array of third-party code. You can use existing Android, iOS, or macOS libraries written in Objective-C, Swift, Java, or C/C++.

			The Mono runtime is used as the .NET runtime on these platforms. It has two modes of operation – Just-in-Time (JIT) and Ahead-of-Time (AOT). JIT compilation generates code dynamically as it is executed. In AOT compilation mode, Mono precompiles everything, so it can be used on operating systems where dynamic code generation is not possible.

			As we can see in Figure 1.1, JIT can be used on Android and macOS, while AOT is used for iOS where dynamic code generation is not allowed.

			There are two ways to develop native applications using Xamarin.

			You can develop native applications just like Android, iOS, or macOS developers, using native APIs on each platform. The difference is that you use .NET libraries and C# instead of the platform-specific language and libraries directly. The advantage of this approach is you can use one language and share a lot of components through the .NET BCL, even if you work on different platforms. You can also leverage the power of underlying platforms like native application developers.

			If you want to reuse code on the user interface layer, you can use Xamarin.Forms instead of the native UI.

			Xamarin.Forms

			Xamarin.Android, Xamarin.iOS, and Xamarin.Mac provide a .NET environment that exposes almost the entire original SDK capability on their respective platforms. For example, as a developer, you have almost the same capability with Xamarin.Android as you do with the original Android SDK. To further improve code sharing, an open source UI framework, Xamarin.Forms, was created. Xamarin.Forms includes a collection of cross-platform user interface components. The user interface design can be implemented using the XAML markup language, which is similar to Windows user interface design in WinUI or WPF.

			Xamarin.Essentials

			Since Xamarin exposes the capability of the underlying platform SDKs, you can access device features using the .NET API. However, the implementation is platform-specific. For example, when you use a location service on Android or iOS, the .NET API can be different. To further improve code sharing across platforms, Xamarin.Essentials can be used to access native device features. Xamarin.Essentials provides a unified .NET interface for native device features. If you use Xamarin.Essentials instead of native APIs, your code can be reused across platforms.

			Some examples of functionalities provided by Xamarin.Essentials include the following:

			
					Device info

					The filesystem

					An accelerometer

					A phone dialer

					Text-to-speech

					Screen lock

			

			Using Xamarin.Forms together with Xamarin.Essentials, most implementations, including business logic, user interface design, and some level of device-specific features, can be shared across platforms.

			Comparing user interface design on different platforms

			Most modern application development on various platforms uses the Model-View-Controller (MVC) design pattern. To separate the business logic and user interface design, there are different approaches used on Android, iOS/macOS, and Windows. On all the platforms involved, even though the programming languages used are different, they all use XML-based markup language to design user interfaces.

			On an iOS/macOS platform, developers can use Interface Builder in XCode to generate .storyboard or .xib files. Both are XML-based script files used to keep user interface information, and this script is interpreted at runtime together with Swift or Objective-C code to create the user interface. In 2019, Apple announced a new framework, SwiftUI. Using SwiftUI, developers can build user interfaces using the Swift language in a declarative way directly.

			On the Android platform, developers can use Layout Editor in Android Studio to create a user interface graphically and store the result in layout files. The layout files are in the XML format as well and can be loaded at runtime to create the user interface.

			On the Windows platform, Extensible Application Markup Language (XAML) is used in user interface design. XAML is an XML-based language used for user interface design on the Windows platform. For a WPF or UWP application, the XAML Designer can be used for user interface design. In .NET MAUI, the XAML-based UI is the default application UI. Another pattern, the Model View Update (MVU) pattern, can also be used. In the MVU pattern, the user interface is implemented in C# directly without XAML. The coding style of MVU is similar to SwiftUI.

			Even though SwiftUI on Apple platforms or MVU in .NET MAUI can be used, but the classic user interface implementation is the XML-based markup language. Let us do a comparison in Table 1.4.

			
				
					
					
					
					
					
				
				
					
							
							Platform

						
							
							IDE

						
							
							Editor

						
							
							Language

						
							
							File extension

						
					

				
				
					
							
							Windows

						
							
							Visual Studio

						
							
							XAML Designer

						
							
							XAML/C#

						
							
							.xaml

						
					

					
							
							Android

						
							
							Android Studio

						
							
							Layout Editor

						
							
							XML/Java/Kotlin

						
							
							.layout

						
					

					
							
							iOS/macOS

						
							
							Xcode

						
							
							Interface Builder

						
							
							XML/Swift/ Objective C

						
							
							.storyboard or .xib

						
					

					
							
							.NET MAUI/ Xamarin.Forms

						
							
							Visual Studio

						
							
							N.A.

						
							
							XAML/C#

						
							
							.xaml

						
					

					
							
							.NET MAUI Blazor

						
							
							Razor/C#

						
							
							.razor

						
					

				
			

			Table 1.4: A comparison of user interface design

			In Table 1.4, we can see a comparison of user interface design on different platforms.

			.NET MAUI and Xamarin.Forms use a dialect of XAML to design user interfaces on all supported platforms. For .NET MAUI, we have another choice for user interface design, which is Blazor. We will discuss Blazor later in this chapter.

			In Xamarin.Forms, we create user interfaces in XAML and code-behind in C#. The underlying implementation is still the native controls on each platform, so the look and feel of Xamarin.Forms applications are the same as native ones.

			Some examples of features provided by Xamarin.Forms include the following:

			
					XAML user interface language

					Data binding

					Gestures

					Effects

					Styling

			

			Even though we can share almost all UI code with Xamarin.Forms, we still need to handle most of the resources used by an application in each platform individually. These resources could be images, fonts, or strings. In the project structure of Xamarin.Forms, we have a common .NET standard project and multiple platform-specific projects. Most of the development work will be done in the common project, but the resources are still handled in the platform-specific projects separately.

			Moving to .NET MAUI

			With the .NET unification, Xamarin has become a part of the .NET platform, and Xamarin.Forms integrates with .NET in the form of .NET MAUI.

			.NET MAUI is a first-class .NET citizen with the Microsoft.Maui namespace.

			Making the move to .NET MAUI is also an opportunity for Microsoft to redesign and rebuild Xamarin.Forms from the ground up and tackle some of the issues that have been lingering at a lower level. Compared to Xamarin.Forms, .NET MAUI uses a single project structure, supports hot reloads better, and supports MVU and Blazor development patterns.

			From Figure 1.2, we can see that there is a common BCL for all supported operating systems. Under the BCL, there are two runtimes, WinRT and the Mono Runtime, according to the platform. For each platform, there is a dedicated .NET implementation to provide full support for native application development.

			
				
					[image: Figure 1.2: .NET MAUI architecture]
				

			

			 Figure 1.2: .NET MAUI architecture

			Comparing to Xamarin.Forms, we can see from Table 1.5, there are many improvements in .NET MAUI.

			.NET MAUI uses a single project structure to simplify project management. We can manage resources, dependency injection, and configurations in one location instead of managing them separately per platform.

			.NET MAUI is fully integrated as part of .NET, so we can create and build projects using the .NET SDK command line. In this case, we have more choices in terms of development environments.

			
				
					
					
					
				
				
					
							
							
							.NET MAUI

						
							
							Xamarin.Forms

						
					

				
				
					
							
							Project structure

						
							
							Single project

						
							
							Multiple projects

						
					

					
							
							Resource management

						
							
							One location for all platforms

						
							
							Managed per platform

						
					

					
							
							Fully integrated with .NET

						
							
							Namespace in Microsoft.Maui and other IDEs can be chosen beside Visual Studio.

							Command-line support. We can create, build, and run in a console:

							
dotnet new maui
dotnet build -t:Run -f net6.0-android
dotnet build -t:Run -f net6.0-ios
dotnet build -t:Run -f net6.0-maccatalyst

						
							
							Namespace in Xamarin.Forms and it uses Visual Studio as an IDE

						
					

					
							
							Design improvement

						
							
							
									Configuration through .NET Generic Host

									Dependency injection support

							

						
							
							
									Configuration scattered in different locations

							

						
					

					
							
							MVU pattern

						
							
							A modern type of UI implementation

						
							
							No

						
					

					
							
							Blazor Hybrid

						
							
							Support through BlazorWebView

						
							
							No

						
					

				
			

			Table 1.5: .NET MAUI improvement

			In Table 1.5, we can see that .NET MAUI supports application configuration using .NET generic host, can work with multiple IDE environments, supports dependency injection, and can use the MVVM toolkit, etc. It also supports the MVU pattern and Blazor Hybrid UI. Next, we will look at the Blazor Hybrid app.

			.NET MAUI Blazor apps

			In Table 1.4, where we compared the user interface design options on different platforms, we mentioned that there is another way to design cross-platform user interfaces in .NET MAUI, which is Blazor.

			Released in ASP.NET Core 3.0, Blazor is a framework for building an interactive client-side web UI with .NET. With .NET MAUI and Blazor, we can build cross-platform apps in the form of Blazor Hybrid apps. This way, the boundary between a native application and a web application becomes blurred. .NET MAUI Blazor Hybrid apps enable Blazor components to be integrated with native platform features and UI controls. The Blazor components have full access to the native capabilities of a device.

			The way to use the Blazor web framework in .NET MAUI is through a BlazorWebView component. .NET MAUI Blazor enables both native and web UIs in a single application, and they can co-exist in a single view. With .NET MAUI Blazor, applications can leverage the Blazor component model (Razor components), which uses HTML, CSS, and the Razor syntax. The Blazor part of an app can reuse components, layouts, and styles that are used in an existing regular web app. BlazorWebView can be composed alongside native elements; additionally, they leverage platform features and share states with their native counterparts.

			Choosing XAML versus Razor in .NET MAUI

			To design the user interface of your .NET MAUI application, you have a few choices for implementation:

			
					XAML: Implement user interface in XAML that is only similar to Xamarin.Forms. We can also choose the MVU pattern to use C# code to create and style UI elements directly. No matter whether you choose XAML or C# code directly, the underlying implementation is the same.

					Blazor: Implement a user interface in Razor Pages, which is similar to web application development.

					Blazor Hybrid app: Use both XAML and Razor Pages in your application.

			

			It’s your decision how you want to design your application. You can choose one of the preceding options or mix XAML and the Blazor UI according to the best fit. To develop Blazor Hybrid apps, you should be able to use most of the existing Blazor libraries directly. Blazor provides good JavaScript interoperability, and you can use your favorite JavaScript library in your development.

			Development environment setup

			Both Windows and macOS can be used for .NET MAUI development, but you won’t be able to build all targets with only one of them. You will need both Windows and Mac computers to build all targets. In this book, the Windows environment is used to build and test Android and Windows targets. iOS and macOS targets are built on a Mac computer.

			.NET MAUI app can target the following platforms:

			
					Android 5.0 (API 21) or higher

					iOS 10 or higher

					macOS 10.13 or higher, using Mac Catalyst

					Windows 11 and Windows 10 version 1809 or higher, using Windows UI Library (WinUI) 3

			

			.NET MAUI Blazor apps use the platform-specific WebView control, so they have the following additional requirements:

			
					Android 7.0 (API 24) or higher

					iOS 14 or higher

					macOS 11 or higher, using Mac Catalyst

			

			.NET MAUI build targets of Android, iOS, macOS, and Windows can be built using Visual Studio on a Windows computer. In this environment, a networked Mac is required to build iOS and macOS targets. Xcode must be installed on the paired Mac to debug and test an iOS MAUI app in a Windows development environment.

			.NET MAUI targets of Android, iOS, and macOS can be built and tested on macOS.

			
				
					
					
					
				
				
					
							
							Target platform

						
							
							Windows

						
							
							macOS

						
					

					
							
							Windows

						
							
							Yes

						
							
							No

						
					

					
							
							Android

						
							
							Yes

						
							
							Yes

						
					

					
							
							iOS

						
							
							Yes (pair to Mac)

						
							
							Yes

						
					

					
							
							macOS

						
							
							Build only (pair to Mac)

						
							
							Yes

						
					

				
			

			Table 1.6: The development environment of .NET MAUI

			Please refer to Table 1.6 to find out the build configurations on Windows and macOS.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						.NET MAUI Cross-Platform Application Development

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Exploring .NET MAUI

						Chapter 1: Getting Started with .NET MAUI

					

								An overview of cross-platform technologies

							

										Native applications

										Web applications

										Backend services

										Cross-platform technologies

										A comparison of .NET, Java, and JavaScript

							

						

								Exploring the .NET landscape

							

										.NET Framework

										Mono

										.NET Core

										.NET Standard and portable class libraries

							

						

								Using Xamarin for mobile development

							

										Xamarin.Forms

										Xamarin.Essentials

							

						

								Moving to .NET MAUI

							

										.NET MAUI Blazor apps

										Choosing XAML versus Razor in .NET MAUI

							

						

								Development environment setup

							

										Installing .NET MAUI on Windows

										Installing .NET MAUI on macOS

							

						

								What you will learn in this book

								The app that we will build in this book

								Summary

								Further reading

					

				

						Chapter 2: Building Our First .NET MAUI App

					

								Technical requirements

								Managing the source code in this book

								Setting up a new .NET MAUI project

							

										Creating a new project using Visual Studio

										Creating a new project using the dotnet command

							

						

								App startup and lifecycle

							

										Lifecycle management

							

						

								Configuring the resources

							

										App icon

										Splash screen

										Setting custom font icons

							

						

								Building and debugging

							

										Windows

										Android

										iOS and macOS

							

						

								Scaffolding a Model-View-ViewModel project

							

										Migrating and reusing a Shell template from Xamarin.Forms

										Visual Studio project template

							

						

								Summary

					

				

						Chapter 3: User Interface Design with XAML

					

								Technical requirements

								Creating a XAML page

								XAML syntax

							

										Element

										Attribute

										XML namespaces and XAML namespaces

							

						

								XAML markup extensions

								Master-detail UI design

							

										Side-by-side

										Stacked

										Controls in .NET MAUI

										Layouts in .NET MAUI

										Navigation in the master-detail UI design

							

						

								Supporting multiple languages – localization

							

										Creating a .resx file

										Localizing text

							

						

								Summary

								Further reading

					

				

						Chapter 4: Exploring MVVM and Data Binding

					

								Technical requirements

								Understanding MVVM and MVC

							

										MVVM in PassXYZ.Vault

							

						

								Data binding

							

										Binding mode

										Changing notifications in viewmodels

							

						

								Improving the data model and service

							

										KPCLib

										PassXYZLib

										Updating the model

										Updating the service

							

						

								Binding to collections

								Summary

								Further reading

					

				

						Chapter 5: Navigation using .NET MAUI Shell and NavigationPage

					

								Technical requirements

								Implementing navigation

							

										INavigation interface and NavigationPage

										Using the navigation stack

										Manipulating the navigation stack

							

						

								Using Shell

							

										Flyout

										Tabs

										Shell navigation

							

						

								Improving our model

							

										Understanding the data model and its services

										Improving the login process

										The Command interface

							

						

								Summary

					

				

						Chapter 6: Introducing Dependency Injection and Platform-Specific Services

					

								Technical requirements

								A quick review of design principles

							

										Exploring types of design principles

										Using design principles

							

						

								Using DI

							

										Dependency Service

										Using built-in MS.DI DI service

							

						

								Connecting to the database

							

										Initializing the database

										Performing CRUD operations

							

						

								Summary

								Further reading

					

				

						Part 2: Implementing .NET MAUI Blazor

						Chapter 7: Introducing Blazor Hybrid App Development

					

								Technical requirements

								What is Blazor?

							

										Learning about Blazor Server

										Understanding Blazor Wasm

										Exploring Blazor Hybrid

							

						

								Creating a new .NET MAUI Blazor project

							

										Generating a .NET MAUI Blazor project with the dotnet command line

										Creating a .NET MAUI Blazor project using Visual Studio on Windows

										Running the new project

										The startup code of the .NET MAUI Blazor app

							

						

								Migrating to a .NET MAUI Blazor app

								Understanding Razor syntax

							

										Code blocks in Razor

										Implicit Razor expressions

										Explicit Razor expressions

										Expression encoding

										Directives

										Directive attributes

							

						

								Creating a Razor component

							

										Redesigning the login page using a Razor component

										The Model-View-ViewModel (MVVM) pattern in Blazor

										Dependency injection in Blazor

										CSS isolation

							

						

								Summary

					

				

						Chapter 8: Understanding the Blazor Layout and Routing

					

								Technical requirements

								Understanding client-side routing

							

										Setup of BlazorWebView

										Setup of Router

										Defining routes

							

						

								Using Blazor layout components

							

										Applying a layout to a component

										Nesting layouts

							

						

								Implementing navigation elements

							

										Implementing a list view

										Adding a new item and navigating back

							

						

								Summary

					

				

						Chapter 9: Implementing Blazor Components

					

								Technical requirements

								Understanding Razor components

							

										Inheritance

							

						

								Creating a Razor class library

							

										Using static assets in the Razor class library

							

						

								Creating reusable Razor components

							

										Creating a base modal dialog component

										Data binding

										Component parameters

										Nested components

										Two-way data binding

										Communicating with cascading values and parameters

							

						

								Understanding the component lifecycle

							

										SetParametersAsync

										OnInitialized and OnInitializedAsync

										OnParametersSet and OnParametersSetAsync

										ShouldRender

										OnAfterRender and OnAfterRenderAsync

							

						

								Implementing CRUD operations

							

										CRUD operations of items

										CRUD operations of fields

							

						

								Summary

					

				

						Chapter 10: Advanced Topics in Creating Razor Components

					

								Technical requirements

								Creating more Razor components

							

										Creating the Navbar component

										Creating a Dropdown component for the context menu

							

						

								Using templated components

							

										Creating a ListView component

										Using the ListView component

							

						

								Built-in components and validation

							

										Using built-in components

										Using the EditForm component

										Creating an EditFormDialog component

							

						

								Summary

								Further reading

					

				

						Part 3: Testing and Deployment

						Chapter 11: Developing Unit Tests

					

								Technical requirements

								Unit testing in .NET

							

										Setting up the unit test project

										Creating test cases to test the IDataStore interface

										Sharing context between tests

							

						

								Razor component testing using bUnit

							

										Changing project configuration for bUnit

										Creating a bUnit test case

										Creating test cases in Razor files

										Using the RenderFragment delegate

										Testing Razor pages

							

						

								Summary

								Further reading

					

				

						Chapter 12: Deploying and Publishing in App Stores

					

								Technical requirements

								Preparing application packages for publishing

							

										What to prepare for publishing

										Publishing to Microsoft Store

										Publishing to the Google Play Store

										Publishing to Apple’s App Store

							

						

								GitHub Actions

							

										Understanding GitHub Actions

							

						

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/image/B16588_QR_Free_PDF.jpg

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/Figure_1.2_B16588.jpg
App Code
.NET for Android .NET foriOS .NET for Mac

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Figure_1.1_B16588.jpg
iOS Native Ul

’

macOS Native Ul

NET APis(| A0 | —MCW-— |Ancrod- || Java: NET APIs Bindings—4 10S APIs NET APIs {—Bindings~ Mac APls
. |Android Runtime! Objective-C JIT Objective-C
Moo ACW (ART) Mono (Full AOT) Runtime (Mono Runtime) Runtime

Linux Kernel

UNIX-like Kernel

UNIX-like Kernel

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Cover.png
<packt>

.NET MAUI Cross-Platform
Application Development

Leverage a first-class cross-platform Ul framework
to build native apps on multiple platforms

<> ROGER YE

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Packt_logo.png
<packmn

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

