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			Preface

			Switching to a reactive mindset is one of the biggest challenges when you start learning Reactive programming using RxJS. I believe that the reactive mindset is gradually achieved by learning reactive patterns and comparing the reactive way with the imperative one to distinguish the difference and the benefits.

			That's why I wrote this book, which gathers a set of reactive patterns applied in an Angular application. Learning reactive patterns helps with managing your application's data efficiently, writing clean and maintainable code, reacting to user changes faster, and consequently, enhancing the user experience. 

			So, all that you have to do is get started! 

			Who this book is for

			The book is for Angular developers who want to use RxJS to build reactive web applications. This book assumes beginner-level knowledge of and experience with Angular, RxJS, TypeScript, and functional programming concepts.

			What this book covers

			Chapter 1, The Power of the Reactive Paradigm, explains the fundamentals of Reactive programming.

			Chapter 2, RxJS 7 – The Major Features, focuses on the main improvements of RxJS 7.

			Chapter 3, A Walkthrough of the Application, highlights the architecture and requirements of the application that we will be building gradually.

			Chapter 4, Fetching Data as Streams, explains the first reactive pattern for fetching data.

			Chapter 5, Error Handling, details the error handling strategies and the reactive patterns for handling errors.

			Chapter 6, Combining Streams, explains the reactive pattern for combining streams. 

			Chapter 7, Transforming Streams, explains the reactive pattern for transforming streams. 

			Chapter 8, Multicasting Essentials, focuses on the multicasting approach essentials.

			Chapter 9, Caching Streams, explains the reactive pattern for caching streams.

			Chapter 10, Sharing Data between Components, explains the reactive patterns for sharing data between components.

			Chapter 11, Bulk Operations, explores the reactive pattern for performing bulk actions.

			Chapter 12, Processing Real-Time Updates, explores the reactive pattern for consuming real-time updates.

			Chapter 13, Testing RxJS Observables, explains the different strategies for testing reactive patterns.

			To get the most out of this book

			All code examples have been tested using Angular 12 on a Windows operating system. However, it should work with future releases too.
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			Please make sure you follow the prerequisites at https://angular.io/guide/setup-local. The prerequisites include the environment setup and the technologies needed in order to install and use Angular.

			We also used the Bootstrap library to manage the application responsiveness. We used primeng as a library of rich components and RxJS 7 as the reactive library, of course. 

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular. If there's an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801811514_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In the try block, you place your risky statements, and inside catch, you handle the possible exceptions."

			A block of code is set as follows:

			behaviourSubject$.subscribe({

			  next: (message) => console.log(message),

			  error: (error) => console.log(error),

			  complete: () => console.log('Stream Completed'),

			});

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			behaviourSubject$.subscribe({

			  next: (message) => console.log(message),

			  error: (error) => console.log(error),

			  complete: () => console.log('Stream Completed'),

			});

			Any command-line input or output is written as follows:

			$ mkdir css

			$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "Select System info from the Administration panel."

			Tips or Important Notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Reactive Patterns with RxJS for Angular, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	


		
			
			

		

		
			Part 1 – Introduction

			In this section, you will understand the importance of using the reactive paradigm in an Angular application, as well as the new features of RxJS 7. In the third chapter, we will introduce the application that we are going to progressively build as we go through the book. 

			This part comprises the following chapters:

			
					Chapter 1, The Power of the Reactive Paradigm

					Chapter 2, RxJS 7 – The Major Features

					Chapter 3, A Walkthrough of the Application

			

		

	


		
			Chapter 1: The Power of the Reactive Paradigm

			This book is based entirely on useful reactive patterns in Angular applications. Reactive patterns are reusable solutions to a commonly occurring problem using reactive programming. Behind all of these patterns, there is a new way of thinking, new architecture, new coding styles, and new tools.

			I know you are impatient to write your first reactive pattern in Angular, but before doing that, and to help you take full advantage of all the RxJS patterns and leverage the reactive paradigm, we will start by explaining, in detail, all the fundamentals. Additionally, we will prepare the groundwork for the following chapters. First, let's start with a basic understanding of the reactive paradigm, its advantages, and the problems it solves. And best of all, let's get into the reactive mindset and start thinking reactively.

			We will begin by highlighting the pillars and the advantages of the reactive paradigm. Then, we will describe the relationship between Angular and RxJS. Finally, we will explain the Marble diagram and why it is useful. 

			Giving an insight into the fundamentals of the reactive paradigm is incredibly important. This will ensure you get the basics right, help you understand the usefulness of the reactive approach, and consequently, help you determine which situation it is best to use it in.

			In this chapter, we're going to cover the following topics: 

			
					Exploring the pillars of reactive programming

					Using RxJS in Angular and its advantages

					Learning about the marble diagram – our secret weapon

			

			Technical requirements

			This chapter does not require an environment setup or installation steps. All the code snippets here are just examples to illustrate the concepts. This book assumes that you have a basic understanding of Angular and RxJS.

			Exploring the pillars of reactive programming 

			Let's begin with a little bit of background! 

			Reactive programming is among the major programming paradigms used by developers worldwide. Every programming paradigm solves some problems and has its own advantages. By definition, reactive programming is programming with asynchronous data streams and is based on observer patterns. So, let's talk about these pillars of reactive programming!

			Data streams

			Data streams are the spine of reactive programming. Everything that might change or happen over time (you don't know when exactly) is represented as a stream, such as data, events, notifications, and messages. Reactive programming is about reacting to changes as soon as they are emitted! 

			An excellent example of data streams is UI events. Let's suppose that we have an HTML button, and we want to execute an action whenever a user clicks on it. Here, we can think of the click event as a stream:

			//HTML code

			<button id='save'>Save</button>

			//TS code

			const saveElement = document.getElementById('save');

			saveElement.addEventListener('click', processClick);

			function processClick(event) {

			  console.log('Hi');

			}

			As implemented in the preceding code snippet, in order to react to this click event, we register an EventListener event. Then, every time a click occurs, the processClick method is called to execute a side effect. In our case, we are just logging Hi in the console. 

			As you might have gathered, to be able to react when something happens and execute a side effect, you should listen to the streams to become notified. We can say listen or observe to get closer to the reactive terminology. And this leads us to the observer design pattern, which is at the heart of reactive programming. 

			Observer patterns

			The observer pattern is based on two main roles: a publisher and a subscriber.

			A publisher maintains a list of subscribers and notifies them or propagates a change every time there is an update. On the other hand, a subscriber performs an update or executes a side effect every time they receive a notification from the publisher: 

			
				
					[image: Figure 1.1 – The observer pattern ]
				

			

			Figure 1.1 – The observer pattern

			So, to get notified about any updates, you need to subscribe to the publisher. A real-world analogy would be a newsletter; you don't get any emails if you don't subscribe to a newsletter.

			This leads us to the building blocks of RxJS. They include the following:

			
					Observables: These are a representation of the data streams that notify the observers of any change.

					Observers: These are the consumers of the data streams emitted by observables. 
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