
		
			[image: cover.png]
		

	
		
			Reactive Patterns with RxJS for Angular

			A practical guide to managing your Angular application's data reactively and efficiently using RxJS 7

			

			Lamis Chebbi

			[image:]

			BIRMINGHAM—MUMBAI

			Reactive Patterns with RxJS for Angular

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Associate Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Ashitosh Gupta

			Senior Editor: Mark Dsouza

			Content Development Editor: Divya Vijayan

			Technical Editor: Shubham Sharma

			Copy Editor: Safis Editing

			Project Coordinator: Ajesh Devavaram

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Alishon Mendonca

			Marketing Coordinator: Elizabeth Varghese

			First published: April 2022

			Production reference: 3200924

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80181-151-4

			www.packt.com

			To my father, who taught me diligence, perseverance, and work ethic. Thank you for always being there to support me and lift me up.

			To my mother, who taught me selflessness and doing things with love. Thank you for your enduring encouragement during the writing of this book.

			To my brother and my sisters, for their continuous support.

			-Lamis Chebbi

			

			Contributors

			About the author

			Lamis Chebbi is a Google Developer Expert for Angular and an Auth0 ambassador.

			She is an enthusiastic software engineer with a strong passion for the modern web. She's the founder of Angular Tunisia, a member of the WWCode community, a speaker, a content creator, and a trainer. She has been into Angular for the past few years and loves to share her knowledge about Angular through participating in workshops and organizing training sessions. ng-girls is one of the communities she supports. Empowering women and students is one of her highest priorities. Besides Angular and the web, Lamis loves music, traveling, chromotherapy, and volunteering. Last but not least, she's a forever student.

			I want to thank all the people that believed in me and supported me.

			I am thankful for the people who helped me in the journey.

			I am thankful for the people who inspired me in the journey.

			About the reviewer

			Dave Muellerchen is a freelancer. He loves sharing his self-taught knowledge of JavaScript at meetups and conferences.

			His passion for communities shows in his commitment to them. He is the organizer of the Angular Hamburg Meetup and Tech Meetup Hamburg. He is also a team member at the Angular conference in Germany (ng-de) and a Google Developer Expert for web technologies. He streams developer content on Twitch.

			Thanks to my wife, who has my back to do what I do. Thank you my sons, for the fun and the distraction. And of course, thank you Lamis for your trust.

			Anu Nagan G has worked in various corporate organizations starting from SaaS startup [GenDeep], midsize [GAVS], Fortune 500 companies [DXC] playing various roles there such as Technical Product Manager, Full Stack Product Lead [Angular, Java, Python, AWS], Delivery Lead respectively in his 8 years of tenure. Currently, he is with Bounteous, leading parallel projects such as Clinical mobile app development, Fintech marketing data migration. Contributed to various AIOps products ZIF, Anu Nagan G has worked in various corporate organizations starting from SaaS startup [GenDeep], midsize [GAVS], Fortune 500 companies [DXC] playing various roles there such as Technical Product Manager, Full Stack Product Lead [Angular, Java, Python, AWS], Delivery Lead respectively in his 8 years of tenure. Currently, he is with Bounteous, leading parallel projects such as Clinical mobile app development, Fintech marketing data migration. Contributed to various AIOps products ZIF, Gcare in the past. He is an avid reader, cinephile, who loves to play Guitar, makes short films with his friends.

			I would like to dedicate this to my grandparents who are celebrating their 82nd anniversary, to my wife and we are expecting. Happy birthday Hema.

			Muhammad Awais is an internationally recognized Lead Software Engineer and Full Stack Developer with over 9 years of experience. His expertise spans JavaScript, TypeScript, Angular, React, Vue, NodeJS, and AI, focusing on crafting exceptional web experiences and solving complex bugs.

			Awais has authored articles on Generative AI and JavaScript for leading publications like Generative AI and JavaScript in Plain English. He is also a renowned speaker, having represented Google and AWS at various events globally. He has gained international recognition from Google, AWS, Postman, and others for his contributions to the tech community.

		

	
		
			Table of Contents

			Preface

			Part 1 – Introduction

			Chapter 1: The Power of the Reactive Paradigm

			Technical requirements

			Exploring the pillars of reactive programming

			Data streams

			Observer patterns

			Using RxJS in Angular and its advantages

			The HTTP client module

			The router module

			Reactive forms

			The event emitter

			The async pipe

			Learning about the marble diagram – our secret weapon

			Summary

			Chapter 2: RxJS 7 – The Major Features

			Technical requirements

			Exploring the bundle size improvements

			Reviewing the TypeScript typing improvements

			Understanding the toPromise() deprecation

			The firstValueFrom() method

			The lastValueFrom() method

			Empty errors

			Highlighting API consistency improvements

			Summary

			Chapter 3: A Walkthrough of the Application

			Technical requirements

			Our app's user stories

			View one – the landing page

			View two – the new recipe interface

			View three – the My Recipes interface

			View four – the My Favourites interface

			View five – the modify recipe interface

			View six – the recipe details interface

			Our app's architecture

			The components overview

			Summary

			Part 2 – A Trip into Reactive Patterns

			Chapter 4: Fetching Data as Streams

			Technical requirements

			Defining the requirement

			Exploring the classic pattern for fetching data

			Defining the structure of your data

			Creating an Angular service

			Retrieving the data through a method

			Injecting and subscribing to the service in your component

			Displaying the data in the template

			Managing unsubscriptions

			Exploring the reactive pattern for fetching data

			Retrieving data as streams

			Defining the stream in your component

			Using the async pipe in your template

			Highlighting the advantages of the reactive pattern

			Using the declarative approach

			Using the change detection strategy of OnPush

			Wrapping up

			Summary

			Chapter 5: Error Handling

			Technical requirements

			Understanding the anatomy of an Observable

			Exploring error handling patterns and strategies

			Handling error operators

			The catchError operator

			The delayWhen operator

			Error handling in action

			Summary

			Chapter 6: Combining Streams

			Technical requirements

			Defining the requirement

			Exploring the imperative pattern for filtering data

			A look at the filter component

			A look at the recipes list component

			Exploring the declarative pattern for filtering data

			The combineLatest operator

			The declarative pattern pillars

			Emitting a value when an action occurs

			Summary

			Chapter 7: Transforming Streams

			Technical requirements

			Defining the requirement

			Exploring the imperative pattern for autosave

			Exploring the reactive pattern for autosave

			Higher-order observables

			Higher-order mapping operators

			The concatMap operator

			Learning about other useful higher-order mapping operators

			The mergeMap operator

			The switchMap operator

			The exhaustMap operator

			Summary

			Part 3 – Multicasting Takes You to New Places

			Chapter 8: Multicasting Essentials

			Technical requirements

			Explaining Multicasting versus Unicasting

			Producer

			A cold observable

			A hot observable

			Exploring Subjects

			A plain Subject

			ReplaySubject

			BehaviorSubject

			Highlighting Multicasting operators

			Summary

			Chapter 9: Caching Streams

			Technical requirements

			Defining the requirement

			Learning about using the reactive pattern to cache streams

			Exploring the RxJS 7 recommended pattern to cache streams

			Highlighting the use cases of caching streams

			Summary

			Chapter 10: Sharing Data between Components

			Technical requirements

			Defining the requirement

			Exploring the reactive pattern to share data

			Step one – creating a shared service

			Step two – updating the last-selected recipe

			Step three – consuming the last-selected recipe

			Highlighting other ways for sharing data

			Summary

			Chapter 11: Bulk Operations

			Technical requirements

			Defining the requirement

			Learning about the reactive pattern for bulk operations

			The forkJoin operator

			The pattern in action

			Learning about the reactive pattern for tracking progress

			Summary

			Chapter 12: Processing Real-Time Updates

			Technical requirements

			Defining the requirement

			Learning the reactive pattern for consuming real-time messages

			The WebSocketSubject behavior

			Connection management

			Putting the pattern into action

			Learning the reactive pattern for handling reconnection

			Retrying the reconnection

			Summary

			Part 4 – Final Touch

			Chapter 13: Testing RxJS Observables

			Technical requirements

			Learning about the subscribe and assert pattern

			Learning about the marble testing pattern

			Understanding the syntax

			Implementing marble tests

			Highlighting testing streams using HttpClientTestingModule

			Summary

			Why subscribe?

			Other Books You May Enjoy

		

	

		
			Preface

			Switching to a reactive mindset is one of the biggest challenges when you start learning Reactive programming using RxJS. I believe that the reactive mindset is gradually achieved by learning reactive patterns and comparing the reactive way with the imperative one to distinguish the difference and the benefits.

			That's why I wrote this book, which gathers a set of reactive patterns applied in an Angular application. Learning reactive patterns helps with managing your application's data efficiently, writing clean and maintainable code, reacting to user changes faster, and consequently, enhancing the user experience.

			So, all that you have to do is get started!

			Who this book is for

			The book is for Angular developers who want to use RxJS to build reactive web applications. This book assumes beginner-level knowledge of and experience with Angular, RxJS, TypeScript, and functional programming concepts.

			What this book covers

			Chapter 1, The Power of the Reactive Paradigm, explains the fundamentals of Reactive programming.

			Chapter 2, RxJS 7 – The Major Features, focuses on the main improvements of RxJS 7.

			Chapter 3, A Walkthrough of the Application, highlights the architecture and requirements of the application that we will be building gradually.

			Chapter 4, Fetching Data as Streams, explains the first reactive pattern for fetching data.

			Chapter 5, Error Handling, details the error handling strategies and the reactive patterns for handling errors.

			Chapter 6, Combining Streams, explains the reactive pattern for combining streams.

			Chapter 7, Transforming Streams, explains the reactive pattern for transforming streams.

			Chapter 8, Multicasting Essentials, focuses on the multicasting approach essentials.

			Chapter 9, Caching Streams, explains the reactive pattern for caching streams.

			Chapter 10, Sharing Data between Components, explains the reactive patterns for sharing data between components.

			Chapter 11, Bulk Operations, explores the reactive pattern for performing bulk actions.

			Chapter 12, Processing Real-Time Updates, explores the reactive pattern for consuming real-time updates.

			Chapter 13, Testing RxJS Observables, explains the different strategies for testing reactive patterns.

			To get the most out of this book

			All code examples have been tested using Angular 12 on a Windows operating system. However, it should work with future releases too.

			
				
					[image:]
				

			

			Please make sure you follow the prerequisites at https://angular.io/guide/setup-local. The prerequisites include the environment setup and the technologies needed in order to install and use Angular.

			We also used the Bootstrap library to manage the application responsiveness. We used primeng as a library of rich components and RxJS 7 as the reactive library, of course.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-for-Angular. If there's an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801811514_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In the try block, you place your risky statements, and inside catch, you handle the possible exceptions."

			A block of code is set as follows:

			behaviourSubject$.subscribe({

			 next: (message) => console.log(message),

			 error: (error) => console.log(error),

			 complete: () => console.log('Stream Completed'),

			});

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			behaviourSubject$.subscribe({

			 next: (message) => console.log(message),

			 error: (error) => console.log(error),

			 complete: () => console.log('Stream Completed'),

			});

			Any command-line input or output is written as follows:

			$ mkdir css

			$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "Select System info from the Administration panel."

			Tips or Important Notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Reactive Patterns with RxJS for Angular, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	

		
			
			

		

		
			Part 1 – Introduction

			In this section, you will understand the importance of using the reactive paradigm in an Angular application, as well as the new features of RxJS 7. In the third chapter, we will introduce the application that we are going to progressively build as we go through the book.

			This part comprises the following chapters:

			
					Chapter 1, The Power of the Reactive Paradigm

					Chapter 2, RxJS 7 – The Major Features

					Chapter 3, A Walkthrough of the Application

			

		

	

		
			Chapter 1: The Power of the Reactive Paradigm

			This book is based entirely on useful reactive patterns in Angular applications. Reactive patterns are reusable solutions to a commonly occurring problem using reactive programming. Behind all of these patterns, there is a new way of thinking, new architecture, new coding styles, and new tools.

			I know you are impatient to write your first reactive pattern in Angular, but before doing that, and to help you take full advantage of all the RxJS patterns and leverage the reactive paradigm, we will start by explaining, in detail, all the fundamentals. Additionally, we will prepare the groundwork for the following chapters. First, let's start with a basic understanding of the reactive paradigm, its advantages, and the problems it solves. And best of all, let's get into the reactive mindset and start thinking reactively.

			We will begin by highlighting the pillars and the advantages of the reactive paradigm. Then, we will describe the relationship between Angular and RxJS. Finally, we will explain the Marble diagram and why it is useful.

			Giving an insight into the fundamentals of the reactive paradigm is incredibly important. This will ensure you get the basics right, help you understand the usefulness of the reactive approach, and consequently, help you determine which situation it is best to use it in.

			In this chapter, we're going to cover the following topics:

			
					Exploring the pillars of reactive programming

					Using RxJS in Angular and its advantages

					Learning about the marble diagram – our secret weapon

			

			Technical requirements

			This chapter does not require an environment setup or installation steps. All the code snippets here are just examples to illustrate the concepts. This book assumes that you have a basic understanding of Angular and RxJS.

			Exploring the pillars of reactive programming

			Let's begin with a little bit of background!

			Reactive programming is among the major programming paradigms used by developers worldwide. Every programming paradigm solves some problems and has its own advantages. By definition, reactive programming is programming with asynchronous data streams and is based on observer patterns. So, let's talk about these pillars of reactive programming!

			Data streams

			Data streams are the spine of reactive programming. Everything that might change or happen over time (you don't know when exactly) is represented as a stream, such as data, events, notifications, and messages. Reactive programming is about reacting to changes as soon as they are emitted!

			An excellent example of data streams is UI events. Let's suppose that we have an HTML button, and we want to execute an action whenever a user clicks on it. Here, we can think of the click event as a stream:

			//HTML code

			<button id='save'>Save</button>

			//TS code

			const saveElement = document.getElementById('save');

			saveElement.addEventListener('click', processClick);

			function processClick(event) {

			 console.log('Hi');

			}

			As implemented in the preceding code snippet, in order to react to this click event, we register an EventListener event. Then, every time a click occurs, the processClick method is called to execute a side effect. In our case, we are just logging Hi in the console.

			As you might have gathered, to be able to react when something happens and execute a side effect, you should listen to the streams to become notified. We can say listen or observe to get closer to the reactive terminology. And this leads us to the observer design pattern, which is at the heart of reactive programming.

			Observer patterns

			The observer pattern is based on two main roles: a publisher and a subscriber.

			A publisher maintains a list of subscribers and notifies them or propagates a change every time there is an update. On the other hand, a subscriber performs an update or executes a side effect every time they receive a notification from the publisher:

			
				
					[image: Figure 1.1 – The observer pattern]
				

			

			Figure 1.1 – The observer pattern

			So, to get notified about any updates, you need to subscribe to the publisher. A real-world analogy would be a newsletter; you don't get any emails if you don't subscribe to a newsletter.

			This leads us to the building blocks of RxJS. They include the following:

			
					Observables: These are a representation of the data streams that notify the observers of any change.

					Observers: These are the consumers of the data streams emitted by observables.

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/toc.xhtml

		

		Contents

			

						Contributors

					

								About the author

								About the reviewer

					

				

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

					

				

						Part 1 – Introduction

						Chapter 1: The Power of the Reactive Paradigm

					

								Technical requirements

								Exploring the pillars of reactive programming

							

										Data streams

										Observer patterns

							

						

								Using RxJS in Angular and its advantages

							

										The HTTP client module

										The router module

										Reactive forms

										The event emitter

										The async pipe

							

						

								Learning about the marble diagram – our secret weapon

								Summary

					

				

						Chapter 2: RxJS 7 – The Major Features

					

								Technical requirements

								Exploring the bundle size improvements

								Reviewing the TypeScript typing improvements

								Understanding the toPromise() deprecation

							

										The firstValueFrom() method

										The lastValueFrom() method

										Empty errors

							

						

								Highlighting API consistency improvements

								Summary

					

				

						Chapter 3: A Walkthrough of the Application

					

								Technical requirements

								Our app's user stories

							

										View one – the landing page

										View two – the new recipe interface

										View three – the My Recipes interface

										View four – the My Favourites interface

										View five – the modify recipe interface

										View six – the recipe details interface

							

						

								Our app's architecture

								The components overview

								Summary

					

				

						Part 2 – A Trip into Reactive Patterns

						Chapter 4: Fetching Data as Streams

					

								Technical requirements

								Defining the requirement

								Exploring the classic pattern for fetching data

							

										Defining the structure of your data

										Creating an Angular service

										Retrieving the data through a method

										Injecting and subscribing to the service in your component

										Displaying the data in the template

										Managing unsubscriptions

							

						

								Exploring the reactive pattern for fetching data

							

										Retrieving data as streams

										Defining the stream in your component

										Using the async pipe in your template

							

						

								Highlighting the advantages of the reactive pattern

							

										Using the declarative approach

										Using the change detection strategy of OnPush

										Wrapping up

							

						

								Summary

					

				

						Chapter 5: Error Handling

					

								Technical requirements

								Understanding the anatomy of an Observable

								Exploring error handling patterns and strategies

							

										Handling error operators

										The catchError operator

										The delayWhen operator

							

						

								Error handling in action

								Summary

					

				

						Chapter 6: Combining Streams

					

								Technical requirements

								Defining the requirement

								Exploring the imperative pattern for filtering data

							

										A look at the filter component

										A look at the recipes list component

							

						

								Exploring the declarative pattern for filtering data

							

										The combineLatest operator

										The declarative pattern pillars

										Emitting a value when an action occurs

							

						

								Summary

					

				

						Chapter 7: Transforming Streams

					

								Technical requirements

								Defining the requirement

								Exploring the imperative pattern for autosave

								Exploring the reactive pattern for autosave

							

										Higher-order observables

										Higher-order mapping operators

										The concatMap operator

							

						

								Learning about other useful higher-order mapping operators

							

										The mergeMap operator

										The switchMap operator

										The exhaustMap operator

							

						

								Summary

					

				

						Part 3 – Multicasting Takes You to New Places

						Chapter 8: Multicasting Essentials

					

								Technical requirements

								Explaining Multicasting versus Unicasting

							

										Producer

										A cold observable

										A hot observable

							

						

								Exploring Subjects

							

										A plain Subject

										ReplaySubject

										BehaviorSubject

							

						

								Highlighting Multicasting operators

								Summary

					

				

						Chapter 9: Caching Streams

					

								Technical requirements

								Defining the requirement

								Learning about using the reactive pattern to cache streams

								Exploring the RxJS 7 recommended pattern to cache streams

								Highlighting the use cases of caching streams

								Summary

					

				

						Chapter 10: Sharing Data between Components

					

								Technical requirements

								Defining the requirement

								Exploring the reactive pattern to share data

							

										Step one – creating a shared service

										Step two – updating the last-selected recipe

										Step three – consuming the last-selected recipe

							

						

								Highlighting other ways for sharing data

								Summary

					

				

						Chapter 11: Bulk Operations

					

								Technical requirements

								Defining the requirement

								Learning about the reactive pattern for bulk operations

							

										The forkJoin operator

										The pattern in action

							

						

								Learning about the reactive pattern for tracking progress

								Summary

					

				

						Chapter 12: Processing Real-Time Updates

					

								Technical requirements

								Defining the requirement

								Learning the reactive pattern for consuming real-time messages

							

										The WebSocketSubject behavior

										Connection management

										Putting the pattern into action

							

						

								Learning the reactive pattern for handling reconnection

							

										Retrying the reconnection

							

						

								Summary

					

				

						Part 4 – Final Touch

						Chapter 13: Testing RxJS Observables

					

								Technical requirements

								Learning about the subscribe and assert pattern

								Learning about the marble testing pattern

							

										Understanding the syntax

										Implementing marble tests

							

						

								Highlighting testing streams using HttpClientTestingModule

								Summary

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

			

		

	

OEBPS/image/Table_Preface_B17797.jpg
Software/hardware covered in the book

Operating system requirements

Angular 12 and above

Windows, macOS, or Linux

TypeScript 4.3.2 and above

Windows, macOS, or Linux

RxJS 7 and above

Windows, macOS, or Linux

primeng 12 and above

Windows, macOS, or Linux

Bootstrap 3.37 and above

Windows, macOS, or Linux

OEBPS/image/Figure_1.1_B17797.jpg
Publisher

notifySubscribers()

/N.

Subscriber

Subscriber

Subscriber

update()

update()

update()

OEBPS/image/Image85481.png

OEBPS/image/cover.png
Reactive Patterns
with Rx]JS for Angular

A practical guide to managing your Angular application's data
reactively and efficiently using RxJS 7

Lamis Chebbi)

