

 [image: (missing alt)]

 Table of Contents

 Learning PowerShell DSC

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Instant updates on new Packt books

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Introduction to PowerShell DSC

 What is PowerShell DSC?

 What is PowerShell?

 On to PowerShell DSC

 Why do we need Configuration Management?

 What is DevOps?

 DSC quick wins

 A high level overview of DSC

 The authoring phase

 The staging phase

 The execution phase

 Why all the abstraction?

 How does DSC help me?

 The who

 The what

 The how

 Idempotence

 Isn't this Group Policy or SCCM?

 DSC features

 DSC requirements

 DSC versions

 PowerShell v4 DSC

 v4 DSC language extensions

 v4 DSC base resources

 v4 DSC Cmdlets

 The v4 DSC Pull Server

 PowerShell v5 DSC

 v5 DSC language extensions

 v5 DSC base resources

 v5 DSC Cmdlets

 v5 improvements

 The PowerShell ISE

 Partial configurations and dependencies

 Class-based DSC Resources

 DSC built-in support for help

 DSC run as credential support

 DSC resource side-by-side installation

 DSC resource script debugging

 The separation of node and configuration IDs

 DSC LCM MetaConfig updates

 DSC LCM rich state information

 DSC LCM RefreshMode values

 DSC status from a central location

 Summary

 2. DSC Architecture

 Overview

 Push and pull modes

 The push management model

 The pull management model

 The general workflow

 Authoring

 Syntax

 Compilation

 Staging

 Execution

 Push executions

 Pull executions

 The example workflow

 Configuration data

 Hardcoded data

 Parameter-based data

 Hashtable data

 Local Configuration Manager

 LCM settings

 Configuration modes

 ApplyOnly

 ApplyAndMonitor

 ApplyAndAutoCorrect

 Refresh modes

 The LCM configuration

 An example LCM configuration

 The DSC Pull Server

 What is a DSC Pull Server?

 What does the Pull Server do for us?

 Automatic and continuous configuration

 Repository

 Reporting

 Security

 Setting up a DSC Pull Server

 Pull Server settings

 Installing the DSC server

 Adding MOF files to a Pull Server

 Adding DSC Resources to a Pull Server

 Deployment considerations

 General observations

 LCM gotchas

 Deployment mode differences

 Summary

 3. DSC Configuration Files

 Defining a DSC configuration script file

 Authoring DSC configuration files

 DSC automatic variables

 AllNodes

 Node

 ConfigurationData

 DSC Resource import declarations

 Import-DscResource

 The DSC script file syntax

 The Configuration keyword

 The Node keyword

 DSC Resource statements

 The script file example

 Defining a DSC configuration data file

 Authoring DSC configuration data files

 Configuration data syntax

 The variable syntax

 The data file syntax

 Allowable DSC configuration content

 Creating reusable DSC configurations

 Nested DSC configurations

 Nested DSC configuration syntax

 Nested DSC configuration limitations

 DSC composite resources

 Why use DSC composite resources?

 The DSC composite resource syntax

 DSC composite resource folder structure

 DSC composite resource drawbacks

 Debugging and troubleshooting configuration script files

 Using DSC event logs

 Enabling verbose logging

 What do DSC event logs contain?

 Gathering events from a single DSC operation

 Event Viewer

 PowerShell

 Using the xDscDiagnostics module to analyze DSC logs

 Get-xDscOperation

 Trace-xDscOperation

 Resetting the DSC engine cache

 Enabling the debug mode

 Fixing a stuck DSC run

 Summary

 4. DSC Resources

 What are DSC Resources?

 Creating a custom PowerShell v4 DSC Resource

 The folder structure of a v4 DSC Resource

 The syntax of a v4 DSC Resource

 The DSC Resource definition file

 Naming

 Versioning

 Parameters

 Qualifiers

 The DSC PowerShell module file

 Get-TargetResource

 Test-TargetResource

 Set-TargetResource

 Authoring custom DSC Resources

 Creating DSC Resources manually

 Creating DSC Resources automatically

 Creating a custom PowerShell v5 DSC Resource

 PowerShell classes

 Class-based DSC Resources

 The folder structure of v5 DSC Resources

 The syntax of v5 DSC Resources

 Declaring the class

 Schema

 Methods

 Get

 Test

 Set

 The advantages of a class-based DSC Resource

 The disadvantages of a class-based DSC Resource

 What makes a good DSC Resource

 Idempotent

 Do one thing well

 Reuse code, but don't go overboard

 Contribute back!

 Testing custom DSC Resources

 Using xDscResourceDesigner

 Pester

 Microsoft recommendations

 How do you find DSC Resources?

 Microsoft DSC Resource Kits

 Installing DSC Resource Kits

 The Microsoft PowerShell DSC GitHub repository

 Installing DSC Resources from GitHub

 The Microsoft PowerShell Gallery

 PackageManagement

 Installing PackageManagement

 Initializing PackageManagement

 Discover DSC Resources in the PowerShell Gallery

 Installing DSC Resources in the PowerShell Gallery

 Custom hosting options

 Local SMB/network share

 NuGet IIS

 Third-party NuGet servers

 Summary

 5. Pushing DSC Configurations

 Tooling

 Setting things up

 Test environments

 Locally pushing DSC configurations

 Setting up the test environment locally

 Compiling configurations for local target nodes

 Executing configurations for local target nodes

 Remotely pushing DSC configurations

 Setting up the test environment remotely

 Compiling configurations for remote target nodes

 Executing configurations for remote target nodes

 Things you must consider when pushing DSC configurations

 Summary

 6. Pulling DSC Configurations

 Creating DSC Pull Servers

 DSC Pull Server setup considerations

 DSC Pull Server types

 The Windows Management Framework version

 Initial setup tasks

 Installing required DSC Resources

 SSL certificates

 SMB share creation

 Preparing DSC Resources for Pull Server distribution

 Miscellaneous tasks

 Creating a WMF 4 DSC Pull Server

 Creating a WMF 5 DSC Pull Server

 Validating a DSC Pull Server install

 Testing using a web browser

 Testing using the command line

 Registering target nodes with a DSC Pull Server

 Registering a WMF 4 target node

 Registering a WMF 5 target node

 Pulling DSC configurations with a DSC Pull Server

 Pulling DSC configurations using ConfigurationIDs

 Pulling DSC configurations using RegistrationKeys

 DSC Pull Server and target node status

 Checking the current LCM configuration status

 Triggering a DSC configuration to run on a target node

 Triggering a WMF 4 target node

 Triggering a WMF 5 target node

 Using DSC logging to check on the status

 Reporting on the target node status

 Reporting on the target node status with the DSC Pull Server

 Summary

 7. Example Scenarios

 Real life DSC usage

 Setting up a common installation base

 Installing software

 A configuration management refresher

 Complicated deployments

 Handling change

 Summary

 Index

Learning PowerShell DSC

Learning PowerShell DSC

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: October 2015
Production reference: 1161015
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78398-070-3

www.packtpub.com

Credits

Author

James Pogran

Reviewers

Marcin Grzywa
Brian Scholer
Sergei Vorobev
Dave Wyatt

Acquisition Editor

Manish Nainani

Content Development Editor

Shali Deeraj

Technical Editor

Mrunmayee Patil

Copy Editor

Lauren Harkins

Project Coordinator

Kinjal Bari

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Graphics

Disha Haria

Production Coordinator

Nilesh Mohite

Cover Work

Nilesh Mohite

About the Author

James Pogran has been working with computers in some form or fashion for over 15 years. His first job was systems administration for a large military installation. He then moved on to develop monitoring software and automate large scale Windows environments for a major managed services provider. He is currently a software engineer at Puppet Labs where he helps to make Windows automation even better with Puppet.

Writing a book is no easy task, a technical one about a technology as important and as fast changing as DSC is doubly so. That I was able to do so in a short time was through no small effort by many people. I would first like to thank the PowerShell product team for their awesome work and community outreach, which is truly unique in this industry. I would also like to thank the team at Packt Publishing who worked tirelessly to keep me on schedule and enabled me to be the best I could be. I am also indebted to the technical reviewers who poured over this book and made sure it was the best book possible. I would especially like to thank my wife, Jessica, my mother and father, and Cecil Morris; without their support, I would not have had the courage to write this book at all.

About the Reviewers

Marcin Grzywa is a senior software developer at Objectivity Bespoke Software Specialists. After getting an MSc in computer science degree in 2008, he spent the following years developing and architecting applications in various technologies, including Java EE, MS Business Intelligence, .NET, and JavaScript. Having always been interested in improving development processes, he then focused on using TeamCity and PowerShell in Continuous integration (CI) pipelines, which led him to Configuration as Code and PowerShell DSC.
He is also the author of open source projects PSCI (Powershell Continuous Integration) and PowerShell ISE Project Explorer.

Brian Scholer is a systems engineer with over 13 years of experience across server administration, virtualization, software development, web operations, networking, and more. He is the author of the xPfxImport DSC Resource (pending inclusion in Microsoft's xCertificate module). He blogs at http://www.briantist.com/.

Sergei Vorobev is a software developer at Microsoft. After working on the DSC Azure extension, he concentrate on PowerShell language for PowerShell v5. He is passionate about developer tools and developer experience. You can find him on Twitter at @xvorsx, where he rambles on about languages, frameworks, version control systems, workflows, scripts, and one-liners.

I would like to thank the DSC team development lead Narayanan Lakshmanan for his wise mentorship.

Dave Wyatt has been in the IT industry since 1999, working primarily as a systems administrator and engineer for the Windows Server environments. He has been heavily focused on the scripting and automation of Windows systems since that time, and he became a Microsoft MVP (PowerShell) in 2014.
Currently, he is an operations engineer for DevOpsGuys, focusing mainly on building continuous delivery pipelines for clients, which includes the configuration management of Windows servers using Windows PowerShell Desired State Configuration. He is also on the board of directors for PowerShell.org, a not-for-profit PowerShell community organization.
He is the author of The Big Book of PowerShell Error Handling, and the coauthor of Secrets of PowerShell Remoting, both free e-books available at PowerShell.org.

Thanks to my wife, Kiersten, and daughter, Moira, who bring sunshine into every day of my life (and graciously put up with all of the extra time I spend on these side projects!) Also, thanks to Don Jones, who first recognized my potential for community contributions and invited me to write blog posts for PowerShell.org.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter or the Packt Enterprise Facebook page.
To my mother Marianne Pogran, who gave me the world when she taught me how to fix my first computer.

Preface

Windows PowerShell was a transformative event for the Windows management ecosystem. It marked a shift from the GUI-based administration of "click next, next, finish" to a composable command line experience that can be scripted and automated. This methodology was not accepted immediately by the Windows community, but time has proven the approach viable and PowerShell is now an integral part of any systems administrator's toolkit.
Windows PowerShell Desired State Configuration (DSC) marks another shift in Windows administration, but this time, it is a move away from the run-once scripts that cannot detect the existing state to declarative and repeatable automation without side effects. While PowerShell enabled an automation paradigm that was previously unmatched on Windows systems, crafting truly dependable automation took many lines of boilerplate code of exception catching and state checking. DSC handles this boilerplate code and gives you a clean and readable way to declare the expected state of your systems without worrying about how those systems are configured.
Whether you manage a few servers or several thousands of them, the same problems occur repeatedly. How do you ensure that all the servers under your care are configured to the exact specifications? How do you write those specifications down so that not only you and your coworker but also the machine understands them? This seemingly conflicting set of requirements is the purpose of DSC. Using DSC, you can write the human-readable desired state of the system you expect, and DSC ensures that the state of the system is what you desired it to be.
In this book, we will introduce the configuration management concepts that DSC uses to accomplish these feats. We then cover the architecture of DSC, which allows us to specify the state of a target system without having to code the implementation details ourselves. From there, we will cover how to create files that can be read by both DSC and humans to ensure that the state of target systems is what we specify. We will then address how to customize DSC to administer our customized and unique environments, and then walk through the ways in which we can deploy these configurations to the target systems using the different deployment models of DSC. We will wrap up with a walkthrough of a typical deployment cycle of example software using real-world problems and solutions.
What this book covers

Chapter 1, Introduction to PowerShell DSC, introduces you to PowerShell DSC and configuration management concepts. It covers the features included in DSC and briefly introduces the different DSC versions.

Chapter 2, DSC Architecture, covers all three phases of DSC in depth, the two different DSC deployment models, and the considerations to be made when deploying a Pull Server or using a push deployment.

Chapter 3, DSC Configuration Files, covers authoring the DSC configuration scripts and configuration data files from end to end. It also covers how to use them together effectively.

Chapter 4, DSC Resources, covers the DSC Resource syntax and file structure in both PowerShell v4 and v5. It shows how to find DSC Resources on the local system as well as using community and Microsoft-provided online resources.

Chapter 5, Pushing DSC Configurations, gives step-by-step instructions on how to push DSC configurations to remote target nodes. It also covers the extra steps the user must take to make push deployments work and discusses the pros and cons of using push deployments.

Chapter 6, Pulling DSC Configurations, gives step-by-step instructions on how to set up a DSC Pull Server and your environment to best utilize a pull-based deployment. It covers the pros and cons of using pull deployments in comparison to push deployments.

Chapter 7, Example Scenarios, covers the use of DSC in the real world and how to integrate DSC into not only new environments but also with legacy-style deployments. This chapter walks us through the thought processes of handling the changing requests and the requirements of different software deployments using DSC.

What you need for this book

You will need the following operating systems:
	Windows 8.1
	Windows 2012 R2

You will also need PowerShell v4 or v5 as the software.

Who this book is for

This book is intended for system administrators, developers, or DevOps engineers who are responsible for configuration management and automation and wish to learn PowerShell Desired State Configuration for efficient management, configuration, and deployment of systems and applications.
You are expected to have some basic knowledge of Windows PowerShell and should have experience in installing and configuring operating systems and Windows servers. You also need to understand the basics and principles of configuration management and to apply both to deploying and managing systems and applications using PowerShell DSC.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "DSC operates in a push scenario when configurations are manually pushed to target nodes using the Start-DscConfiguration Cmdlet."
Any command-line input or output is written as follows:

PS C:\Examples> .\TestExample.ps1

 Directory: C:\Examples\TestExample

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/20/2015 7:28 PM 1136 localhost.mof

Important words are shown in bold and appear in the text like this: "These will typically fail with a generic Access Denied, which will most likely lead you down the wrong path when troubleshooting."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Introduction to PowerShell DSC

	 	"Begin at the beginning," the King said, very gravely, "and go on till you come to the end: then stop."
	
	 	--Lewis Carroll, Alice in Wonderland

	 	"Don't Panic."
	
	 	--Douglas Adams, The Hitchhiker's Guide to the Galaxy

Welcome to PowerShell Desired State Configuration (DSC), the new configuration management platform from Microsoft. We begin with a quote from Alice in Wonderland. Besides pertinent advice for the author, it is apropos of what DSC is at its very core. DSC, by the very simplest definition, allows you to write down the beginning, the middle, and the end of your deployment story. The second quote we see is from The Hitchhiker's Guide to the Galaxy, and is something to remember throughout reading this book. We will cover a lot of new concepts, some old concepts with new importance, and a lot of PowerShell. Don't panic; we'll get through fine.
This book will begin with the basics of PowerShell DSC, covering its architecture and many components. It will familiarize you with the set of Windows PowerShell language extensions and new Windows PowerShell commands that comprise DSC. Then, it will help you create DSC custom resources and work with DSC configurations with the help of practical examples. Finally, it will describe how to deploy a configuration data set using PowerShell DSC.
By the end of this book, you will be able to deploy a real-world application end to end.
In this chapter, we will cover:
	What is PowerShell DSC?
	Why do we need Configuration Management and what is DevOps?
	How does DSC help me?
	A high level overview of DSC
	DSC requirements
	DSC versions

What is PowerShell DSC?

Have some software that needs to be installed in a certain order? With special configuration steps? Some security policies that must be applied to every server? How about ensuring that a set of services are never enabled to start? Have you ever written scripts to handle this kind of work, but found them brittle because of changes in software from release to release? Needed to make these changes on dozens or hundreds of servers repeatedly on schedule? Ever had someone change something and have your script break because the state is not what you expected? These and many more scenarios are handled by DSC.
PowerShell DSC is a new management platform in Windows PowerShell that enables the deploying and managing of configuration data for systems and software services and the managing of the environment in which these services run. DSC allows you to define the current state of a machine and ensure that the machine is always in that state.
What we mean by state here is everything that is on that machine, including the operating system and software installed, all the configuration settings for the OS and software, and any file or process that needs to be present or set with specific content; the list goes on. Whether you considered this before or not, all this makes up the configuration of your system. DSC is designed to help you deal with all this configuration data and execute it consistently and repeatedly.
What is PowerShell?

While we assume in this book that the reader has a basic understanding of PowerShell command-line use and scripting, before we get too much into DSC, it is helpful to describe what PowerShell is compared to PowerShell DSC.
First released in 2006, PowerShell is a scripting language and command-line shell built on the .NET Framework. PowerShell provides full access to COM, WMI, and .NET, and also provides a large set of commands called Cmdlets to perform administrative tasks on both local and remote systems.
PowerShell can execute PowerShell scripts, PowerShell Cmdlets, and standalone executable programs or other language files. PowerShell also provides a hosting API that allows programs to run PowerShell natively inside their program, enabling scripting or automation scenarios. Being both a shell language and a scripting language allows it to be both quick and terse on the command line as well as verbose and consistent in scripts.
Over the years, PowerShell has become the de facto way to administer and automate Windows OS and software. As computing environments grow larger and engineering teams smaller, it is paramount in automating processes and procedures that used to be done by hand. PowerShell provides a consistent command-line language for automating the administration of a large number of scenarios, which is growing every day and was previously not available on Windows. Because of PowerShell's hosting API, applications such as Exchange have enabled a command-line first, GUI second mode of development, which enables quick deployment and management using automated tools.
PowerShell not only enables automation at the single system level, but also scales out to the multi-node environment. Being able to automate your system from the command line or script is fine, but if you have to manually run that on every system in your environment by hand, then we still have a bottleneck on efficiency. Using an industry standard protocol, PowerShell provides PowerShell Remoting as a way of running commands or scripts on any number of remote hosts in parallel. Thousands of computers can be managed at the same time, consistently, and in a repeatable and automated manner.
Consistent repeatable automation is important, but PowerShell is also extensible, which is not only essential, but leads us into DSC. PowerShell is both a typed and a dynamic scripting language, which means that it supports both static typed objects (System.IO.FileInfo) and objects with methods and properties that are defined at runtime (PSCustomObject and Add-Member). This enables PowerShell to be extended to suit the needs of the user. You do this every day to an extent, by creating functions and scripts to wrap common operations into reusable components or modules. Taking this a step further, PowerShell can be extended to support specific scenarios that were not envisioned when the product was made. DSC is such an extension, as it builds on the existing PowerShell language and infrastructure to enable new uses of the program.

On to PowerShell DSC

PowerShell DSC is released as a feature of PowerShell, so it comes bundled with specific versions of PowerShell that are part of the Windows Management Framework (WMF). The PowerShell DSC versions section goes into greater detail about the versions of PowerShell and PowerShell DSC and the available features in each, so we won't go into too much detail here.
The WMF release notes describe DSC in this way:

Windows PowerShell DSC helps ensure that the resources in your datacenter are correctly configured. DSC is a set of Windows PowerShell language extensions and providers that enable declarative, autonomous, and idempotent (repeatable) deployment, configuration, and conformity of datacenter resources. DSC enables an IT Pro, developer, or fabric administrator to define the configuration of target nodes (computers or devices) and prevent configuration inconsistencies or drift.

DSC provides a set of Windows PowerShell language extensions, new Windows PowerShell Cmdlets, and resources that you can use to declaratively specify how you want your operating system and software environment to be configured. It also provides a means to maintain and manage existing configurations. It supports both an interactive push model, where configurations are executed on target nodes on demand, and a pull model, where a central server manages and distributes configurations.
We won't delve into too much architecture talk here. (The next chapter discusses the architecture and inner workings of DSC in detail.) For now, it is sufficient to say DSC is comprised of both a data file and configuration file that are translated into a text file following the Managed Object Format (MOF). This file is then parsed and executed on the target server, using DSC features that know how to configure the system.
That was a lot of information in a short space, so don't worry if it is a lot to take in at once. We will go over each part as we move on. You don't have to know right away what MOF is or how DSC executes the configuration to use DSC. DSC abstracts all the details away for you. When you get to the point that you need to know these details, DSC still exposes them so you can tweak under the hood or find out what is really going on.
At a high level, DSC work isn't programming work; it's listing how you want a server to look in a special format. The execution of this list is abstracted from the listing, allowing the how to work separately from the why. This is an important concept, and really the key to understanding the importance of DSC. Jeffery Snover, the architect and inventor of PowerShell, explained it best using Star Trek. Captain Picard often used the line Make it so, and Commander Riker had to figure out how to actually make what the Captain wanted to happen, happen. Captain Picard knew what needed to be done, but didn't particularly care how it got done. Commander Riker knew how to get things done, but did not concern himself (most of the time) with deciding when and what to do. This separation allowed both officers to be good at their jobs without interfering with each other.
It may be useful to see the following short, complete example of an entire DSC configuration:

configuration BaseServerConfiguration
{
 File ExampleTextFile
 {
 Ensure = 'Present'
 Type = 'File'
 DestinationPath = 'D:\FooProduct\foo.txt'
 Contents = "this is an example text"
 }

 WindowsFeature DotNet
 {
 Ensure = 'Present'
 Name = 'NET-Framework-45-Core'
 }
}

That's it! Sure, there is more to understand and cover, but as we can see here, this is plain PowerShell code that is as readable as any script you've written before, and all it does is list what should be on a system. What this DSC configuration does is ensure that a file is created in the D:\FooProduct folder called foo.txt, with the contents this is an example text. It then ensures that the .NET Framework v4.5 is installed. Yes, .NET 4.5 is most likely already there, but the point of DSC is to describe the state of the target node, regardless of what you think might be there. This way, if someone removes .NET 4.5, DSC will ensure that it is installed, thereby maintaining the known good state of the target node.
We will go into this further later, but now you may be asking why it is important to manage the configuration of your systems this way. Read on.

Why do we need Configuration Management?

Whether you manage a few servers or several thousand, the traditional methods of server and software installation and deployment are failing to address your current needs. These methods treat servers as special singular entities that have to be protected and taken care of, with special configurations that may or may not be documented, and if they go down, they take the business with it.
For a long while, this has worked out. But as the number of servers and applications grow, and the number of configuration points grows, it becomes untenable to keep it all in your head, or consistently documented by a set of people. New patches are released, feature sets changed, employee turnover, poorly documented software; all these reasons introduce variance and change into the system. If not accounted for and handled, these "special" servers become ticking time bombs that will explode the moment a detail is missed.
Written installation or configuration specifications that have to be performed by humans error-free time and time again on numerous servers are increasingly self-evident as brittle and error prone affairs. To further complicate things, despite the obvious interdependence of software development and other IT-related departments, software developers are often isolated from the realities faced by IT professionals during the deployment and maintenance of the software.
The answer to this is automation: defining a repeatable process that configures servers the right way, every time. Servers move from being special snowflakes to being disposable numbers on a list that can be created and destroyed without requiring someone to remember the specific incantation to make it work. Instead of a golden image that has to be kept up-to-date with all the complexities of image storage and distribution, there is instead a set of steps to bring all servers to compliance regardless of whether they are a fresh installation or a number of years old.
What is being described is Configuration Management (CM). CM ensures that the current design and build state of a system is a known good state. It ensures trust by not relying on the knowledge of one person or a team of people; it's an objective truth that can be verified at any time. It also provides a historical record of what was changed, which is useful not only for reporting purposes (like for management), but also for troubleshooting purposes (this file used to be there, now it's not…). CM detects variance between builds, so changes to the environment are both easily apparent and well known to all who work on the system. It allows anyone to see what the given state of the system is at any time, at any granularity, whether on one system or over the span of thousands. If a target system fails, it's a matter of re-running the CM build on a fresh installation to bring the system back to a steady state.
CM is part of a set of ideas called Infrastructure as code. It requires that every step in provisioning an environment is automated and written down in files that can be run any time to bring the environment to a known good state. While CM is infrastructure automation (replicating steps multiple times on any amount of target nodes), Infrastructure as code takes things one step further and codifies every step required to get an entire environment running. It encompasses the knowledge of server provisioning, server configuration, and server deployment into a format that is readable by sysadmins, developers, and other technology staff. Like CM, Infrastructure as code uses existing best practices from software development such as source control, automated code testing, and continuous integration to ensure a redundant and repeatable process.
The approaches being described are not that new and are part of a larger movement that has been slowly accepted among companies as the optimal way of managing servers and software, called DevOps.
What is DevOps?

The set of concepts we have been describing is collectively termed DevOps and is a part of a larger process called "continuous delivery". DevOps is a shortened form of development operations and describes a close working relationship between the development of software and the deployment and operation of that software. Continuous delivery is a set of practices that enable software to be developed and continuously deployed to production systems on a frequent basis, usually in an automatic fashion that happens multiple times a week or day.
Each year, a company called Puppet Labs surveys over 4,000 IT operations professionals and developers about their operations procedures. Of those surveyed companies that have implemented DevOps practices report improved software deployment quality and more frequent software releases. Their report states that these companies shipped code 30 times faster and completed those deployments 8,000 times faster than their peers. They had 50% fewer failures and restored service 12 times faster than their peers.
Results like the ones shown in the Puppet Labs survey show that organizations that adopt DevOps are up to five times more likely to be high-performing than those who have not. It's a cumulative effect; the longer you practice, the greater the results from adoption and the easier it is to continue doing so. How DevOps enables high performance centers around deployment frequency.
To define and explain the entirety of DevOps and continuous delivery is out of the scope of this book, but for the purposes of this book, the goals can be summarized as the following: to improve the deployment frequency, to lower the failure rate of new releases, and to shorten the recovery time if a new release is faulty. Even though the term implies strict developer and operations roles as the only ones involved, the concept really applies to any person or department involved in the development, deployment, and maintenance of the product and the servers it runs on.
These goals work toward one end: minimizing the risk of software deployment by making changes safe through automation. The root cause of poor quality is variation, whether that be in the system, software settings, or in the processes performing actions on the system or software. The solution to variation is repeatability. By figuring out how to perform an action repeatedly, you have removed the variation from the process and can continually make small changes to the process without causing unforeseen problems.

DSC quick wins

While there are many aspects to DSC that are beneficial, it is useful to pause here and list some "quick wins" that DSC brings us to inspire us to keep reading:
	The DSC configuration and supporting files are all written in PowerShell syntax. Investments in knowledge about PowerShell are improved upon and expanded on using DSC.
	DSC is designed to support continuous deployment, so it will react and adjust as your environment changes.
	When DSC applies a configuration to a target node, DSC Resources only changes that which does not match the expected state (we will cover the terminology for this and how important this is in Chapter 2, DSC Architecture, ensuring a quick deployment.
	DSC separates configuration logic from configuration data, reducing the rate of change in your configuration scripts and the variation in your deployments.
	DSC operates on more platforms than just Windows. DSC has a set of DSC Resources that know how to install, configure, and manage Linux target nodes and some network switches. In a heterogeneous environment, having one tool that can address many different platforms is a huge time and cost saver.

A high level overview of DSC

We will go into DSC architecture in much greater detail in the next chapter, but it is useful to show a quick overview of how all the concepts we just covered fit together. DSC has several steps that can be bucketed together into three large phases.
As we mentioned earlier, DSC can manage more platforms than just Windows, but for the purposes of this book, we will stick to Windows configurations. The DSC Resources for Linux and other platforms are in the early stages, so there will be significant changes as these implementations mature; it would be too hard to account for these changes in the space we have in this book.
The authoring phase

You begin with DSC by writing a configuration script in PowerShell. The script itself doesn't actually do anything. You can run the script interactively all you want; it won't change a thing. Since the configuration script is the DSL we were talking about earlier, it's only a list of things to do, not the things that actually execute the list. Because there can only be one MOF per target host, and each configuration script is translated to a MOF, this means there is usually only one configuration script you write, which handles all the variances in your environment. This sounds like it will get complicated and be difficult to manage quickly, but there are DSC patterns to follow to manage this. We will cover these in Chapter 3, DSC Configuration Files.
The next step is to translate the configuration script into a MOF file. The translation, or compiling, happens only once—when you deploy the MOF file to the target node or to the DSC Pull Server. The configuration script is often kept in a version control system and only compiles and deploys the MOF file when the configuration script changes.

The staging phase

The next step is to get it over to the target computer. The deployment of the MOF happens in two ways: push and pull. A push method is when you execute the Start-DSCConfiguration Cmdlet, which compiles the MOF and copies over to the target system. The pull method involves putting the MOF file on the DSC Pull Server, which handles distributing it to all the target hosts.

The execution phase

Whether an MOF file was pushed (using Start-DSCConfiguration) or pulled (using a DSC Pull Server), the next step is the actual execution of the MOF file. If pushed, the execution happens interactively or in a PowerShell job, depending on how you called the Cmdlet. If pulled, the Local Configuration Manager (LCM) schedules and executes the MOF file without user input or oversight.
LCM is part of the DSC system installed on the target node and is responsible for receiving, coordinating, and executing configurations on target nodes. LCM itself is configurable using DSC and is flexible enough to allow multiple types of deployments.
The phases described earlier will be covered in much more detail in the coming chapters, so do not worry if some of it does not make sense.

Why all the abstraction?

It seems like we are writing scripts just to have them turned into another format altogether, which in turn is converted into something else. Why all the indirection and abstraction? Why don't we write the final result ourselves, the first time? The primary reasons are readability and flexibility.
DSC configuration files are written in PowerShell syntax, which we already established as being consistent and readable. When the configuration is human-readable, it's understandable to the whole team and not just the implementer. It's written down in textual format, so it can be controlled in a source control system such as Git, Subversion (SVN), or
Team Foundation Server. Deployment processes (sets of instructions on how to complete a task) are automatically saved and backed up by the source control system, and available to the whole team instead of one person's desktop.
Readability serves more than just the implementer and the team. Written configuration files codify the deployment process in a historical record. In that record, we can see the progression of the system by comparing the text files between releases, thereby monitoring drift and variation.
This increases flexibility by enabling a variety of tools to produce the output DSC can execute. You may have noticed that we keep referring to the compiling to MOF, that the DSC engine reads MOF, and that there is only one MOF per target host. There's a good reason that the end format is MOF and not something else like a PowerShell script.
The MOF was defined by the Distributed Management Task Force (DMTF), which is a vendor-neutral organization that works toward standardized interoperation between platforms. You may not be aware of it, but you have been using their work for quite some time if you have been using Windows Management Instrumentation (WMI). WMI is an implementation of Common Information Model (CIM), which is a DMTF standard that defines a structured way to describe a system and its properties. The Microsoft Developer Network (MSDN) site: https://msdn.microsoft.com/en-us/library/aa389234.aspx explains that WMI can use CIM on target nodes. The Wikipedia site: https://en.wikipedia.org/wiki/Common_Information_Model_(computing) goes into more information about the history and open standards of CIM.
The DMTF defined the MOF syntax and format so that any vendor or system can implement it. Microsoft happens to be the largest implementer so far, but other tooling companies use it as well. Since any vendor can implement the standard, it means several important things can happen.
If all DSC needs to function is the MOF file, you don't necessarily need PowerShell to produce the MOF file. Any third-party tool can implement the specification and provide their own (possibly improved) way of compiling MOF files. An open market for tooling gives options to the user. For example, there are many different text editors to write your scripts in; each has its benefits and compromises that you can evaluate and choose between. This enables third-party vendors to compete and provide solutions that suit a given user's needs. Companies such as Puppet and Chef can implement their own or extend what Microsoft has already done.
The most exciting thing is that since the MOF standard is platform independent, the configuration scripts you write can run on multiple operating systems. At the time of writing, Microsoft is currently completing work to support running PowerShell DSC on many Linux distributions, as announced here: https://blogs.msdn.com/b/powershell/archive/2015/05/06/powershell-dsc-for-linux-is-now-available.aspx. So, whether you run Windows or Linux or both, you can manage the configuration of your systems with PowerShell DSC using a single standard consistent syntax.

How does DSC help me?

PowerShell DSC enables a DevOps structure by providing a consistent, standardized configuration of operating systems and software as part of a continuous deployment pipeline. It increases the rate at which you can deploy by reducing the variation and drift from your existing configurations.
In simpler terms, DSC separates the who from the what and how. This separation of the what and how is the core of DSC. Because they are separated, you can continually change the data points of your systems without touching the parts that actually set the system to the desired state.
The who

Band name jokes aside, the who DSC refers to is any target node. Why the separation and distinction? Well, as explained in the MOF earlier, we aren't dealing with just Windows servers. We could possibly be dealing with network switches, Linux servers, storage devices, and so on; the list potentially includes any device in your environment. By setting target node definitions in a structured way, we can describe the nodes in ways that make sense to anyone reading the configurations and also to the computers processing the configurations.

The what

The DSC Domain Specific Language (DSL) defines a standardized way of describing the expected configuration of a target system, whether that is one system or several thousand systems. It describes the what of the target node.
A DSL is a specialized set of language extensions and grammar that makes it easier to codify a specific set of problems. Whereas a product like PowerShell is a general purpose language, DSLs are specifically built to address a specific set of problems.
You may wonder why we are bothering to define and discuss DSL here. You may think it's an advanced topic or something only developers need to know, but you would be wrong to discount it. DSLs are all around you and you use them every day. For example, HTML is a human readable DSL for web browsers to display content. The actual content is binary, but the HTML specification allows humans to write in a language they understand, yet also have the computer understand it.
In the case of DSC, the DSL is oriented at expressing all the different ways you can describe the expected state of a system in an easy-to-read manner. If you can read PowerShell code, then the DSC DSL is no different than reading a function declaration with a set of parameters. Most importantly, this easy-to-read structure for you is also easy for the DSC parser to read and turn into an MOF file. This abstraction of an abstraction allows you to write configurations in a language you understand and for that to be translated into a language the system understands.
For example, the target system should have a list of software installed, several settings modified, some services that should be enabled and started, some users to be created and then added to a local group, and several files to be created and have content added to them. It reads like a grocery list to you, but the computer can understand and execute it the same way every time it runs.

The how

The DSC language extensions, Cmdlets, and resources provide a standardized way of testing whether that expected state is present on a target system.
This allows the different aspects of the actual execution of configuring a system to be codified away from the information deciding what settings to change or software to install. Whereas the what dealt with writing down the expected state, the how is concerned with how to make it that way. Or, as Captain Picard would say, how to Make it so.
This separation is important because it is expected that the list of things to do on a target computer will change, but it is not expected that how to execute that setting will change frequently. For example, there will be many types of files that you will create on many filesystems, but there are only a few ways to create those files. By separating the listing of the what, it allows the how to reduce variation by employing the idempotent DSC Resources, an important part of a DevOps workflow.
To summarize the preceding content, we can say:
	The DSC DSL defines a standardized way of describing the expected configuration of a target system, whether that is one system or several thousand systems
	The DSC set of language extensions, Cmdlets, and resources provide a standardized way of testing whether that expected state is present on the target system(s)
	The DSC engine provides a structured way of executing this expected state in an idempotent manner

We have seen the word idempotent in several places in this chapter so far, yet we haven't really defined it or covered why it is important. Let's clarify exactly what idempotence means.

Idempotence

Idempotence is an important concept, sometimes confusing, that we will touch on many times throughout this book. Idempotence is defined as an operation that has no additional effect if it is called more than once with the same input. Put another way, it is an operation that can be executed as many times as desired, and it will only change the system state if and only if it is not what the desired state is. For example, a PowerShell function looks for the x state and guarantees that it will only change the state of the system if it is not x.
It may seem silly to state something as obvious as this. If you feel this way, think of an MSI installer that installs version 1.1.1.0 of an imaginary software product. When you run the MSI, it only ever installs the software if it isn't already present on the system or if the version present is older than the current version. No matter how many times you execute the MSI, it will only change the system if version 1.1.1.0 is not on the system. This is idempotency. The MSI will only ever change the system state if it is not the desired state, no matter how many times you run it.
Idempontent operations are often used in network protocols or API design between dependent systems, and are used in DSC by DSC Resources. DSC Resources are required to be idempotent, in that they do not change the system if the system is in the state that the resource expects it to be in. For example, a DSC resource that operates on Windows Services will only try to start a given service if it is stopped, not if it is started. Another example is the DSC file resource, as that will change a file only if the contents do not match the expected string. By requiring idempotency, DSC Resources can be run as many times as you want, without ever performing an unexpected change.
When you install a piece of software on a machine that already has that software installed on it, you don't want there to be two copies of the software after you're done. You want the installer to be smart enough to detect the version of the currently installed software and then examine the version that you're attempting to install, and ultimately decide that the versions match and no installation needs to be done. That is idempotency in a nutshell.

Isn't this Group Policy or SCCM?

At this point, you may be wondering if DSC isn't a re-implementation of Group Policy (GPO) or System Center Configuration Manager (SCCM). It's a valid question, as there are some overlaps in these technologies.
Group Policy is similar in that it is also a system of configuring operating systems, applications, and user settings in an environment. However, Group Policy is tied to Active Directory (AD) and has a lot of configuration overhead, a complex and sometimes confusing deployment methodology, and is very inflexible. This is not to say that GPO is bad; some of these apparent limitations are by design. GPO has been around since the Windows 2000 days and has had to deal with several decades of different approaches to software and server management.
In comparison, DSC is not tied to AD or a specific operating system platform. It is, by design, very flexible. As we have covered, it is designed to be responsive to the frequently changing technology and dynamic business environments we have today. Instead of obtuse schedules, DSC deployments are declarative and up front about what exactly will happen and when it will happen. GPO has rudimentary tooling that writes binary files for its configuration that can't be read by a human and can't be version controlled. DSC has human readable configuration files that are version controllable.
SCCM is also a configuration management system and is a huge piece of software that requires several servers and many hours to set up and maintain. It is not a small expense to purchase and continue to run, and it is clearly designed for a large enterprise that not only manages servers but user devices such as desktops and laptops as well. It is definitely an all-purpose tool that tries to encompass any need. Managing servers or without, comes free with PowerShell, and requires little setup time to use. While clearly designed toward server management, some desktop management scenarios are supported. It is definitely a fine-honed tool for specific purposes.

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/cover/cover.jpg
\

nal Expert

Distilled

Learning PowerShell DSC

Get started with the fundamentals of PowerShell DSC and
utilize its power to automate the deployment and configuration
of your servers

mes Pogran nterpris

