
		
			[image: Cover.jpg]
		

	
		
			Debunking C++ Myths

			Embark on an insightful journey to uncover the truths behind popular C++ myths and misconceptions 

			Alexandru Bolboacă

			Ferenc-Lajos Deák

			[image: ]

			Debunking C++ Myths

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kunal Sawant

			Publishing Product Manager: Samriddhi Murarka

			Book Project Manager: Farheen Fathima

			Lead Editor: Kinnari Chohan

			Technical Editor: Kavyashree K S

			Copy Editor: Safis Editing

			Proofreader: Kinnari Chohan

			Indexer: Tejal Soni

			Production Designer: Shankar Kalbhor

			DevRel Marketing Coordinator: Sonia Chauhan

			First published: December 2024

			Production reference: 2200325

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-83588-478-2

			www.packtpub.com

			




To Maria, my wife and partner. Thank you for your continuous support and advice.

			– Alexandru Bolboacă

			To my family, my heartfelt thanks; without their unwavering support and encouragement, I wouldn’t be where I am today.

			– Ferenc-Lajos Deák

			




Contributors

			About the authors

			Alexandru Bolboacă is a CTO, passionate polyglot programmer, senior trainer, and advisor at Mozaic Works. With over 20 years in software development, he has worked for various industries, and in various European countries, as well as the UK and the USA. He has been involved in large projects in industries such as banking and financial services, energy, telecommunications, pharma, and eHealth. From practical experience, he advises and teaches architecture and usable software design, evolutionary design, crafting code, clean code, secure coding, and refactoring legacy code. Alex enjoys helping teams and organizations to understand and build strategies for successful and robust products, built-in quality, and motivation.

			I want to thank a few people: the editors at Packt Publishing for reaching out to me for this project; the whole production team for supporting a smooth development; my colleagues at Mozaic Works for facilitating my writing schedule; Marius Bancilă for introducing me to Ferenc; and Ferenc for a great collaboration and for inspiring the witty and playful voice of this book. Finally, thank you to my formative mentor in C++, Luc Rogge.
 
			Ferenc-Lajos Deák is a seasoned software developer with a strong foundation in mathematics and theoretical computer science, who is currently based in Trondheim, Norway. His career spans roles in diverse domains, including autonomous vehicles, real-time traffic systems, multimedia, and telecommunications. He is an avid open source fan, having several projects live and running, and has written more than a dozen articles for multiple technical publications concerning one of his passions: programming.

			Kudos to my colleagues and managers at Maritime Robotics – their continuous stimulation and positive attitude truly paved the way for this book’s completion; to Marius Bancilă for introducing me to Alex; to Alex for a great collaboration and for being the sound voice of prose throughout the book; and to the people at Packt for making sure that what I write will also turn out to be publishable.

			




About the reviewer

			Yuri Khrustalev is a software engineer with a rich background in building things from scratch. During his career, he helped to rewrite many legacy systems through reverse engineering. He enjoys using modern languages such as Zig, cpp, and Rust with a mix of Python and thinks that humanity will continue to demand engineers rather than managers.
 
			Shivanjan Chakravorthy is a Senior Software Engineer at NVIDIA, based in Taiwan. A passionate tinkerer, Shivanjan enjoys coding as a means of innovation and exploration. He’s driven by a love for tackling challenging, unconventional projects that push creative boundaries. With expertise in AI, Python, Golang, and Kubernetes, Shivanjan actively seeks to give back to the tech community through his work.

		

	
		
			Table of Contents

			Preface

			1

			C++ Is Very Difficult to Learn

			Technical requirements

			Why is C++ perceived as difficult to learn?

			The hard parts of C++ and how to grasp them

			The Stroustrup method for learning C++

			The Kate Gregory method – don’t teach C

			The test-driven method for learning C++

			Setup

			Exploring the language

			What about memory issues?

			With great power…

			Summary

			2

			Every C++ Program Is Standard-Compliant

			Technical requirements

			Somewhere in Ghana, far, far away

			Microsoft’s tiny, squishy C++

			The realm of free compilers

			A tribute to attributes

			When the header is not even C++

			The curious case of C++ locked in a box

			Past days of future C++

			Summary

			3

			There’s a Single C++, and It Is Object-Oriented

			Technical requirements

			The multiple facets of C++

			Functional programming in C++

			Immutability

			Pure functions

			Operations on functions

			Architectural patterns in functional style

			Metaprogramming

			Strong types to the limit

			What about ignoring types?

			Summary

			4

			The Main() Function is the Entry Point to Your Application

			The main() function

			The penguin farm

			Oh no, there’s more!

			A library is the delivery room for the birth of ideas unexpected behavior

			Famous last words

			Let’s open the Windows (unless you’re on ISS)

			To PE or not to PE

			Getting our hands dirty

			Summary

			5

			In a C++ Class, Order Must There Be

			Size does matter

			The order that must be respected

			Deep thoughts about order

			The dark orders of C++

			The most important question

			When order does not matter

			Summary

			6

			C++ Is Not Memory-Safe

			Technical requirements

			Memory safety is important

			The memory safety problems of older C++

			Modern C++ to the rescue

			The limits of modern C++

			There’s still more to do

			Summary

			7

			There’s No Simple Way to Do Parallelism and Concurrency in C++

			Technical requirements

			Defining parallelism and concurrency

			Common issues with parallelism and concurrency

			Functional programming to the rescue!

			The Actor Model

			What we can’t do yet

			Summary

			8

			The Fastest C++ Code is Inline Assembly

			Light me a pixel

			A note on the past

			The sum of all numbers

			A glimpse into the future

			One instruction to rule them all

			Summary

			9

			C++ Is Beautiful

			In search of beauty

			Who likes numbers?

			The definition of zero

			A parenthesis concerning parentheses

			C++uties

			Summary

			10

			There Are No Libraries For Modern Programming in C++

			How can we tell?

			A modern developer’s experience

			Common needs

			Compatibility

			Supply chain security

			Summary

			11

			C++ Is Backward Compatible ...Even with C

			Is C really forward-compatible with C++?

			The magic of the parameter list

			Whitespace matters – until it doesn’t

			The 11th guest

			The auto surprise

			Summary

			12

			Rust Will Replace C++

			Technical requirements

			Why the competition?

			Core features of Rust

			Project templates and package management

			Immutability

			Simple syntax for compound types

			Optional return keyword

			Closures

			Unit tests in Standard Library

			Traits

			Ownership model

			Rust’s advantages

			Where C++ is better

			What C++ still needs

			Summary

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			Imagine C++ as a mythical, ancient language, descended from the ones, forged in the fires of low-level magic, tempered with the precision of high-level incantations. Born out of the need to both control the machine and present an abstraction, it is a tool wielded by those who seek to bridge the chasm between raw machine and high-level constructs, while still accessing the luxury of modern tools.

			Imagine this book as unlike any other you have encountered. The authors have embarked on a daring quest, navigating the labyrinthine depths of C++ to shed light on its true nature. With courage and precision, they aim to strip away the layers of myth and mystery that have long surrounded this fabled language, tackling both its triumphs and its perceived flaws.

			Approach this book with an open mind, for it promises a journey unlike any other, a journey not suited to the faint of heart. The authors dive headfirst into the complex reputation of C++, confronting its infamous pointers and intricate memory management, and even descending into the depths of low-level C++, where assembly reigns and pointers are simply numbers. We look at the different C++s that exist out there, at the ecosystem around C++, at how to learn it today, and at the things you’d do better to forget about. Through each chapter, we peel back the layers, uncovering the underlying logic and elegance within these powerful constructs. With stories of C++ legends and a touch of humor (albeit sometimes questionable), we aim to keep you engaged while guiding you through both the sublime and the absurd. Expect to encounter some of the worst code you’ve ever seen, presented intentionally to teach you what not to do, all while illuminating the true potential of C++. This is a book designed not just to teach but also to reveal the soul of C++ through both its virtues and its pitfalls.

			Who this book is for

			This book, with its myth-busting, semi-humorous approach, is perfect for programmers who already have a working knowledge of C++ but want to go deeper into its nuances and mysteries. It could also appeal to curious learners and computer science students who are intrigued by the language’s reputation for both power and complexity.

			This audience includes those who appreciate the artistic and philosophical sides of programming – developers who don’t just want to use C++ but also understand why it works as it does, and the lore behind its most famous (and infamous) features. It’s for those who see programming not just as a skill but as a craft, one shaped by history, quirks, and even a bit of legend.

			What this book covers

			Chapter 1, C++ Is Very Difficult to Learn, looks at why this is the case: is it the language or is it the teaching method? Should we start with low-level features such as pointers and memory management first, or would it perhaps be better to start with working examples or with the OOP features? Also, does every C++ programmer need to know the same C++? The chapter discusses different approaches to learning a language, with a focus on C++, and decides whether C++ is still difficult to learn today ... with the right method. [Alex]

			Chapter 2, Every C++ Program Is Standard-Compliant, covers the question that the title suggests. In an ideal world, maybe they would be! In reality, every C++ program should be compliant. However, as we discover in this chapter, when they stray a little to the left or right, using an obscure compiler extension, dabbling in undefined behavior, or relying on a particular platform’s quirks, you instantly might find yourself in a tangle of errors only decipherable by ancient mystics. So, sure, every C++ program is “compliant” ... until it’s not! [Ferenc]

			Chapter 3, There’s a Single C++, and It Is Object-Oriented, examines different paradigms of organizing code, including functional programming, meta programming, and the lesser-known extreme polymorphism. [Alex]

			Chapter 4, The Main() Function is the Entry Point to Your Application, covers the topic mentioned in the title. In practice, as we will present in the chapter, the main() function is like the front door of your application: it’s where everything begins, but if you peek behind it, you’ll often find an intricate web of dependencies, libraries, and OS-dependent system calls that make reaching it feel more like navigating a maze than walking a straightforward path. [Ferenc]

			Chapter 5, In a C++ Class, Order Must There Be, explores the fact that, sure enough, there must be order in a C++ class, since problems arise without it! Methods, data members, constructors, a place each must find! Yes, flexibility is, but ignored structure cannot be. Respect not the ordered members’ order request and crumble the class will! Freedom too much, and behavior, undefined, comes, errors, bugs, crashes! Disorder, C++ does not tolerate. With sequence respect, harmony reigns! The most important rules, this chapter presents, where the specified order of C++ concepts matters. Or it might not be specified at all, but still matters. [Ferenc]

			Chapter 6, C++ Is Not Memory-Safe, explores the challenges of memory management in C++, the promise of modern language constructs, and their failures, in the context of increased awareness of the general public on software reliability. [Alex]

			Chapter 7, There’s No Simple Way to Do Parallelism and Concurrency in C++, looks at the need for parallelism and concurrency, how modern C++ proposes to deal with them, and how the actor model can help design parallelism in your products. [Alex]

			Chapter 8, The Fastest C++ Code Is Inline Assembly, covers a fact we were taught three decades ago. While assembly does indeed offer low-level control, modern compilers are highly optimized and often generate more efficient code than hand-written assembly, as we will demonstrate in the chapter. Indeed, inline assembly can improve performance in some cases, but it sacrifices readability and portability, so use it sparingly and only when absolutely necessary. [Ferenc]

			Chapter 9, C++ Is Beautiful, asserts that C++ is indeed beautiful because where else can you find a language so gracefully tangled in angle brackets, semicolons, curly braces, and periods? It’s a poetic dance of keywords, templates, ancient macros, and overloaded operators, all elegantly arranged to make even the most seasoned programmers question their life choices. Truly, as the chapter will showcase, C++ syntax is the epitome of beauty, if beauty means a riddle wrapped in an enigma, with just a hint of confusion after preprocessing again the unpreprocessable. [Ferenc]

			Chapter 10, There Are No Libraries For Modern Programming in C++, evaluates the need and availability of libraries for C++, the challenges of package management, the difficulties in finding libraries for your target version and architecture, and the increasing problem of supply chain attacks. [Alex]

			Chapter 11, C++ Is Backward Compatible ... Even With C, explores backward compatibility because, as we will present in the chapter, C++ inherits the family heirloom: a messy pile of global variables, pointy pointers, and undefined behavior. C++ dutifully keeps these relics alive, allowing the two languages to coexist in an awkward, yet somehow functional, embrace. Compatibility, indeed, because who doesn’t want the thrill of mixing decades-old C code with modern C++? Or with not-so-modern C++? We mean, hey, tradition is important, and we must clamber for a living! [Ferenc]

			Chapter 12, Rust Will Replace C++, looks at why we have so many programming languages, how Rust fits into the ecosystem and what it does well, C++’s answer, and the conditions under which Rust might replace C++. [Alex]

			To get the most out of this book

			The ideal audience for this book would be intermediate to experienced C++ developers and scholastic learners who already have a solid understanding of programming fundamentals and are eager to dive deeper into the intricacies of C++.

			Professionals working with C++ in real-world applications, those interested in optimizing performance through assembly language or advanced compiler techniques, and enthusiasts who appreciate the language’s quirks and complexity might find the book enjoyable.

			Computer science students seeking a more thorough introduction to C++, academics in the pursuit of a showcase of the latest modern C++ techniques, or programmers who are in the process of learning the language, please consider that this book does not cover the beginnings of C++, nor does it include the topic of how to learn it. There are books that are definitely much better suited for this task, such as Programming -- Principles and Practice Using C++ (3rd Edition) by Bjarne Stroustrup, the creator of the language (or, well, any other book that works for you).

			Seasoned C++ developers who want to have an overview of the latest C++ standard, language lawyers, or those of you without a sense of humor, or if you are reading this book to get an answer to a burning question ... well, there are chances that you might not find this book enjoyable at all, since it might not have answers to any of your questions. It might not have answers at all. Instead, you might discover that after reading it, you end up having even more questions than before. For you, I recommend reading through the C++ standard, all your questions have an answer there. You have been warned.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Various C++ compilers, which are relevant or not in 2025

						
							
							Windows, macOS, Linux, or no operating system at all

						
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Debunking-CPP-Myths. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The execve() system call, after several iterations where it leaves the confines of userspace, will end up in the Linux kernel and create a linux_binprm structure.”

			A block of code is set as follows:

			
#include <iostream>
typedef struct S {
    int a;
} S, const *CSP;
int main() {
    S s1;
    s1.a = 1;
    CSP ps1 = &s1;
    std::cout << ps1->a;
}
			Any command-line input or output is written as follows:

			
$ g++ main.cpp a.cpp b.cpp -o test
$ g++ main.cpp b.cpp a.cpp -o test
			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Debunking C++ Myths, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					
						[image: ]
					

				
			

			https://packt.link/free-ebook/9781835884782

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			1

			C++ Is Very Difficult to Learn

			If you want to channel all its power

			A prevalent belief between both C++ programmers and those who only hear about the language is that it’s very difficult to learn it. But what is this based upon? We will see that part of this belief is historical; not only has C++ been around for almost 30 years, but the initial standard was both unforgiving to programmers and required a lot of knowledge of memory management. Modern C++, after consequent improvements brought by the new standards C++11, C++ 14, C++ 17, C++ 20, and C++ 23, allows programmers to write code that is very similar to Java or C#. However, C++ has its specific niche in systems programming, which makes it necessary for programmers to learn more topics than necessary for other modern languages.

			In this chapter, we’re going to cover the following main topics:

			
					Why is C++ perceived as difficult to learn?

					The hard parts of C++ and how to grasp them

					The Stroustrup method for learning C++

					The test-driven method for learning C++

					With great power…

			

			Technical requirements

			The code examples in this chapter can be found in the GitHub repository https://github.com/PacktPublishing/Debunking-CPP-Myths in the ch1 folder. The code uses doctest (https://github.com/doctest/doctest) as a testing library, g++ and make for compilation, and targets C++ 20. You will also need valgrind (https://valgrind.org/) to check for memory leaks.

			Why is C++ perceived as difficult to learn?

			The beginnings of C++ saw it as an extension to C, only using the new paradigm, object-oriented programming (OOP), thus promising to solve the many problems of growing code bases. This initial version of C++ is unforgiving; you, the programmer, had to deeply understand how memory allocation and release works and how pointer arithmetic works, as well as guard against a myriad of subtleties that you’d be likely to miss and that usually ended up in an unhelpful error message. It didn’t help that the prevalent cultural zeitgeist of programmers back then was that a real programmer had to know all the intricacies of CPUs, RAM, various assembly languages, OS workings, and compilers. It also didn’t help that the standardization committee did almost nothing to reduce the possibility of such errors for decades. No wonder the fame of the language is following it almost 40 years later. My experience learning it only helps to understand the struggles to learn the language back then.

			I had my first touches with C++ during my polytechnics studies, in the 90s. They had left me both intrigued and puzzled. I understood the power of the language, while it was actively fighting against me – or that’s how I perceived it. I had to struggle to write code that worked. I was not yet familiar with STL, which was yet to gain notoriety as part of the standard, so most of my first C++ programs dealt with pointer usage. A common question at C++ exams was about differentiating between an array of pointers and a pointer to an array. I can only imagine how helpful the complexities of the language were for building exam questions!

			For the record, see here the difference between pointer to array and array of pointers, a common exam question for C++:

			int(*pointerToArrayOf10Numbers)[10];

			int *arrayOfTenPointers[10]

			I continued learning C++ through practice and from books I could find before the internet would make the knowledge available to everyone. But the biggest jump in my understanding of the language was a project I worked on around the 2000s. The project lead, a very technical Belgian man, set for us very clear guidelines and a process we had to follow to get the best C++ code possible. This need for excellence did not come simply from his desires but from the project needs: we were building a NoSQL database engine many years before they would be given this label.

			For this project, I had to study and know all the rules from the two seminal books on C++: Effective C++ and More Effective C++ by Scott Meyers. The two books document in total 90 guidelines for C++ programmers, ranging from issues of resource initialization and release to minute ways to improve performance, inheritance, exception handling, and so on. This is also when I started using STL extensively, although the standard library was much more limited in scope than it is today.

			This newly acquired knowledge made my C++ programs more reliable and made me more productive. An important contributing factor was the process we used in synergy with the wisdom of the two books. We wrote unit tests, we performed design and code reviews, and we carefully crafted our code knowing that it would be dissected by a colleague before getting accepted in the code base. This made our code quasi-bug-free and helped us implement complex features with high performance in a reasonable time.

			However, the language was still fighting against us. We knew how to write good C++ code, only it required a level of attention and care that inevitably slowed us down. Mastering C++ was not enough; the language had to give something back.

			After this project, I left the C++ world and learned C# and managed C++, Java, PHP, Python, Haskell, JavaScript, and Groovy, to limit myself to those languages I’d used for professional programming. While every programming language offered higher abstractions and fewer headaches compared to C++, I still had nostalgia for my formative years in programming. The fact that I knew C++ and all the intricacies of memory management gave me a deep understanding of the inner workings of these other languages, allowing me to use them to their fullest. Haskell proved to be very familiar to me since it was closely mapping the meta-programming techniques I’d learned from the seminal book by Andrei Alexandrescu, Modern C++ Design. C++ was living on in my mind, not only as the first programming language I used professionally but also as a foundation for every other language I’ve used since.

			To my delight, around 2010, the news came that the C++ standardization committee was finally making bold and frequent changes to the language. The last C++ standard had been for many years C++ 98; suddenly we were seeing a new version every three years. This rolling release of new versions of the standard allowed the introduction of the functional programming paradigm, of ranges, of new primitives for parallel and asynchronous programming, of move semantics. But the biggest change for anyone who wants to learn C++ today is the simplification of memory management and the introduction of auto types. The big breakthrough offered by these changes is that a Java or C# programmer can understand modern C++ programs, something we weren’t sure about back when Java and C# started.

			This means the language is much easier to learn today than in the 90s. A good example of this change is the complete irrelevance of the old exam question on the difference between an array to pointers or a pointer to arrays; naked arrays can easily be replaced with a vector<> or a list<>, while pointers are replaced with the more precise shared_pointer<> or unique_pointer<>. This in turn reduces concerns related to allocation and release of memory for the pointers, thus both cleaning up the code and reducing the potential for the inscrutable error messages so prevalent in C++ 98.

			We can’t say, however, that the C++ language is as easy to learn as the other mainstream ones today. Let’s see why.

			The hard parts of C++ and how to grasp them

			Is C++ as easy to learn as Java, C#, PHP, JavaScript, or Python? Despite all the language improvements, the answer is: most likely not. The important question is: Should C++ be as easy to learn as all these other languages?

			The demise of C++ has been predicted for a very long time. Java, then C#, and nowadays Rust were in turn touted as complete replacements for our venerable subject of debate. Instead, each of them seems to carve their own niche while C++ is still leading in programs that require careful optimization or work in constrained environments. It helps that millions of lines of C++ exist today, some of them decades old. While some of them can be turned into cloud-native, serverless, or microservices architectures, there will always be problems better fit for the engineering style serviced by C++.

			We conclude, therefore, that C++ has its own purpose in the world of development, and any new programming language faces a steep uphill battle to displace it. This observation comes with its consequence: specific parts of C++ will necessarily be more difficult to grasp than other languages. While Java or C# will spare you from thinking of memory allocation and what happens with the memory when you pass arguments to another method, C++ needs to take these issues head-on and give you the option to optimize your code as your context dictates.

			Therefore, if you want to understand C++, you can’t escape memory management. Fortunately, it’s much less of an issue than it used to be.

			Let’s analyze the differences by looking at how different languages manage memory allocation and release. Java uses a full object-oriented (OO) approach, in which every value is an object. C# designers decided to use both value types that include the typical numeric values, chars, structs, and enums, and reference types that correspond to the objects. In Python, every value is an object, and the type can be established later in the program. All these three languages feature a garbage collector that deals with memory release. The Python language uses a reference counting mechanism in addition to the garbage collector, thus allowing it to be optionally disabled.

			The C++ 98 standard didn’t provide any built-in mechanism for pointer release, instead providing the full power and responsibility for memory management to the programmer. Unfortunately, this led to problems. Suppose that you initialize a pointer and allocate a large area of memory for a value. You then pass this pointer to other methods. Who is responsible for releasing the memory?

			See, for example, the following simple code sample:

			
BigDataStructure* pData = new pData();
call1(pData);
call2(pData);
call3(pData);
			Should the caller release the memory allocated in pData? Should call3 do it? What if call3 calls another function with the same pData instance? Who is responsible for releasing it? What happens if call2 fails?

			The responsibility for memory release is ambiguous and, therefore, needs to be specified for every function or for every scope, to be more precise. The complexity of this problem increases with the complexity of programs and data flows. This would make most programmers using the other mainstream languages scratch their heads or completely ignore the responsibility and end up either with memory leaks or with calls to memory areas that have been already released.

			Java, C#, and Python solve all these issues without asking the programmer to be careful. Two techniques are helpful: reference counting and garbage collection. Reference counting works as follows: upon every call to copy the value, the reference count is increased. When getting out of scope, the reference count is decreased. When the reference count gets to 0, release the memory. Garbage collectors work similarly, only they run periodically and check also for circular references, ensuring that even convoluted memory structures get released correctly, albeit with a delay.

			Even back in the 2000s, nothing was stopping us from implementing reference counting in C++. The design pattern is known as smart pointers and allows us to think less about these issues.

			In fact, C++ had from the very beginning yet another, more elegant way, to deal with this problem: pass-by-reference. There’s a good reason why pass-by-reference is the default way to pass objects around in Java, C#, and Python: it’s very natural and convenient. It allows you to create an object, allocate its memory, pass by reference, and the best part: its memory will automatically get released upon exiting the scope. Let’s look at a similar example to the one using pointers:

						
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
						
			
			
			
			
			
			
			
			
			
			
						
			
						
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	


		
		Contents

			
					Debunking C++ Myths

					Contributors

					About the authors

					About the reviewer

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Download the example code files

							Conventions used

							Get in touch

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

					Chapter 1: C++ Is Very Difficult to Learn
					
							Technical requirements

							Why is C++ perceived as difficult to learn?

							The hard parts of C++ and how to grasp them

							The Stroustrup method for learning C++

							The Kate Gregory method – don’t teach C

							The test-driven method for learning C++
							
									Setup

									Exploring the language

									What about memory issues?

							

						

							With great power…

							Summary

					

				

					Chapter 2: Every C++ Program Is Standard-Compliant
					
							Technical requirements

							Somewhere in Ghana, far, far away

							Microsoft’s tiny, squishy C++

							The realm of free compilers
							
									A tribute to attributes

							

						

							When the header is not even C++

							The curious case of C++ locked in a box

							Past days of future C++

							Summary

					

				

					Chapter 3: There’s a Single C++, and It Is Object-Oriented
					
							Technical requirements

							The multiple facets of C++

							Functional programming in C++
							
									Immutability

									Pure functions

									Operations on functions

									Architectural patterns in functional style

							

						

							Metaprogramming

							Strong types to the limit

							What about ignoring types?

							Summary

					

				

					Chapter 4: The Main() Function is the Entry Point to Your Application
					
							The main() function

							The penguin farm
							
									Oh no, there’s more!

									A library is the delivery room for the birth of ideas unexpected behavior

									Famous last words

							

						

							Let’s open the Windows (unless you’re on ISS)
							
									To PE or not to PE

									Getting our hands dirty

							

						

							Summary

					

				

					Chapter 5: In a C++ Class, Order Must There Be
					
							Size does matter

							The order that must be respected

							Deep thoughts about order

							The dark orders of C++
							
									The most important question

							

						

							When order does not matter

							Summary

					

				

					Chapter 6: C++ Is Not Memory-Safe
					
							Technical requirements

							Memory safety is important

							The memory safety problems of older C++

							Modern C++ to the rescue

							The limits of modern C++

							There’s still more to do

							Summary

					

				

					Chapter 7: There’s No Simple Way to Do Parallelism and Concurrency in C++
					
							Technical requirements

							Defining parallelism and concurrency

							Common issues with parallelism and concurrency

							Functional programming to the rescue!

							The Actor Model

							What we can’t do yet

							Summary

					

				

					Chapter 8: The Fastest C++ Code is Inline Assembly
					
							Light me a pixel
							
									A note on the past

							

						

							The sum of all numbers
							
									A glimpse into the future

							

						

							One instruction to rule them all

							Summary

					

				

					Chapter 9: C++ Is Beautiful
					
							In search of beauty
							
									Who likes numbers?

							

						

							The definition of zero

							A parenthesis concerning parentheses

							C++uties

							Summary

					

				

					Chapter 10: There Are No Libraries For Modern Programming in C++
					
							How can we tell?

							A modern developer’s experience

							Common needs

							Compatibility

							Supply chain security

							Summary

					

				

					Chapter 11: C++ Is Backward Compatible ...Even with C
					
							Is C really forward-compatible with C++?
							
									The magic of the parameter list

							

						

							Whitespace matters – until it doesn’t
							
									The 11th guest

							

						

							The auto surprise

							Summary

					

				

					Chapter 12: Rust Will Replace C++
					
							Technical requirements

							Why the competition?

							Core features of Rust
							
									Project templates and package management

									Immutability

									Simple syntax for compound types

									Optional return keyword

									Closures

									Unit tests in Standard Library

									Traits

									Ownership model

							

						

							Rust’s advantages

							Where C++ is better

							What C++ still needs

							Summary

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/image/B22235_QR_Free_PDF.jpg





OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/Fonts/MyriadPro-LightIt.otf


OEBPS/image/Packt_Logo_New.png
<PACKD





OEBPS/image/Cover.jpg
<packh

Debunking C++ Myths

Embark on an insightful journey to uncover the truths
behind popular C++ myths and misconceptions

ALEXANDRU BOLBOACA | FERENC-LAJOS DEAK





OEBPS/Fonts/CourierStd.otf


