
		
			[image: Cover.png]
		

	
		
			Learning Spring Boot 3.0

			Third Edition

			Simplify the development of production-grade applications using Java and Spring

			Greg L. Turnquist

			[image:]

			BIRMINGHAM—MUMBAI

			Learning Spring Boot 3.0

			Third Edition

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Bhavya Rao

			Senior Editor: Mark D’Souza

			Technical Editor: Simran Ali

			Copy Editor: Safis Editing

			Project Coordinator: Manthan Patel

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Nilesh Mohite

			Marketing Coordinator: Anamika Singh

			First published: November 2014

			Second Edition: November 2017

			Third Edition: December 2022

			Production reference: 2130123

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80323-330-7

			www.packt.com

			To my fans on YouTube, who have given me the opportunity to share my love for Spring Boot. To my children, who have put up with me spending hours filming in my studio space. And to my wife, who has supported me in word and action as I’ve attempted to build a community.

			– Greg L. Turnquist

			Forewords

			Spring Boot has been such a success that it’s probably not wrong to describe it as “mainstream” in 2022. Practically every Java developer will know something about it, and many, maybe even the majority, will have used it, even if in anger. But in software engineering, there’s always something new to learn, and there are always new problems to solve – that’s what makes it so rewarding in the end. There’s always something new to invent, too, and having the skill and opportunity to create code is extremely rewarding intellectually and in other ways.

			One of the goals of Spring Boot is shared by the author of this book, and that is to get your ideas down into code as quickly and efficiently as possible, so you can get it to the most special place: Production. I wish you a short and pleasant journey, or maybe a long series of short and pleasant journeys.

			In this book, Greg has used his insider advantage to add Spring Boot knowledge to some old, well-seasoned favourite problems that you all will have experienced as Java developers. What better way to learn than to look at Spring Boot through the lens of tasks that we all have to solve nearly every day: creating HTTP endpoints, securing them, connecting to databases, writing tests? This book adds some new angles to these old chestnuts by applying some modern ideas and tools, so read it and you will learn about things such as hypermedia and OAuth, all from the most practical and pragmatic of standpoints. It also starts right at the very beginning, and assumes no prior knowledge of Spring, or even Java. Anyone with some basic technical or programming skills will be able to get to grips with how and why to use Spring Boot.

			There is more to Spring Boot than just main methods, embedded containers, autoconfiguration, and management endpoints. The pure joy of getting started with a fully featured Spring application in a few lines of code cannot be understated, for instance. I invite you to dip into this book, break out an editor or an IDE, and crank up some applications for yourself.

			Greg has been an important member of the Spring Boot team, despite having a day job doing other things in the Spring Engineering effort, and we can be grateful for that, as well as the effort he has lavished on this excellent book. He has always been an educator and an informer, as well as an engineer, and this shows very clearly in this book. When I read it, I can hear Greg’s voice and personality very clearly, and it is always calm but enthusiastic, with a touch of humour. Read it yourself and enjoy – coding with Spring is still fun after all these years!

			Dave Syer

			Sr. Staff Engineer and Co-Creator of Spring Boot

			London, 2022

			I’ve known Greg Turnquist for a number of years. After I joined Pivotal (and before I had officially started) I first met him in person at SpringOne2GX, the annual conference of all things Spring and more (anyone remember the heady days of Groovy and Grails?). We had some great, thought-provoking conversations there, and they’ve continued through the years since.

			One of the first Spring Boot books I read was Greg’s first edition of Learning Spring Boot. I wish I had read it sooner! I found myself recommending it to numerous people, along with other books by trusted colleagues, as a valuable introduction and reference to various Boot-related topics.

			As an author myself, I know all too well the exhilarating and excruciating task Greg faced when writing and updating this book. Every author has to balance all the things they want to share, all the topics they feel most important, with the constant constraints of time and volume. Greg deftly threads this needle, providing a good foundation and then quickly shifting to topics important to developers, using Spring Boot to field real applications. Data? Security? Configuration? Integration with JavaScript? It’s in there.

			I loved working with Greg on the Spring team, and I continue to enjoy every conversation we have. There will always be an honored place on my (virtual) mantle for Greg’s books, and I hope that you make room on yours for them as well. Read this book and get to know Greg! Your Spring Boot apps will benefit from both.

			Best to you in your Spring Boot journey,

			Mark Heckler

			Principle Cloud Advocate, Microsoft

			@mkheck

			Look, I know you’re probably reading this foreword hoping for some compelling testimonial about this book, along with some witticism and a fun anecdote about life. Why wouldn’t you? It’s a preface to a book. But I can’t in good conscience write that foreword for you; it smacks of absurdity. But, of course, this book is fantastic. So, I don’t want to linger on the obvious.

			Let’s talk about Greg, the author of this chef-d’oeuvre. Greg’s been on the Spring team longer than I have been. He’s forgotten more than most people will ever know about the depths of Spring. He invests time in the big and the small. You can trust him to be your sherpa and guide you from beginner to Spring Boot-iful. I do.

			Greg’s a friend. He and I get along because, in some crucial ways, we’re very much alike. I like odd little projects that, while not necessarily mainstream, sometimes solve acutely painful problems. I once gave a talk to three people. My presentation was so specific that, out of thousands of attendees at the show, only three could be bothered to attend. I’m willing to advocate for the faintest glimmer of a solution if I believe in it. Greg is too. He invests in the big and small.

			We both love the JVM and Python. That shared affection brings us around to Spring Python. Long ago, Greg brought some of the brilliance of the Spring Framework to the Python ecosystem with his project Spring Python. Python’s ecosystem brims with alternatives for every use case. In this sea of choice, Spring Python stood out. It delivered on the lofty goals of the Spring Framework while remaining “Pythonic”, a quality that signals a library will feel idiomatic to a familiar Python programmer. It showed a deep commitment to, and familiarity with, two vastly divergent ecosystems. I love Greg because of Spring Python. It shows he’s willing to sit down, roll up his sleeves, expand his horizons, and write code until a problem is solved– no matter how big or small. That willingness to dive deep into a topic makes him a gifted writer and teacher, which is evident in his books, courses, blogs, and articles. His gift makes these printed pages something more than yet another book on software; they’re a tome worth your time.

			This book covers the just-released Spring Boot 3.0, arguably the most critical release of Spring Boot (or any other Spring ecosystem project) since Spring Boot itself appeared publicly for the very first time in 2013. I know all of us on the Spring team, Greg included, worked harder and longer than ever to get this release out the door. Yet, against all that work, Greg managed to get this book in your hands in record time. He did that so we, dear readers, could get to production in record time. He did that so we would not have to invest in the big and the small.

			Josh Long

			Spring Developer Advocate, VMware, (and well-known Greg Turnquist fan)

			@starbuxman

			Contributors

			About the author

			Greg L. Turnquist is the lead developer for Spring Data JPA and Spring Web Services. He has contributed to Spring HATEOAS, Spring Data REST, Spring Security, the Spring Framework, and many other parts of the Spring portfolio. He has maintained the Spring Data team’s CI system for years with his script-fu. He has written multiple tomes on Spring Boot, including Packt’s best-selling title Learning Spring Boot 2.0 Second Edition as well as the very first Spring Boot book to ever hit the market. He even launched his own YouTube channel, Spring Boot Learning (http://bit.ly/3uSPLCz), the channel where you learn about Spring Boot and have fun doing it. Before joining the Spring team, Greg worked as a senior software engineer at Harris Corp. on multiple projects including its ambitious $1.5 billion telecom contract with the FAA to build a nationwide, always-on network. As a test-bitten script junky, Greg is no stranger to midnight failures. He has a master’s degree in computer engineering and lives in the United States with his wife and their gaggle of minions.

			I want to thank the Spring team, who have encouraged me at every turn, Dan Vega, for giving me the inspiration to make YouTube content, and the team at Packt, who have worked tirelessly to help me publish this technical work.

			About the reviewer

			Harsh Mishra is a software engineer who enjoys learning new technologies for his own knowledge and experience, focusing on designing and developing enterprise solutions. He is a clean code and Agile fan. He has been developing code for financial businesses since 2014 and has been using Java as his primary programming language. He also has product experience in Spring, Microsoft, GCP, DevOps, and other enterprise technologies.

		

	
		
			Table of Contents

			Preface

			Part 1: The Basics of Spring Boot

			1

			Core Features of Spring Boot

			Technical requirements

			Installing Java 17

			Installing a modern IDE

			Creating a GitHub account

			Finding additional support

			Autoconfiguring Spring beans

			Understanding application context

			Exploring autoconfiguration policies in Spring Boot

			Adding portfolio components using Spring Boot starters

			Customizing the setup with configuration properties

			Creating custom properties

			Externalizing application configuration

			Configuring property-based beans

			Managing application dependencies

			Summary

			Part 2: Creating an Application with Spring Boot

			2

			Creating a Web Application with Spring Boot

			Using start.spring.io to build apps

			Creating a Spring MVC web controller

			Using start.spring.io to augment an existing project

			Leveraging templates to create content

			Adding demo data to a template

			Building our app with a better design

			Injecting dependencies through constructor calls

			Changing the data through HTML forms

			Creating JSON-based APIs

			Hooking in Node.js to a Spring Boot web app

			Bundling JavaScript with Node.js

			Creating a React.js app

			Summary

			3

			Querying for Data with Spring Boot

			Adding Spring Data to an existing Spring Boot application

			Using Spring Data to easily manage data

			Adding Spring Data JPA to our project

			DTOs, entities, and POJOs, oh my!

			Entities

			DTOs

			POJOs

			Creating a Spring Data repository

			Using custom finders

			Sorting the results

			Limiting query results

			Using Query By Example to find tricky answers

			Using custom JPA

			Summary

			4

			Securing an Application with Spring Boot

			Adding Spring Security to our project

			Creating our own users with a custom security policy

			Swapping hardcoded users with a Spring Data-backed set of users

			Securing web routes and HTTP verbs

			To CSRF or not to CSRF, that is the question

			Securing Spring Data methods

			Updating our model

			Taking ownership of data

			Adding a delete button

			Locking down access to the owner of the data

			Enabling method-level security

			Displaying user details on the site

			Leveraging Google to authenticate users

			Pros of using OAuth

			Cons of using OAuth

			Creating a Google OAuth 2.0 application

			Adding OAuth Client to a Spring Boot project

			Invoking an OAuth2 API remotely

			Creating an OAuth2-powered web app

			Summary

			5

			Testing with Spring Boot

			Adding JUnit 5 to the application

			Creating tests for your domain objects

			Testing web controllers with MockMVC

			Testing data repositories with mocks

			Testing data repositories with embedded databases

			Adding Testcontainers to the application

			Testing data repositories with Testcontainers

			Testing security policies with Spring Security Test

			Summary

			Part 3: Releasing an Application with Spring Boot

			6

			Configuring an Application with Spring Boot

			Creating custom properties

			Creating profile-based property files

			Switching to YAML

			Setting properties with environment variables

			Ordering property overrides

			Summary

			7

			Releasing an Application with Spring Boot

			Creating an uber JAR

			Baking a Docker container

			Building the “right” type of container

			Releasing your application to Docker Hub

			Tweaking things in production

			Scaling with Spring Boot

			Summary

			8

			Going Native with Spring Boot

			What is GraalVM and why do we care?

			Retrofitting our application for GraalVM

			Running our native Spring Boot application inside GraalVM

			Why do we want GraalVM again?

			Baking a Docker container with GraalVM

			Spring Boot 3.0 versus Spring Boot 2.7 and Spring Native

			GraalVM and other libraries

			Summary

			Part 4: Scaling an Application with Spring Boot

			9

			Writing Reactive Web Controllers

			What is reactive and why do we care?

			Introduction to Reactive

			Reactive Stream details

			Creating a reactive Spring Boot application

			Serving data with a reactive GET method

			Consuming incoming data with a reactive POST method

			Scaling applications with Project Reactor

			Quick history on Java concurrent programming

			Serving a reactive template

			Creating a reactive web controller

			Crafting a Thymeleaf template

			Creating hypermedia reactively

			Summary

			10

			Working with Data Reactively

			Learning what it means to fetch data reactively

			Picking a reactive data store

			Creating a reactive data repository

			Trying out R2DBC

			Loading data with R2dbcEntityTemplate

			Returning data reactively to an API controller

			Reactively dealing with data in a template

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			This book is designed for both novices and experienced Spring developers. It will teach you how to build Java applications without wasting time on infrastructure and other tedious details. Instead, it will help you focus on building web apps on top of real databases, locked down with modern security practices.

			On top of that, you’ll discover multiple ways to carry an app to production. If that’s not enough, it even includes secret ways (okay, not really secret) at the end to squeeze more out of your existing servers (or cloud) by picking up and running with reactive programming.

			Who this book is for

			This book is designed for both novices and experienced Spring developers who want to get their hands on Spring Boot 3.0. You should have a rudimentary understanding of Java, preferably Java 8 or higher. Being familiar with lambda functions, method references, record types, and the new-and-improved collections API found in Java 17 is a bonus, but not required.

			Having used previous versions of Spring Boot (1.x, 2.x) is not required but would be handy.

			What this book covers

			Chapter 1, Core Features of Spring Boot, is where you discover the charm of Spring Boot with its fundamental features to work with you as you build your app.

			Chapter 2, Creating a Web Application with Spring Boot, teaches you how to craft the web layer for a Java app with ease, with both server-side and client-side options.

			Chapter 3, Querying for Data with Spring Boot, shows you how to get the most out of your database with Spring Data.

			Chapter 4, Securing an Application with Spring Boot, shows you how to use Spring Security’s cutting-edge features to lock down your app from bad guys, inside and out.

			Chapter 5, Testing with Spring Boot, teaches you how to build confidence in your systems through testing with mocks and embedded databases, and even using Testcontainers combined with real databases.

			Chapter 6, Configuring an Application with Spring Boot, shows you ways to tune and adapt your app once it’s built.

			Chapter 7, Releasing an Application with Spring Boot, helps you discover multiple ways to take your app to production and put it in the hands of your users.

			Chapter 8, Going Native with Spring Boot, shows you how to speed up your app by leaps and bounds using native images that start in subsecond time and don’t hog all your resources.

			Chapter 9, Writing Reactive Web Controllers, teaches you how easy it is to write reactive web controllers and how they can be your key to a more efficient app.

			Chapter 10, Working with Data Reactively, helps you discover how to query for data reactively using R2DBC and see how efficient your app can be.

			To get the most out of this book

			Spring Boot 3.0 is built on Java 17. By using sdkman (https://sdkman.io), you can easily install the version of Java needed. In Chapter 8, Going Native with Spring Boot, we’ll include instructions on how to use sdkman to install a specific flavor of Java 17 that supports building native images for GraalVM. While it’s possible to write code using a barebones text editor, any modern IDE (see the following list) will greatly enhance the coding experience. Check out the one that works best for you.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							sdkman (for Java 17) (https://sdkman.io)

						
							
							Windows, macOS, or Linux

						
					

					
							
							Any modern IDE will help with writing code:

							
									IntelliJ IDEA (https://springbootlearning.com/intellij-idea-try-it)

									VS Code (https://springbootlearning.com/vscode)

									Spring Tool Suite (https://springbootlearning.com/sts)

							

						
							
							Windows, macOS, or Linux

						
					

				
			

			VS Code and Spring Tool Suite are free. IntelliJ IDEA has a Community Edition and an Ultimate Edition. The Community Edition is free, but some of the Spring-specific features require purchasing the Ultimate Edition. There is a 30-day trial to give it a spin.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			This book, however, isn’t the end of your journey into building Spring Boot apps. Check out my YouTube channel, Spring Boot Learning (http://bit.ly/3uSPLCz), where I publish videos all the time on Spring Boot and software engineering. There are also additional resources at https://springbootlearning.com to help you write better apps!

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Learning-Spring-Boot-3.0. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/FvE6S.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “This can be done by first adding an application.properties file to our src/main/resources folder.”

			A block of code is set as follows:

			
@Controller
public class HomeController {
 private final VideoService videoService;
 public HomeController(VideoService videoService) {
 this.videoService = videoService;
 }
 @GetMapping("/")
 public String index(Model model) {
 model.addAttribute("videos", videoService.getVideos());
 return "index";
 }
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
@Bean
SecurityFilterChain configureSecurity(HttpSecurity http) {
 http.authorizeHttpRequests()
 .requestMatchers("/login").permitAll()
 .requestMatchers("/", "/search").authenticated()
 .anyRequest().denyAll()
 .and()
 .formLogin()
 .and()
 .httpBasic();
 return http.build();
}

			Any command-line input or output is written as follows:

			$ cd ch7

			$./mvnw clean spring-boot:build-image

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “To do that, go to the Dependencies section.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Learning Spring Boot 3.0, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

		

		
			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781803233307

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: The Basics of Spring Boot

			Spring Boot has several key ingredients that underpin all of its features. You will learn how autoconfiguration, Spring Boot starters, configuration properties, and managed dependencies make it possible to build your most powerful application yet.

			This part includes the following chapter:

			
					Chapter 1, Core Features of Spring Boot

			

		

		
			
			

		

	
		
			1

			Core Features of Spring Boot

			Rod Johnson, CEO of the company behind the foundation of the Spring Framework and dubbed the father of Spring, opened the 2008 Spring Experience conference with a stated mission: reducing Java complexity. The YouTube video titled Story time with Keith Donald Co-Founder SpringSource & Founder SteadyTown 2-27-2014 (https://springbootlearning.com/origin-of-spring), uploaded by TrepHub, is a 90-minute journey back into the early days of Spring guided by Keith Donald, one of Spring’s co-founders. Here too, you’ll find the same mission reinforced.

			Java in the mid-2000s was challenging to use, difficult to test, and frankly short on enthusiasm.

			But along came a toolkit: the Spring Framework. This toolkit focused on easing developers’ lives. And the excitement was off the charts. The buzz when I attended that 2008 conference was incredible.

			Fast forward to 2013 at the SpringOne 2GX conference, the Spring team unveiled Spring Boot: a new approach to writing Spring apps. This approach resulted in standing-room attendance. I was in the room when co-leads Phil Webb and Dave Syer gave their first talk. In a room designed like a stadium lecture hall, the seats were packed. The opening keynote revealed a revolutionary way to build more extensive and powerful apps… with less.

			This ability to do more with less using Spring Boot is what we’ll discover together as we journey into the world of the third generation of Spring Boot.

			In this chapter, we’ll learn about the core features of Spring Boot, which show fundamentally how it does less with more. This is to get a taste of how Spring Boot operates, allowing us to leverage it in later chapters as we build applications. The key aspects that make Spring Boot powerful while retaining its flexibility to serve user needs will be described in this chapter.

			In this chapter, we’ll cover the following topics:

			
					Autoconfiguring Spring beans

					Adding components of the Spring portfolio using Spring Boot starters

					Customizing the setup with configuration properties

					Managing application dependencies

			

			Technical requirements

			For this book, you’ll only need a handful of tools to follow along:

			
					Java 17 Development Kit (JDK 17)

					A modern integrated development environment (IDE)

					A GitHub account

					Additional support

			

			Installing Java 17

			Spring Boot 3.0 is built on top of Java 17. For ease of installation and using Java, it’s easiest to use sdkman as your tool to handle installing and switching between different JDKs, as shown here:

			
					Visit https://sdkman.io/.

					Following the site’s instructions, execute curl -s "https://get.sdkman.io" | bash from any terminal or shell on your machine.

					Follow any subsequent instructions provided.

					From there, install Java 17 on your machine by typing sdk install java 17.0.2-tem. When prompted, pick it as your default JDK of choice in any terminal.

			

			This will download and install the Eclipse Temurin flavor of Java 17 (formerly known as AdoptOpenJDK). Eclipse Temurin is a free, open source version of OpenJDK, compliant with all standard Java TCKs. In general, it’s a variant of Java recognized by all parties as acceptable for Java development. Additionally, it comes with no requirements to pay for licensing.

			Tip

			If you need a commercially supported version of Java, then you will have to do more research. Many shops that provide commercial support in the Java space will have various options. Use what works best for you. But if commercial support is not needed, then Eclipse Temurin will work fine. It’s used by many projects managed by the Spring team itself.

			Installing a modern IDE

			Most developers today use one of the many free IDEs to do their development work. Consider these options:

			
					IntelliJ IDEA – Community Edition (https://www.jetbrains.com/idea/)

					Spring Tools 4 (https://spring.io/tools):	Spring Tools 4 for Eclipse
	Spring Tools 4 for VS Code

			

			IntelliJ IDEA is a powerful IDE. The Community Edition, which is free, has many bits that will serve you well. The Ultimate Edition, which costs 499 USD, is a complete package. If you grab this (or convince your company to buy a license!), it’s a valuable investment.

			That being said, Spring Tools 4, whether you pick the Eclipse flavor or the VS Code one, is a powerful combo as well.

			If you’re not sure, go ahead and test out each one, perhaps for a month, and see which one provides you with the best features. They each have top-notch support for Spring Boot.

			At the end of the day, some people do prefer a plain old text editor. If that’s you, fine. At least evaluate these IDEs to understand the tradeoffs.

			Creating a GitHub account

			I always tell anyone entering the world of 21st century software development to open a GitHub account if they haven’t already. It will ease access to so many tools and systems out there.

			Visit https://github.com/join if you’re just getting started.

			This book’s code is hosted on GitHub at https://github.com/PacktPublishing/Learning-Spring-Boot-3.0.

			You can work your way through the code presented in this book, but if you need to go to the source, visit the aforementioned link and grab a copy for yourself!

			Finding additional support

			Finally, there are some additional resources to visit for more help:

			
					I host a YouTube channel focused on helping people get started with Spring Boot at https://youtube.com/@SpringBootLearning. All the videos and live streams there are completely free.

					There is additional content provided to my exclusive members at https://springbootlearning.com/member. My members also get one-on-one access to me with questions and concerns.

					If you’re a paying subscriber on Medium, I also write technical articles based on Spring Boot, along with overall software development topics, at https://springbootlearning.medium.com. Follow me over there.

					I also share any technical articles posted with my newsletter at https://springbootlearning.com/join for free. You also get an e-book for free if you sign up.

			

			If you’ve downloaded Java 17 and installed an IDE, then you’re all set, so let’s get to it!

			Autoconfiguring Spring beans

			Spring Boot comes with many features. But the most well-known one, by far, is autoconfiguration.

			In essence, when a Spring Boot application starts up, it examines many parts of our application, including classpath. Based on what the application sees, it automatically adds additional Spring beans to the application context.

			Understanding application context

			If you’re new to Spring, then it’s important to understand what we’re talking about when you hear application context.

			Whenever a Spring Framework application starts up, whether or not Spring Boot is involved, it creates a container of sorts. Various Java beans that are registered with Spring Framework’s application context are known as Spring beans.

			Tip

			What’s a Java bean? Java beans are objects that follow a specific pattern: all the fields are private; they provide access to their fields through getters and setters, they have a no-argument constructor, and they implement the Serializable interface.

			For example, an object of the Video type with name and location fields would set those two fields to private and offer getName(), getLocation(), setName(), and setLocation() as the ways to mutate the state of this bean. On top of that, it would have a no-argument Video() constructor call. It’s mostly a convention. Many tools provide property support by leveraging the getters and setters. The requirement to implement the Serializable interface, though, is not as tightly enforced.

			Spring Framework has a deep-seated concept known as dependency injection (DI), where a Spring bean can express its need for a bean of some other type. For example, a BookRepository bean may require a DataSource bean:

			
@Bean
public BookRepository bookRepository(DataSource dataSource) {
 return new BookRepository(dataSource);
}

			This preceding Java configuration, when seen by the Spring Framework, will cause the following flow of actions:

			
					bookRepository needs a DataSource.

					Ask the application context for a DataSource.

					The application context either has it or will go create one and return it.

					bookRepository executes its code while referencing the app context’s DataSource.

					BookRepository is registered in the application context under the name bookRepository.

			

			The application context will ensure all Spring beans needed by the application are created and properly injected into each other. This is known as wiring.

			Why all this instead of a handful of new operations in various class definitions? Simple. For the standard situation of powering up our app, all the beans are wired together as expected.

			For a test case, it’s possible to override certain beans and switch to stubbed or mocked beans.

			For cloud environments, it’s easy to find all DataSource and replace them with beans that link to bound data services.

			By removing the new operation from our example BookRepository, and delegating that responsibility to the application context, we open the door to flexible options that make the whole life cycle of application development and maintenance much easier.

			We’ll explore how Spring Boot heavily leverages the Spring Framework’s ability to inject beans based on various circumstances throughout this book. It is important to realize that Spring Boot doesn’t replace the Spring Framework but rather highly leverages it.

			Now that you know what an application context is, it is time to dive into the many ways Spring Boot makes use of it through autoconfiguration.

			Exploring autoconfiguration policies in Spring Boot

			Spring Boot comes with a fistful of autoconfiguration policies. These are classes that contain @Bean definitions that are only registered based on certain conditional circumstances. Perhaps an example is in order?

			If Spring Boot detects the class definition of DataSource somewhere on the classpath, a class found inside any Java Database Connectivity (JDBC) driver, it will activate its DataSourceAutoConfiguration. This policy will fashion some version of a DataSource bean. This is driven by the @ConditionalOnClass({ DataSource.class }) annotation found on that policy.

			Inside DataSourceAutoConfiguration are inner classes, each driven by various factors. For example, some classes will discern whether or not we have used an embedded database such as H2 compared to a pooled JDBC asset such as HikariCP.

			And just like that, the need for us to configure an H2 DataSource is removed. A small piece of infrastructure that is often the same across a multitude of applications is taken off our plate and instead managed by Spring Boot. And we can move more quickly toward writing business code that uses it.

			Spring Boot autoconfiguration also has smart ordering built in, ensuring beans are added properly. Don’t worry! Using Spring Boot doesn’t depend on us having to know this level of detail.

			Most of the time, we don’t have to know what Spring Boot is up to. It’s designed to do the right thing when various things are added to the build configuration.

			The point is that many features, such as servlet handlers, view resolvers, data repositories, security filters, and more are activated, simply based on what dependencies we add to the build file.

			And do you know what’s even better than automagically adding Spring beans? Backing off.

			Some beans are created based on the classpath settings. But if a certain bean definition is detected inside our code, the autoconfiguration won’t kick in.

			Continuing with the example from earlier, if we put something such as H2 in our classpath but define a DataSource bean and register it in the application context, Spring Boot will accept our DataSource bean over theirs.

			No special hooks. No need to tell Spring Boot about it. Just create your own bean as you see fit, and Spring Boot will pick it up and run with it!

			This may sound low-level, but Spring Boot’s autoconfiguration feature is transformational. If we focus on adding all the dependencies our project needs, Spring Boot will, as stated earlier, do what’s right.

			Some of the autoconfiguration policies baked into Spring Boot extend across these areas:

			
					Spring AMQP: Communicate asynchronously using an Advanced Message Queueing Protocol (AMQP) message broker

					Spring AOP: Apply advice to code using Aspect-Oriented Programming

					Spring Batch: Process large volumes of content using batched jobs

					Spring Cache: Ease the load on services by caching results

					Data store connections (Apache Cassandra, Elasticsearch, Hazelcast, InfluxDB, JPA, MongoDB, Neo4j, Solr)

					Spring Data (Apache Cassandra, Couchbase, Elasticsearch, JDBC, JPA, LDAP, MongoDB, Neo4j, R2DBC, Redis, REST): Simplify data access

					Flyway: Database schema management

					Templating engines (Freemarker, Groovy, Mustache, Thymeleaf)

					Serialization/deserialization (Gson and Jackson)

					Spring HATEOAS: Add Hypermedia as the Engine of Application State (HATEOAS) or hypermedia to web services

					Spring Integration: Support integration rules

					Spring JDBC: Simplify accessing databases through JDBC

					Spring JMS: Asynchronous through Java Messaging Service (JMS)

					Spring JMX: Manage services through Java Management Extension (JMX)

					jOOQ: Query databases using Java Object Oriented Querying (jOOQ)

					Apache Kafka: Asynchronous messaging

					Spring LDAP: Directory-based services over Lightweight Directory Access Protocol (jOOQ)

					Liquibase: Database schema management

					Spring Mail: Publish emails

					Netty: An asynchronous web container (non-servlet-based)

				
				
				
				
				
				
				
				
				
				
			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_SuperSite_2022_Orange.png

OEBPS/toc.xhtml

		
		Contents

			
						Learning Spring Boot 3.0

						Third Edition

						Forewords

						Contributors

						About the author

						About the reviewer

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: The Basics of Spring Boot

						Chapter 1: Core Features of Spring Boot
					
								Technical requirements
							
										Installing Java 17

										Installing a modern IDE

										Creating a GitHub account

										Finding additional support

							

						

								Autoconfiguring Spring beans
							
										Understanding application context

										Exploring autoconfiguration policies in Spring Boot

							

						

								Adding portfolio components using Spring Boot starters

								Customizing the setup with configuration properties
							
										Creating custom properties

										Externalizing application configuration

										Configuring property-based beans

							

						

								Managing application dependencies

								Summary

					

				

						Part 2: Creating an Application with Spring Boot

						Chapter 2: Creating a Web Application with Spring Boot
					
								Using start.spring.io to build apps

								Creating a Spring MVC web controller

								Using start.spring.io to augment an existing project

								Leveraging templates to create content
							
										Adding demo data to a template

										Building our app with a better design

										Injecting dependencies through constructor calls

										Changing the data through HTML forms

							

						

								Creating JSON-based APIs

								Hooking in Node.js to a Spring Boot web app
							
										Bundling JavaScript with Node.js

										Creating a React.js app

							

						

								Summary

					

				

						Chapter 3: Querying for Data with Spring Boot
					
								Adding Spring Data to an existing Spring Boot application
							
										Using Spring Data to easily manage data

										Adding Spring Data JPA to our project

							

						

								DTOs, entities, and POJOs, oh my!
							
										Entities

										DTOs

										POJOs

							

						

								Creating a Spring Data repository

								Using custom finders
							
										Sorting the results

										Limiting query results

							

						

								Using Query By Example to find tricky answers

								Using custom JPA

								Summary

					

				

						Chapter 4: Securing an Application with Spring Boot
					
								Adding Spring Security to our project

								Creating our own users with a custom security policy

								Swapping hardcoded users with a Spring Data-backed set of users

								Securing web routes and HTTP verbs
							
										To CSRF or not to CSRF, that is the question

							

						

								Securing Spring Data methods
							
										Updating our model

										Taking ownership of data

										Adding a delete button

										Locking down access to the owner of the data

										Enabling method-level security

										Displaying user details on the site

							

						

								Leveraging Google to authenticate users
							
										Pros of using OAuth

										Cons of using OAuth

										Creating a Google OAuth 2.0 application

										Adding OAuth Client to a Spring Boot project

										Invoking an OAuth2 API remotely

										Creating an OAuth2-powered web app

							

						

								Summary

					

				

						Chapter 5: Testing with Spring Boot
					
								Adding JUnit 5 to the application

								Creating tests for your domain objects

								Testing web controllers with MockMVC

								Testing data repositories with mocks

								Testing data repositories with embedded databases

								Adding Testcontainers to the application

								Testing data repositories with Testcontainers

								Testing security policies with Spring Security Test

								Summary

					

				

						Part 3: Releasing an Application with Spring Boot

						Chapter 6: Configuring an Application with Spring Boot
					
								Creating custom properties

								Creating profile-based property files

								Switching to YAML

								Setting properties with environment variables

								Ordering property overrides

								Summary

					

				

						Chapter 7: Releasing an Application with Spring Boot
					
								Creating an uber JAR

								Baking a Docker container
							
										Building the “right” type of container

							

						

								Releasing your application to Docker Hub

								Tweaking things in production
							
										Scaling with Spring Boot

							

						

								Summary

					

				

						Chapter 8: Going Native with Spring Boot
					
								What is GraalVM and why do we care?

								Retrofitting our application for GraalVM

								Running our native Spring Boot application inside GraalVM
							
										Why do we want GraalVM again?

							

						

								Baking a Docker container with GraalVM
							
										Spring Boot 3.0 versus Spring Boot 2.7 and Spring Native

										GraalVM and other libraries

							

						

								Summary

					

				

						Part 4: Scaling an Application with Spring Boot

						Chapter 9: Writing Reactive Web Controllers
					
								What is reactive and why do we care?
							
										Introduction to Reactive

										Reactive Stream details

							

						

								Creating a reactive Spring Boot application

								Serving data with a reactive GET method

								Consuming incoming data with a reactive POST method
							
										Scaling applications with Project Reactor

										Quick history on Java concurrent programming

							

						

								Serving a reactive template
							
										Creating a reactive web controller

										Crafting a Thymeleaf template

							

						

								Creating hypermedia reactively

								Summary

					

				

						Chapter 10: Working with Data Reactively
					
								Learning what it means to fetch data reactively

								Picking a reactive data store

								Creating a reactive data repository

								Trying out R2DBC
							
										Loading data with R2dbcEntityTemplate

										Returning data reactively to an API controller

										Reactively dealing with data in a template

							

						

								Summary

					

				

						Index
					
								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

						Index

			

		
	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Cover.png

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B18012_QR_Free_PDF.jpg

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

