

 [image: (missing alt)]

 Table of Contents

 WiX: A Developer's Guide to Windows Installer XML

 Credits

 About the Author

 About the Reviewer

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Errata

 Piracy

 Questions

 1. Getting Started

 Introducing Windows Installer XML

 What is WiX?

 Is WiX for you?

 Where can I get it?

 Votive

 A word about GUIDs

 Your first WiX project

 XML declaration and Wix element

 Product element

 Package element

 Media element

 Directories

 Components

 Files

 Features

 Start Menu shortcuts

 Putting it all together

 Adding a User Interface

 Viewing the MSI database

 Orca.exe

 Turning logging on during installation

 Other resources

 Summary

 2. Creating Files and Directories

 File element

 DirectoryRef element

 ComponentGroup element

 Fragment element

 Harvesting files with heat.exe

 Copying and moving files

 Copying files you install

 Copying existing files

 Moving existing files

 Installing special-case files

 Adding assembly files to the GAC

 Installing a TrueType font

 Creating an empty folder

 Setting file permissions

 Speeding up file installations

 Summary

 3. Putting Properties and AppSearch to Work

 Custom properties

 Declaring and setting properties

 Referencing properties

 Property visibility and scope

 Secure properties

 Property datatypes

 Predefined Windows Installer properties

 Implied properties

 Cited properties

 AppSearch

 DirectorySearch

 FileSearch

 ComponentSearch

 RegistrySearch

 IniFileSearch

 Summary

 4. Improving Control with Launch Conditions and Installed States

 Conditions

 Condition syntax

 Launch conditions

 Feature conditions

 Component conditions

 Action state

 Installed state

 Summary

 5. Understanding the Installation Sequence

 InstallUISequence

 UI standard actions

 AppSearch

 LaunchConditions

 ValidateProductID

 CostInitialize

 FileCost

 CostFinalize

 ExecuteAction

 InstallExecuteSequence

 Execute standard actions

 InstallValidate

 InstallInitialize

 ProcessComponents

 UnpublishFeatures

 RemoveRegistryValues

 RemoveShortcuts

 RemoveFiles

 InstallFiles

 CreateShortcuts

 WriteRegistryValues

 RegisterUser

 RegisterProduct

 PublishFeatures

 PublishProduct

 InstallFinalize

 Immediate vs. deferred

 Custom actions

 Set a Windows Installer Property

 Set the location of an Installed Directory

 Run embedded VBScript or JScript

 Call an external VBScript or JScript file

 Call a function from a dynamic-link library

 Trigger an executable

 Send an error that stops the installation

 Rollback custom actions

 Accessing properties in a deferred action

 Adding conditions to custom actions

 Deployment Tools Foundation

 Session object

 Getting and setting properties

 Logging

 Showing a MessageBox

 Accessing feature and component states

 Querying the MSI database

 Inserting rows into the MSI database

 Summary

 6. Adding a User Interface

 WiX standard dialog sets

 WixUI_Advanced

 WixUI_FeatureTree

 WixUI_InstallDir

 WixUI_Mondo

 Customizing a standard dialog set

 Creating your own dialogs

 ICE20 errors

 Adding dialog files

 Scheduling dialogs

 Dialog element

 Adding TextStyle elements

 Adding a tabbable control

 Adding a progress dialog

 Modal windows

 ICE20 revisited

 FilesInUse

 Error

 FatalError

 UserExit

 Exit

 Summary

 7. Using UI Controls

 Controls

 PushButton

 Text

 ScrollableText

 Line

 GroupBox

 Bitmap

 Icon

 Edit

 MaskedEdit

 PathEdit

 CheckBox

 RadioButtonGroup

 ComboBox

 ListBox

 ListView

 DirectoryList

 DirectoryCombo

 SelectionTree

 VolumeCostList

 VolumeSelectCombo

 Billboard

 ProgressBar

 Summary

 8. Tapping into Control Events

 Publish element

 Subscribe element

 Publish events

 AddLocal

 DoAction

 EndDialog

 NewDialog

 Publishing a property

 Subscribe events

 ScriptInProgress

 SelectionAction

 TimeRemaining

 Summary

 9. Working from the Command Line

 Candle.exe

 Command-line arguments (compiling)

 -arch

 -d

 -ext

 -fips

 -I

 -nologo

 -o

 -p

 -pedantic

 -sfdvital

 -ss

 -sw

 -trace

 -v

 -wx

 Response files

 .wixobj files

 Compile-time variables

 Environment variables

 System variables

 Custom variables

 Preprocessor extensions

 Conditional statements and iterations

 if...elseif...else

 ifdef

 ifndef

 Iterations

 Errors and warnings

 Light.exe

 Command-line arguments (linking)

 -ai

 -b

 -bf

 -binder

 -cultures

 -d

 -dut

 -ext

 -loc

 -nologo

 -notidy

 -o[ut]

 -pedantic

 -sadmin

 -sadv

 -sloc

 -sma

 -ss

 -sts

 -sui

 -sv

 -sw[N]

 -usf <output.xml>

 -v

 -wx[N]

 -xo

 Command-line arguments (binding)

 -bcgg

 -cc <path>

 -ct <N>

 -cub <file.cub>

 -dcl:level

 -eav

 -fv

 -ice<ICE>

 -pdbout <output.wixpdb>

 -reusecab

 -sa

 -sacl

 -sf

 -sh

 -sice:<ICE>

 -sl

 -spdb

 -sval

 Link-time variables

 Localization variables

 Binder variables

 Custom variables

 Building an installer without Visual Studio

 Summary

 10. Accessing the Windows Registry

 Reading from the Registry

 Writing to the Registry

 RegistryValue

 RegistryKey

 Setting NeverOverwrite

 Removing Registry values

 RemoveRegistryKey

 RemoveRegistryValue

 Copying Registry values

 Registry permissions

 Summary

 11. Controlling Windows Services

 Creating a simple Windows service

 Using sc.exe

 Using WiX to install a service

 Starting, stopping, and uninstalling a service

 Setting the service's user account

 Adding service dependencies

 Service recovery with Util:ServiceConfig

 Summary

 12. Localizing Your Installer

 Setting language and code page attributes

 Package element

 Product element

 WiX localization files

 The role of Light.exe

 Localizing error messages

 Localizing the EULA

 Creating a multi-language MSI

 Summary

 13. Upgrading and Patching

 Planning for updates

 Choosing an update type

 Per-user or per-machine

 Major upgrade

 Minor upgrade

 Authoring a patch file

 Building the patch on the command line

 Small update

 Summary

WiX: A Developer's Guide to Windows Installer XML

WiX: A Developer's Guide to Windows Installer XML

Copyright © 2010 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: October 2010
Production Reference: 1131010
Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.
ISBN 978-1-849513-72-2

www.packtpub.com

Cover Image by Asher Wishkerman (<a.wishkerman@mpic.de >)

Credits

Author

Nick Ramirez

Reviewer

Martin Oberhammer

Acquisition Editor

Eleanor Duffy

Development Editor

Dhiraj Chandiramani

Technical Editors

Vanjeet D'souza
Kavita Iyer
Harshit Shah

Indexer

Tejal Daruwale

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Jovita Pinto

Proofreader

Lynda Sliwoski

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

About the Author

Nick Ramirez is a software engineer working at Sophos in Columbus, Ohio. He previously worked with open source solutions like Linux and PHP before moving to C#, WiX, and other Windows technologies. As a member of the engineering team, he has helped to develop install code for the company's enterprise software.

I would like to thank especially my fiancée, Heidi, for her patience while I worked on this book. I'd also like to thank the Packt team for their hard work and guidance along the way. Another big thanks to Martin Oberhammer and Neil Sleightholm for their WiX expertise and help in filling in the gaps

About the Reviewer

Martin Oberhammer was born on December 25, 1975 in Italy. In 1995 he moved to Linz in Austria, where he studied computer science at the Johannes Kepler University and graduated in October 2002.
Martin worked at the Ars Electronica Center in Linz during his study. Together with artists, he created virtual realities for the CAVE. In May 2003 he started working for Utimaco Safeguard AG in Linz and developed advanced authentication techniques, like smart cards, for Microsoft Windows systems. He also made his first experiences in deploying software. The company transferred him to Foxboro, MA in USA in August 2008. Among other things he created setups using WiX technology. He moved to Columbus, OH in October 2009 and started working for Sophos Inc., where he continues creating setups.

Preface

Since Rob Mensching offered up the WiX toolset as the first open source project from Microsoft in 2004, it has been quietly gaining momentum and followers. Today, thousands use it to build Windows Installer packages from simple XML elements. Gone are the days when you would have had to pay for software to build an installer for you. Now, you can do it yourself for cheap.
Not only that, but WiX has matured into a fairly slick product that's sufficiently easy to use. Best of all, it has all of the bells and whistles you want including the functionality to add user interface wizards, Start Menu shortcuts, control Windows services, and read and write to the Registry.

WiX: A Developer's Guide to Windows Installer XML gives you the knowledge to start building sophisticated installers right away, even if you have no prior experience doing so. Each chapter gets straight to the point, giving you hands on experience, so you'll master the technology quickly.
What this book covers

Chapter 1, Getting Started, explains how after downloading and installing the WiX toolset, you'll start using it right away to create a simple installer. Then, you'll see how to add a basic user interface to it, install it with logging turned on, and view its internal database.

Chapter 2, Creating Files and Directories, gives you deeper understanding of how files are installed and what is the best way to organize them in your project. You'll then use the tool heat.exe to generate WiX markup. Last, you'll learn about copying and moving files, and installing special-case files.

Chapter 3, Putting Properties and AppSearch to Work, gets you introduced to Windows Installer properties as you create your own and use those that are built in. Later, you'll check the end user's computer for specific files, directories, Registry keys, and INI file settings using AppSearch.

Chapter 4, Improving Control with Launch Conditions and Installed States, allows you to leverage conditional statements to set prerequisites for running your installer and to exclude particular features or components from the install. You'll also discover how to check the action and installed state of your features and components.

Chapter 5, Understanding the Install Sequence, allows you to get a clear picture of how the whole installation process works as you examine the order and meaning of installer actions. You will then create custom actions and add them to this built-in sequence to extend the functionality. Then, you'll learn the basics of using the Deployment Tools Foundation library for writing custom action code in C#.

Chapter 6, Adding a User Interface, after giving you a quick introduction to the standard dialog wizards that come with the WiX toolset, allows you to start building your own from scratch. You'll learn all of the required elements to display dialogs and to link them together. You'll also see how to build dialogs for displaying errors and user exits.

Chapter 7, Using UI Controls, gives you hands on experience with each type of UI control including buttons, textboxes, and progress bars.

Chapter 8, Tapping into Control Events, breathes life into your UI controls by having them publish and subscribe to events.

Chapter 9, Working from the Command Line, compiles your code from the command line and then links and binds object files into an MSI. You'll learn to use preprocessor variables and conditional statements and how to create custom preprocessor extensions.

Chapter 10, Accessing the Windows Registry,allows you to read from the Windows Registry and add keys and values to it at install time. You'll also learn how to remove existing keys, copy values, and set permissions.

Chapter 11, Controlling Windows Services, installs Windows services and issues start, stop, and remove commands to them. You'll learn to set the service's user account, add service dependencies, and set failure recovery.

Chapter 12, Localizing Your Installer, creates localized installers for different languages and teaches how light.exe, the WiX linker, plays a role. You'll then learn how to make a single multi-language installer.

Chapter 13, Upgrading and Patching, allows you to learn how to plan for and implement a major upgrade of your product and how to make small updates using patch files.

What you need for this book

In order to both write and run the code demonstrated in this book, you will need the following:
	Visual Studio 2005 or newer (Standard edition or higher)
	The WiX toolset, which can be downloaded from http://wix.codeplex.com/

Who this book is for

If you are a developer and want to create installers for software targeting the Windows platform, then this book is for you. You'll be using a lot of XML so that you get accustomed to the basics of writing well-formed documents, using XML namespaces and the dos and don'ts of structuring elements and attributes. You should know your way around Visual Studio, at least enough to compile projects, add project references, and tweak project properties. No prior knowledge of Windows Installer or WiX is assumed.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "We can include other contexts through the use of the include directive."
A block of code is set as follows:
<Component Id="CMP_MyProgramEXE"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">
 <File Id="FILE_MyProgramEXE"
 Source="MyProgram.exe"
 Name="NewName.exe"
 KeyPath="yes" />
</Component>

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
File Id="FILE_MyProgramEXE"
 Source="$(var.FilesPath)MyProgram.exe"
 KeyPath="yes" />

Any command-line input or output is written as follows:

Light.exe -loc en-us.wxl -loc en-us2.wxl -loc de-de.wxl
 -cultures:en-us "*.wixobj" -out myInstaller.msi

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Use the Add Reference option in your Solution Explorer".
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a book that you need and would like to see us publish, please send us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail <suggest@packtpub.com>.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Tip

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Getting Started

Windows Installer XML (WiX) is a free XML markup from Microsoft that is used to author installation packages for Windows-based software. The underlying technology is Windows Installer, which is the established standard for installing desktop-based applications to any Windows operating system. It is used by countless companies around the world. Microsoft uses it to deploy its own software including Microsoft Office and Visual Studio. In fact, Microsoft uses WiX for these products.
Windows Installer has many features, but how do you leverage them? How do you even know what they are? This book will help you by making you more familiar with the wide range of capabilities that are available. WiX makes many of the arcane and difficult to understand aspects of Windows Installer technology simple to use. This book will teach you the WiX syntax so that you can create a professional-grade installer that's right for you.
In this chapter, we will cover the following:
	Getting WiX and using it with Visual Studio
	Creating your first WiX installer
	Examining an installer database with Orca
	Logging an installation process
	Adding a simple user interface

Introducing Windows Installer XML

In this section, we'll dive right in and talk about what WiX is, where to get it, and why you'd want to use it when building an installation package for your software. We'll follow up with a quick description of the WiX tools and the new project types made available in Visual Studio.
What is WiX?

Although it's the standard technology and has been around for years, creating a Windows Installer, or MSI package, has always been a challenging task. The package is actually a relational database that describes how the various components of an application should be unpacked and copied to the end user's computer.
In the past you had two options:
	You could try to author the database yourself—a path that requires a thorough knowledge of the Windows Installer API.
	You could buy a commercial product like InstallShield to do it for you. These software products will take care of the details, but you'll forever be dependent on them. There will always be parts of the process that are hidden from you.

WiX is relatively new to the scene, offering a route that exists somewhere in the middle. Abstracting away the low-level function calls while still allowing you to write much of the code by hand, WiX is an architecture for building an installer in ways that mere mortals can grasp. Best of all, it's free. As an open source product, it has quickly garnered a wide user base and a dedicated community of developers. Much of this has to do not only with its price tag but also with its simplicity. It can be authored in a simple text editor (such as Notepad) and compiled with the tools provided by WiX. As it's a flavor of XML, it can be read by humans, edited without expensive software, and lends itself to being stored in source control where it can be easily merged and compared.
The examples in this first chapter will show how to create a simple installer with WiX using Visual Studio. However, later chapters will show how you can build your project from the command line using the compiler and linker from the WiX toolset. The WiX source code is available for download, so you can be assured that nothing about the process will be hidden if you truly need to know.

Is WiX for you?

To answer the question "Is WiX for you?" we have to answer "What can WiX do for you?" It's fairly simple to copy files to an end user's computer. If that's all your product needs, then the Windows Installer technology might be overkill. However, there are many benefits to creating an installable package for your customers, some of which might be overlooked. Following is a list of features that you get when you author a Windows Installer package with WiX:
	All of your executable files can be packaged into one convenient bundle, simplifying deployment.
	Your software is automatically registered with Add/Remove Programs.
	Windows takes care of uninstalling all of the components that make up your product when the user chooses to do so.
	If files for your software are accidently removed, they can be replaced by right-clicking on the MSI file and selecting Repair.
	You can create different versions of your installer and detect which version has been installed.
	You can create patches to update only specific areas of your application.
	If something goes wrong while installing your software, the end user's computer can be rolled back to a previous state.
	You can create Wizard-style dialogs to guide the user through the installation.

Many people today simply expect that your installer will have these features. Not having them could be seen as a real deficit. For example, what is a user supposed to do when they want to uninstall your product but can't find it in the Add/Remove Programs list and there isn't an uninstall shortcut? They're likely to remove files haphazardly and wonder why you didn't make things easy for them.
Maybe you've already figured that Windows Installer is the way to go, but why WiX? One of my favorite reasons is that it gives you greater control over how things work. You get a much finer level of control over the development process. Commercial software that does this for you also produces an MSI file, but hides the details about how it was done. It's analogous to crafting a web site. You get much more control when you write the HTML yourself as opposed to using WYSIWYG software.
Even though WiX gives you more control, it doesn't make things overly complex. You'll find that making a simple installer is very straightforward. For more complex projects, the parts can be split up into multiple XML source files to make it easier to work with. Going further, if your product is made up of multiple products that will be installed together as a suite, you can compile the different chunks into libraries that can be merged together into a single MSI. This allows each team to isolate and manage their part of the installation package.
WiX is a stable technology, having been first released to the public in 2004, so you don't have to worry about it disappearing. It's also had a steady progression of version releases. The most current version is updated for Windows Installer 4.5 and the next release will include changes for Windows Installer 5.0, which is the version that comes preinstalled with Windows 7. These are just some of the reasons why you might choose to use WiX.

Where can I get it?

You can download WiX from the Codeplex site, http://wix.codeplex.com/, which has both stable releases and source code. The current release is version 3.0. Once you've downloaded the WiX installer package, double-click it to install it to your local hard drive.
[image: Where can I get it?]
This installs all of the necessary files needed to build WiX projects. You'll also get the WiX SDK documentation and the settings for Visual Studio IntelliSense, highlighting and project templates. Version 3 supports Visual Studio 2005 and Visual Studio 2008, Standard edition or higher.
WiX comes with the following tools:
	
Tool

	
What it does

	
Candle.exe

	
Compiles WiX source files (.wxs) into intermediate object files (.wixobj).

	
Light.exe

	
Links and binds .wixobj files to create final .msi file. Also creates cabinet files and embeds streams in MSI database.

	
Lit.exe

	
Creates WiX libraries (.wixlib) that can be linked together by Light.

	
Dark.exe

	
Decompiles an MSI file into WiX code.

	
Heat.exe

	
Creates a WiX source file that specifies components from various inputs.

	
Melt.exe

	
Converts a "merge module" (.msm) into a component group in a WiX source file.

	
Torch.exe

	
Generates a transform file used to create a software patch.

	
Smoke.exe

	
Runs validation checks on an MSI or MSM file.

	
Pyro.exe

	
Creates an patch file (.msp) from .wixmsp and .wixmst files.

	
WixCop.exe

	
Converts version 2 WiX files to version 3.

In order to use some of the functionality in WiX, you may need to download a more recent version of Windows Installer. You can check your current version by viewing the help file for msiexec.exe, which is the Windows Installer service. Go to your Start Menu and select Run, type cmd and then type msiexec /? at the prompt. This should bring up a window like the following:
[image: Where can I get it?]
If you'd like to install a newer version of Windows Installer, you can get one from the Microsoft Download Center website. Go to:

http://www.microsoft.com/downloads/en/default.aspx

Search for Windows Installer. The current version for Windows XP, Vista, Server 2003, and Server 2008 is 4.5. Windows 7 and Windows Server 2008 R2 can support version 5.0. Each new version is backwards compatible and includes the features from earlier editions.

Votive

The WiX toolset provides files that update Visual Studio to provide new WiX IntelliSense, syntax highlighting, and project templates. Together these features, which are installed for you along with the other WiX tools, are called Votive. You must have Visual Studio 2005 or 2008 (Standard edition or higher). Votive won't work on the Express versions. If you're using Visual Studio 2005, you may need to install an additional component called ProjectAggregator2. Refer to the WiX site for more information:

http://wix.sourceforge.net/votive.html

After you've installed WiX, you should see a new category of project types in Visual Studio, labeled under the title WiX. To test it out, open Visual Studio and go to File | New | Project. Select the category WiX.
[image: Votive]
There are six new project templates:
	WiX Project: Creates a Windows Installer package from one or more WiX source files
	WiX Library Project: Creates a .wixlib library
	C# Custom Action Project: Creates a .NET custom action in C#
	WiX Merge Module Project: Creates a merge module
	C++ Custom Action Project: Creates an unmanaged C++ custom action
	VB Custom Action Project: Creates a VB.NET custom action

Using these templates is certainly easier than creating them on your own with a text editor. To start creating your own MSI installer, select the template WiX Project. This will create a new .wxs (WiX source file) for you to add XML markup to. Once we've added the necessary markup, you'll be able to build the solution by selecting Build Solution from the Build menu or by right-clicking on the project in the Solution Explorer and selecting Build. Visual Studio will take care of calling candle.exe and light.exe to compile and link your project files.
If you right-click on your WiX project in the Solution Explorer and select Properties, you'll see several screens where you can tweak the build process. One thing you'll want to do is set the amount of information that you'd like to see when compiling and linking the project and how non-critical messages are treated. Refer to the following screenshot:
[image: Votive]
Here, we're selecting the level of messages that we'd like to see. To see all warnings and messages, set the Warning Level to Pedantic. You can also check the Verbose output checkbox to get even more information. Checking Treat warnings as errors will cause warning messages that normally would not stop the build to be treated as fatal errors.
You can also choose to suppress certain warnings. You'll need to know the specific warning message number, though. If you get a build-time warning, you'll see the warning message, but not the number. One way to get it is to open the WiX source code (available at http://wix.codeplex.com/SourceControl/list/changesets) and view the messages.xml
 file in the Wix solution. Search the file for the warning and from there you'll see its number. Note that you can suppress warnings but not errors.
Another feature of WiX is its ability to run validity checks on the MSI package. Windows Installer uses a suite of tests called Internal Consistency Evaluators (ICEs) for this. These checks ensure that the database as a whole makes sense and that the keys on each table join correctly. Through Votive, you can choose to suppress specific ICE tests. Use the Tools Setting page of the project's properties as shown in the following screenshot:
[image: Votive]
In this example, ICE test 102 is being suppressed. You can specify more than one test by separating them with semicolons. To find a full list of ICE tests, go to MSDN's ICE Reference web page at:

http://msdn.microsoft.com/en-us/library/aa369206%28VS.85%29.aspx

The Tool Settings screen also gives you the ability to add compiler or linker command-line flags. Simply add them to the text boxes at the bottom of the screen. We will discuss command-line arguments for Candle and Light later in the book.

A word about GUIDs

In various places throughout WiX, you'll be asked to provide a GUID, which is a Globally Unique Identifier. This is so that when your product is installed on the end user's computer, references to it can be stored in the Windows Registry without the chance of having name conflicts. By using GUIDs, Windows Installer can be sure that every software application, and even every component of that software, has a unique identity on the system.
Each GUID that you create on your computer is guaranteed to be different from a GUID that someone else would make. Using this, even if two pieces of software, both called "Amazing Software", are installed on the same computer, Windows will be able to tell them apart.
Visual Studio 2008 provides a way to create a GUID. Go to Tools | Create GUID and copy a new GUID using the Registry Format. WiX can accept a GUID with or without curly brackets around it as 01234567-89AB-CDEF-0123-456789ABCDEF or {01234567-89AB-CDEF-0123-456789ABCDEF}.
Be sure to only use uppercase letters, though. In this book, I'll display real GUIDs, but you should not reuse them as then your components will not be guaranteed to be unique.

Your first WiX project

To get started, download the WiX Toolset. It can be found at:

http://wix.codeplex.com/

Once you've downloaded and installed it, open Visual Studio and select New Project | WiX | WiX Project. This will create a solution with a single .wxs (WiX source) file. Visual Studio will usually call this file Product.wxs, but the name could be anything as long as it ends with .wxs.
Even the most minimal installer must have the following XML elements:
	an XML declaration
	a Wix element that serves as the root element in your XML document
	a Product element that is a child to the Wix element, but all other elements are children to it
	a Package element
	a Media element
	at least one Directory element with at least one child Component element
	a Feature element

XML declaration and Wix element

Every WiX project begins with an XML declaration and a Wix element.
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

</Wix>

The xmlns, or XML namespace, just brings the core WiX elements into the local scope of your document. At the bottom of the file, you'll have to close the Wix element, of course. Otherwise, it's not valid XML. The Wix element is the root element of the document. It comes first and last. All other elements will be nested inside of it.
At this point, you could also add the RequiredVersion attribute to the Wix element. Given a WiX toolset version number, such as "3.0.5419.0", it won't let anyone compile the .wxs file unless they have that version or higher installed. If, on the other hand, you're the only one compiling your project, then it's no big deal.

Product element

Next, add a Product element.
<Wix ... >
 <Product Id="3E786878-358D-43AD-82D1-1435ADF9F6EA"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">
 </Product>
</Wix>

This is where you define the characteristics of the software you're installing: its name, language, version, and manufacturer. The end user will be able to see these properties by right-clicking on your MSI file, selecting Properties and viewing the Summary tab. Most of the time, these values will stay the same from one build of your project to the next. The exception is when you want to increment the software's version or indicate that it's an upgrade of a previous installation. In that case you need only change the Version, and sometimes Id, attribute. We'll talk more about upgrading previous installations later on in the book.
The Product element's Id attribute represents the so-called ProductCode of your software. It's always a unique number—a GUID—that Windows will use to uniquely identify your software (and tell if it's already installed on the computer). You can either hardcode it, like here, or just put an asterisk. That way, WiX will pick a new GUID for you each time you compile the project.
<Wix ... >
 <Product Id="*"
 Name="Awesome Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="Awesome Company"
 UpgradeCode="B414C827-8D81-4B4A-B3B6-338C06DE3A11">
 </Product>
</Wix>

The Name attribute defines the name of the software. In addition to being displayed in the MSI file's Properties page, it will also be shown in various places throughout the user interface of your installer—that is, once you've added a user interface, which we'll touch on at the end of this chapter.
The Language attribute is used to display error messages and progress information in the specified language to the user. It's a decimal language ID (LCID). A full list can be found on Microsoft's LCID page at:

http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx

The previous example used "1033", which stands for "English-United States". If your installer uses characters not found in the ASCII character set, you'll also need to add a Codepage attribute set to the code page that contains those characters. Don't worry too much about this now. We'll cover languages and code pages later in the book when we talk about localization.
The Version attribute is used to set the version number of your software. It can accept up to four digits separated by periods, although the last digit is ignored by Windows Installer during operations such as detecting previously installed versions of your application. Typically, when you make a big enough change to the existing software, you'll increment the number. Companies often use the [MajorVersion].[MinorVersion].[Build].[Revision] format, but you're free to use any numbering system you like.
The Manufacturer attribute tells the user who this software is from and usually contains the name of your company. This is another bit of information that's available via the MSI file's Properties.
The final attribute to consider is UpgradeCode. This should be set to a GUID and will identify your product across version releases. Therefore, it should stay the same even when the Product ID and Version change. Windows will use this number in its efforts to keep track of all the software installed on the machine. WiX has the ability to search for previously installed versions of not only your own software but also those created by others and it uses UpgradeCode to do it. Although, technically, this is an optional attribute, you should always supply it.

Package element

Once you've defined your Product element, the next step is to nest a Package element inside. An example is shown:
<Wix ... >
 <Product ... >
 <Package Compressed="yes"
 InstallerVersion="301"
 Manufacturer="Awesome Company"
 Description="Installs Awesome Software"
 Keywords="Practice,Installer,MSI"
 Comments="(c) 2010 Awesome Company" />
 </Product>
</Wix>

Of the attributes shown in this example, only Compressed is really required. By setting Compressed to yes, you're telling the installer to package all of the MSI's resources into CAB files. Later, you'll define these CAB files with Media elements.
Technically, an Id attribute is also required, but by omitting it, you're letting WiX create one for you. You'd have to create a new one anyway since every time you change your software or the installer in any way, the "package" (the MSI file) has changed and so the ID must change. This really, in itself, emphasizes what the Package element is. Unlike the Product element, which describes the software that's in the installer, the Package element describes the installer itself. Once you've built it, you'll be able to right-click on the MSI and select Properties to see the attributes you've set here.
The InstallerVersion attribute can be set to require a specific version of msiexec.exe (the Windows Installer service that installs the MSI when you double-click on it) to be installed on the end user's computer. If they have an older version, Windows Installer will display a MessageBox telling them that they need to upgrade. It will also prevent you from compiling the project unless you also have this version installed on your own computer. The value can be found by multiplying the major version by 100 and adding the minor version. So, for version 4.5 of msiexec.exe, you'd set InstallerVersion to "405".
The rest of the attributes shown provide additional information for the MSI file's Properties window. Manufacturer is displayed in the Author text field, Description is shown as Subject, Keywords show up as Keywords, and Comments show as Comments. It's usually a good idea to provide at least some of this information, if just to help you distinguish one MSI package from another.

Media element

The files that you intend to install are bundled up into CAB files. You have the option of splitting your package into several parts or keeping it all in one. For each Media element that you add to your WiX markup, a new CAB file will be created. Generally, you should limit the number of files you put into a single CAB file to 64 K or less and no single file should be larger than 2 GB. You can find more information about the CAB file format at:

http://msdn.microsoft.com/en-us/library/ee177956(v=EXCHG.80).aspx

Media elements come nested inside the Product element alongside the Package element.
<Wix ... >
 <Product ... >
 <Package ... />
 <Media Id="1"
 Cabinet="media1.cab"
 EmbedCab="yes" />
 </Product>
</Wix>

Each Media element gets a unique Id attribute to distinguish it in the MSI Media table. It must be a positive integer. If the files that you add to your installation package don't explicitly state which CAB file they wish to be packaged into, they'll default to using a Media element with an Id of 1. Therefore, your first Media element should always use an Id of 1.
The Cabinet attribute sets the name of the CAB file. You won't actually see this unless you set EmbedCab to no, in which case the file won't be bundled inside the MSI package. This is atypical, but might be done to split the installation files onto several disks. Even this is becoming rare in the age of 4 GB DVDs and Internet downloads. Setting EmbedCab to no will produce a visible CAB file that must be provided alongside the MSI file during an installation.
If you do choose to split the installation up into several physical disks (or even virtual ISO images), you'll want to add the DiskPrompt and VolumeLabel attributes. In the following example, I've added two Media elements instead of one. I've also added a Property element above them, which defines a variable called DiskPrompt with a value of Amazing Software - [1].
<Property Id="DiskPrompt"
 Value="Amazing Software - [1]" />
<Media Id="1"
 Cabinet="media1.cab"
 EmbedCab="no"
 DiskPrompt="Disk 1"
 VolumeLabel="Disk1" />

<Media Id="2"
 Cabinet="media2.cab"
 EmbedCab="no"
 DiskPrompt="Disk 2"
 VolumeLabel="Disk2" />

The Property element will be used as the text in the MessageBox the end user sees prompting them to insert the next disk. The text in the DiskPrompt attribute is combined with the text in the property's value, switched with [1], to change the message for each subsequent disk. Make sure you give this property an Id of DiskPrompt.
[image: Media element]
So that Windows will know when the correct disk is inserted, the VolumeLabel attribute must match the "Volume Label" of the actual disk, which you'll set with whichever CD or DVD burning program you use. Once you've built your project, include the MSI file and first CAB file on the first disk. The second CAB file should then be written to a second disk.
Although we haven't described the File element yet, it's used to add a file to the installation package. To include one in a specific CAB file, add the DiskId attribute, set to the Id of the corresponding Media element. The following example includes a text file called myFile.txt in the media2.cab file:
<File Id="fileTXT"
 Name="myFile.txt"
 Source="myFile.txt"
 KeyPath="yes"
 DiskId="2" />

We'll discuss the File element in more detail later on in the chapter. If you're only using one Media element, you won't need to specify the DiskId attribute on your File elements.

Directories

So, now we've defined the identity of the product, set up its package properties, and told the installer to create a CAB file to package up the things we'll eventually install. Then, how do you decide where your product will get installed to on the end user's computer? How do we set the default installation path, such as some folder under Program Files?
When you want to install to C:\Program Files, you can use a sort of shorthand. There are several directory names provided by Windows Installer that will be translated to their true paths at install time. For example, ProgramFilesFolder usually translates to C:\Program Files. Following is a list of these built-in directory properties:
	
Directory property

	
Actual path

	

AdminToolsFolder

	
Full path to directory containing administrative tools

	

AppDataFolder

	
Full path to Roaming folder for current user

	

CommonAppDataFolder

	
Full path to application data for all users

	

CommonFiles64Folder

	
Full path to 64-bit Common Files folder

	

CommonFilesFolder

	
Full path to Common Files folder for current user

	

DesktopFolder

	
Full path to Desktop folder

	

FavoritesFolder

	
Full path to Favorites folder for current user

	

FontsFolder

	
Full path to Fonts folder

	

LocalAppDataFolder

	
Full path to folder containing local (non-roaming) applications

	

MyPicturesFolder

	
Full path to Pictures folder

	

NetHoodFolder

	
Full path to NetHood folder

	

PersonalFolder

	
Full path to Documents folder for current user

	

PrintHoodFolder

	
Full path to PrintHood folder

	

ProgramFiles64Folder

	
Full path to 64-bit Program Files folder

	

ProgramFilesFolder

	
Full path to 32-bit Program Files folder

	

ProgramMenuFolder

	
Full path to Program Menu folder

	

RecentFolder

	
Full path to Recent folder

	

SendToFolder

	
Full path to SendTo folder for current user

	

StartMenuFolder

	
Full path to Start Menu folder

	

StartupFolder

	
Full path to Startup folder

	

System16Folder

	
Full path to 16-bit system DLLs folder

	

System64Folder

	
Full path to System64 folder

	

SystemFolder

	
Full path to System folder for current user

	

TempFolder

	
Full path to Temp folder

	

TemplateFolder

	
Full path to Template folder for current user

	

WindowsFolder

	
Full path to Windows folder

The easiest way to add your own directories is to nest them inside one of the predefined ones. For example, to create a new directory called Install Practice inside the Program Files folder, you could add it as a child to ProgramFilesFolder. To define your directory structure in WiX, use Directory elements:
<Wix ... >
 <Product ... >
 <Package ... />
 <Media ... />

 <Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice" />
 </Directory>
 </Directory>

 </Product>
</Wix>

You should place your Directory elements inside of the top-level Product element. Other than that, there aren't any restrictions about exactly where inside Product they have to go. One thing to know is that you must start your Directory elements hierarchy with a Directory with an Id of TARGETDIR and a Name of SourceDir. This sets up the "root" directory of your installation. Therefore, be sure to always create it first and nest all other Directory elements inside.
By default, Windows Installer sets TARGETDIR to the local hard drive with the most free space—in most cases, the C: drive. However, you can set TARGETDIR to another drive letter during installation. You might, for example, set it with a VolumeSelectCombo user interface control. We'll talk about setting properties and UI controls later in the book.
A Directory element always has an Id attribute that will serve as a primary key on the Directory table. If you're using a predefined name, such as ProgramFilesFolder, use that for Id. Otherwise, you can make one up yourself. The previous example creates a new directory called Install Practice inside the Program Files folder. The Id, MyProgramDir, is an arbitrary value.
When creating your own directory, you must provide the Name attribute. This sets the name of the new folder. Without it, the directory won't be created and any files that were meant to go inside it will instead be placed in the parent directory—in this case, Program Files. Note that you do not need to provide a Name attribute for predefined directories.
You can nest more subdirectories inside your folders by adding more Directory elements. Here is an example:
<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice">
 <Directory Id="MyFirstSubDir"
 Name="Subdirectory 1">
 <Directory Id="MySecondSubDir"
 Name="Subdirectory 2" />
 </Directory>
 </Directory>
 </Directory>
</Directory>

Here, a subdirectory called Subdirectory 1 is placed inside the Install Practice folder. A second subdirectory, called Subdirectory 2, is then placed inside Subdirectory 1, giving us two levels of nested directories under Install Practice.
To put something inside a directory, use a DirectoryRef element. DirectoryRef takes only a single attribute: Id. This is your reference to the Id set on the corresponding Directory element. DirectoryRef elements, like Directory elements, are placed as children to the top-level Product element.
Using a DirectoryRef adds a layer of abstraction between where you define your directory structure and the files that will go into those directories. The following example adds a file (via the Component element, which we'll cover next) to the MyProgramDir directory.
<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice" />
 </Directory>
</Directory>

<DirectoryRef Id="MyProgramDir">
 <Component ... />
</DirectoryRef>

By using a DirectoryRef, we're able to separate the markup that adds files to directories from the markup that defines the directories. You can also add a component directly inside a Directory element:
<Directory Id="TARGETDIR"
 Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="MyProgramDir"
 Name="Install Practice">
 <Component ... />
 </Directory>
 </Directory>
</Directory>

Placing components directly inside Directory elements is more straightforward, but it couples your directory structure more tightly to the files that you're installing. By using DirectoryRef elements, you're able to make the two pieces more modular and independent of one another.

Components

Once you've mapped out the directories that you want to target or create during the installation, the next step is to copy files into them. Windows Installer expects every file to be wrapped up in a component before it's installed. It doesn't matter what type of file it is either. Each gets its own Component element.
Components, which always have a unique GUID, allow Windows to track every file that gets installed on the end user's computer. During an installation, this information is stored away in the Registry. This lets Windows find every piece of your product during an uninstallation so that your software can be completely removed. It also uses it to replace missing files during a "repair", which you can trigger by right-clicking on an MSI file and selecting Repair. You won't get an error by placing more than one file into a single component, but it is considered bad practice.
To really explain components, we'll need something to install. So, let's create a simple text file and add it to our project's directory. We'll call it InstallMe.txt. For our purposes, it doesn't really matter what's in the text file. We just need something for testing.
[image: Components]
The Component element is used to uniquely identify each file that you plan to install. Each Component element gets a unique GUID via its Guid attribute. To create a GUID in Visual Studio, go to Tools | Create GUID and copy a new GUID using the Registry format. Be sure to make all of the letters uppercase. The Id attribute is up to you. It will serve as the primary key for the component in the MSI database, so each one must also be unique.
<Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">

 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
</Component>

Here, I've created a new component called CMP_InstallMeTXT. I've started it with CMP_ to label it as a component. Although it isn't required, it helps to prefix components in this way so that it's always clear what sort of element it refers to.
The File element inside the component references the file that's going to be installed. Here, it's the InstallMe.txt file located in the current directory (which is the same directory as your WiX source file). You can specify a full or absolute path with the Source attribute.
You should always mark a File element as the KeyPath file and you should only ever include one File inside a Component. A KeyPath file will be replaced if it's missing when the user triggers a repair (Windows Installer documentation calls this resiliency). Placing more than one File element inside a single Component is, at least in most cases, not recommended. This is because only one file can be the KeyPath, so the other files wouldn't be covered by a repair. You would really only ever place more than one File in a Component if you didn't want the extra files to be resilient.
Once you've created your File and Component elements, you'll need to tell Windows Installer where they should be installed to. To do that, place them inside a DirectoryRef element that references one of your Directory elements—as shown in the following snippet:
<DirectoryRef Id="MyProgramDir">
 <Component Id="CMP_InstallMeTXT"
 Guid="E8A58B7B-F031-4548-9BDD-7A6796C8460D">

 <File Id="FILE_InstallMeTXT"
 Source="InstallMe.txt"
 KeyPath="yes" />
 </Component>
</DirectoryRef>

To add more files, simply create more Component and File elements. Of course, they don't all have to be installed to the same place. You might install some to the MyProgramDir folder that we're creating and others to a different folder. You always have to create a Directory element before you can place components in that directory. For example, you can't use the AppDataFolder property to place files in the Application Data directory until you've first added a Directory element for it.

OEBPS/graphics/3722_01_04.jpg
e
pute

Toksatogs

Contipratons (s o) | patorns
&=
7] Define Debug'preprocessor varisble
e —
e
e —
e
- ——
e
-
S =
‘Suppres spechic warrings: =5]
Tt wntaoea o Er— 0000
s
-
ot e —

01 o et tampary s

0] Sttt v s

OEBPS/graphics/3722_01_05.jpg
P —
o

s
—

] Suppress ICE vakdstion

=
BT e —
i e

i
~ Compler:

OEBPS/graphics/3722_01_03.jpg
Hew P 2Ix

o — ferremetss 936

= vsice ol studo sl templtes
[
iy Swerom G wosierom
Somtoors Eoypome e Comomctn ot
w o s o scinerone 4 ot cnrrom
o
frowrel s Tempiaes
by
43 [P—
Vet
« vt
& Chrboma s
& oo
R i Wb s e S |
Hone: [Wosroeat 1
G| Gl sty Dot e 20| (o)

Stontine; [Wopoee]

OEBPS/graphics/3722_01_06.jpg
1

3) Plsoinsat the dls Anasg Softar - D2
& ?

OEBPS/cover/cover.jpg
WiX: A Developer’s Guide
to Windows Installer XML

Windows software

Nick Ramirez PA 1 open sourcet?

OEBPS/graphics/3722_01_01.jpg
1% Windows Installer XML Toolset 3.0 Setup

Please read the Windows Installer XML Toolset 3.0 License
Agreement

[Common Public License Version 1.0

[THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF
ITHIS COMMON PUBLIC LICENSE (*AGREEMENT"). ANY USE,
IREPRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
IRECIFIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

accept the terms n the License Agreement

ClickInstall to install the product with defalt options for alusers, Click Advanced to
change installation options.

] (et) mwa] (o

OEBPS/graphics/3722_01_02.jpg
Windows Installer, X

Windaws @ Instaler. V 4.5,6001.22153

msiewec /Opton <Requied Parameter> [Dptional Paremeter]

Install Options
package | /b cProductmsi
Installsor configutes a product
/a Productmsp e
‘Admirisative install - Instal 2 product on the netw
Jicims <Productmsi> [<Transfom List] /g <Langusge ID
Advettises a product - m o al users, uto curtent us
<urinstal | /4> <Product msi | ProduciCods>
Urinstal the pradhict
Display Options

It

GQuiet mode, no user nteraction
Jpassive

Unisttended mode - progress bar only
Zalolbit]

Sels userirterace level

n-Nalll

b-Basio Ul

- Reduced Ul

OEBPS/graphics/3722_01_07.jpg
Other Places

© Awesomesoture
© My Docmerts

© shaed Dot
 y Conputr
Q y nevorkces

Fis P

DateModfed:Sourdy, ach
27,2010, 1225 P

(kS

e
Tet Dot
i

R T fhtiag
=%

