

 [image: Mastering React Test-Driven Development]

Mastering React Test-Driven Development

Build rock-solid, well-tested web apps with React,

Redux and GraphQL

Daniel Irvine

BIRMINGHAM - MUMBAI

 Mastering React Test-Driven Development

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amarabha Banerjee

Acquisition Editor: Trusha Shriyan

Content Development Editor: Keagan Carneiro

Technical Editor: Sachin Sunilkumar

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Alishon Mendonsa

Production Coordinator: Jayalaxmi Raja

First published: May 2019

Production reference: 1020519

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-341-7

www.packtpub.com

To Nige, my first mentor, who taught me the importance of slowing down.

– Daniel Irvine

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

Daniel Irvine is a software consultant based in London. He is a member of the European software craft community and works with a variety of languages including C#, Clojure, JavaScript, and Ruby. He’s a mentor and coach for junior developers and runs TDD and XP workshops and courses. When he’s not working, he spends time cooking and practicing yoga. He co-founded and runs the Queer Code London meetup.

This book would not be what it is without the input of my technical reviewer, Raimo Radczewski, who is also the author of the expect-redux package that is used in this book. I met Raimo a few years ago through the European software craft community. We bonded at a SoCraTes conference and found that we shared many of the same driving forces. Through many conversations, I learned to respect his thoughtfulness, kindness, and, of course, his deep knowledge of JavaScript and the React ecosystem. So, when I first took on this project, I immediately asked Raimo to come on board. Thankfully, he said yes. In the following eight months, he had a difficult job of reading though many drafts of—shall we say—variable quality. Those who have worked with me know that I can be lazy, careless, brazen, and inconsistent. Well, Raimo has seen it all and more, so firstly, I must thank him for continuing with the project in spite of the early drafts. I must also thank him for teaching me about many of JavaScript’s nuances, of which I simply wasn’t aware. He also guided me back toward idiomatic React code, because until I wrote this book I had really been writing JavaScript “out in the wilderness,” with my own style. He brought me back in from the cold. He suggested some simplifications to my implementations; for example, the undo/redo reducer in Section 3, which would have been a great deal more complicated without his critical eye. I blamed my terrible code on burn-out, but actually, Raimo is a fantastic programmer and I look forward to the next occasion that we get to work together.

My editor, Keagan Carneiro, has been constantly positive and supportive, not once ever judging me for missing my self-imposed deadlines, which toward the end I missed consistently. We got through it in the end. Of all the wonderful things he did for me, perhaps the most powerful was the push to embrace hooks. When I first informed him in November 2018 that the React team had announced this weird thing called hooks that looked horrendous and that I couldn’t ever imagine taking off, but that we might have to consider doing a chapter on, he turned around and suggested that I rewrite the entire text entirely to use hooks. Bearing in mind we were halfway through at this point, it was a pretty big ask. Of course, I knew he was right and I trusted his assessment, so I had to go through the five stages of grief of denial, anger, bargaining, depression, and acceptance in super-quick time, before getting on with it. (I believe Raimo is still hovering somewhere around the bargaining stage.) In the end, we were only delayed by a month, so I have to thank Keagan for ensuring that the book wasn’t out of date before it was even published.

Sachin Sunilkumar, my technical editor, was wonderfully patient with me as I was reworking code snippets right until the last moment. He went on a journey of discovery with me as we built and tested against alpha releases of React. That was fun and stressful in equal amounts!

There are a number of other friends who stepped in at the last moment to review content when I was rushing with the final draft. Their assistance was invaluable. The text is much better for their efforts. Charlotte Payne, Dan Pelensky, Isidro López, Makis Otman, Sam Szreter, Zach Shaw: thank you. I hope you enjoy seeing your suggested improvements in print.

To the development team at Idean—in particular, Brendan Murphy, Lucy Monie Hall, and Zach Shaw—thank you for listening to me bang on about “my book” at least once a week.

I cannot finish without thanking my partner, Phillipe, who has suffered as I embarked on this project, my first book. Staying on track while still having a day job was a mammoth effort for me. It really took it out of me. Phillipe put up with me as I was tired, distracted, creatively drained, emotionally distraught, unavailable, and—toward the end—burned out, monosyllabic, and not much fun. He supported me through the project from start to finish. Thank you.

 About the reviewer

Raimo Radczewski is an IT consultant from Berlin, Germany. His journey through the world of software engineering has taught him not just quite a few languages and paradigms, but also how to build and lead engineering teams. He's an advocate for test-driven development and maintains testing tools for the React ecosystem. He organizes SoCraTes Day Berlin and the Global Day Of Coderetreat, two grassroots communities for IT workers who are curious about software crafting and eXtreme Programming. His current focus is founding a tech cooperative to support clients in building a professional and mindful engineering culture. He tweets under @rradczewski.

Thank you, Daniel, for giving me the opportunity to help create this most excellent introduction to TDD in React. It will surely land on the bookshelves of many of my clients. Thank you, Andreas and Jan, for being the first people to show me Test-Driven-Development and for introducing me to the communities that I continue to learn so much from.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Mastering React Test-Driven Development

	
 Dedication

	
 About Packt

 	
 Why subscribe?

	
 Packt.com

	
 Contributors

 	
 About the author

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Preface

 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book

 	
 Keeping up with the book's Git history

 	
 Getting started before Chapter 1

	
 Working with section tags

	
 Solving the exercises

	
 Debugging when things go wrong

	
 Download the example code files

	
 Conventions used

 	
 Understanding code snippets

	
 JavaScript syntax

 	
 Prettier

	
 Arrow functions

	
 Object and array destructuring

	
 Directory structure

	
 Get in touch

 	
 Reviews

	
 Section 1: First Principles of TDD

	
 First Steps with Test-Driven Development

 	
 Technical requirements

	
 Creating a new React project from scratch

 	
 Installing NPM

	
 Creating a new Jest project

 	
 Commit early and often

	
 Bringing in React and Babel

	
 Displaying data with your first test

 	
 Writing a failing test

 	
 Writing your first expectation

	
 Rendering React from a test

	
 Make it pass

	
 Backtracking on ourselves

	
 Refactoring your work

 	
 Promoting variables

	
 Using a beforeEach block

	
 Extracting methods

	
 Writing great tests

 	
 Red, green, refactor

	
 Streamlining your testing process

	
 Rendering lists and detail views

 	
 Rendering the list of appointments

 	
 Specifying list items

	
 Selecting data to view

 	
 Initial selection of data

	
 Adding events to a functional component

	
 Manually testing our changes

 	
 Adding an entrypoint

	
 Putting it all together with Webpack

 	
 Before you check in...

	
 Summary

	
 Exercises

	
 Further learning

	
 Test-driving Data Input with React

 	
 Extracting a test helper

	
 Adding a form element

 	
 Extracting a form-finder method

	
 Accepting text input

 	
 Extracting an expectation group function

	
 Passing in an existing value

 	
 Extracting out a field-finder function

	
 Labeling the field

 	
 Checking for null or not

	
 Saving the customer information

 	
 Submitting a form with data

	
 Using state instead of props

	
 Duplicating fields

 	
 Nesting describe blocks

	
 Generating parameterized tests

	
 Solving a batch of tests

	
 Modifying handleChange to work with multiple fields

	
 Finishing off the form with a submit button

	
 Selecting from a dropdown

 	
 Providing options to a dropdown

 	
 Utilizing defaultProps to specify real data

	
 Pre-selecting a value

	
 Completing the remaining tests for the select box

	
 Making a choice from radio buttons

 	
 Constructing a calendar view

	
 Displaying radio buttons for available appointments

	
 Hiding input controls

	
 Finishing it off

	
 Manually testing your solution

	
 Summary

	
 Exercises

	
 Further learning

	
 Exploring Test Doubles

 	
 What is a test double?

 	
 Learning to avoid fakes

	
 Submitting forms using spies

 	
 Untangling Arrange-Act-Assert

 	
 Watching it fail

	
 Making spies reusable

 	
 Using a Jest matcher to simplify expectations

	
 Stubbing the fetch API

 	
 Replacing global variables with spies

 	
 Installing the window.fetch polyfill

	
 Acting on return values with stubs

	
 Acting on the fetch response

	
 Displaying errors to the user

	
 Extracting test helpers

 	
 Using Jest to spy and stub

	
 Extracting spy helpers

	
 Using jest.spyOn to spy on module mocks

	
 Drying up DOM queries

 	
 Extracting container.querySelectorAll

	
 Drying up DOM events

	
 Summary

	
 Exercises

	
 Further learning

	
 Creating a User Interface

 	
 Fetching data on load with useEffect

 	
 Stubbing exported constants

	
 Using props within useEffect

	
 Passing customer data through to AppointmentForm

 	
 Passing through props to the child component

	
 Working with the shallow renderer

 	
 Understanding the importance of spiking

	
 Building shallow renderer helpers

 	
 Listing element children

	
 Encapsulating render output to dry up tests

	
 Building a new root component

	
 Summary

	
 Further learning

	
 Section 2: Building a Single-Page Application

	
 Humanizing Forms

 	
 Performing client-side validation

 	
 Submitting the form

	
 Extracting non-React functionality into a new module

	
 Handling server errors

	
 Indicating that the form has been submitted

 	
 Refactoring long methods

	
 Summary

	
 Exercises

	
 Further learning

	
 Filtering and Searching Data

 	
 Displaying tabular data fetched from an endpoint

	
 Paging through a large data set

 	
 Adding a next page button

	
 Adding a previous page button

	
 Filtering data

 	
 Refactoring to simplify component design

	
 Adding table row actions

 	
 Specifying the render prop in App

	
 Summary

	
 Exercises

	
 Test-driving React Router

 	
 General rules for test-driving React Router

 	
 Using shallow rendering for the simplest results

	
 Passing React Router props down through your components

	
 Avoiding withRouter

	
 Building a root component

 	
 Using the Router Switch component

	
 Testing the default route

	
 Invoking render functions and inspecting their properties

	
 Changing location using history.push

	
 Using the location query string to store component state

 	
 Replacing onClick handlers with Link components

	
 Using a parent component to convert a query string to props

	
 Replacing onChange handlers with history.push

	
 Summary

	
 Exercises

	
 Further learning

	
 Test-driving Redux

 	
 Prerequisites

	
 Test-driving a Redux saga

 	
 Designing the state object

	
 Scaffolding the saga and reducer

	
 Scaffolding a reducer

	
 Setting up an entrypoint

	
 Making asynchronous requests with sagas

 	
 Completing the reducer

	
 Pulling out generator functions for reducer actions

	
 Switching out component state for Redux state

 	
 Building a helper function to render with store

	
 Submitting a React form by dispatching a Redux action

	
 Protecting against silent breakages

	
 Shifting workflow to Redux

 	
 Stubbing out components built with useMemo

	
 Navigating router history in a Redux saga

	
 Separating Redux connection from presentation

	
 Summary

	
 Exercises

	
 Further learning

	
 Test-driving GraphQL

 	
 Installing Relay

	
 Testing the Relay environment

	
 Building the GraphQL reducer

	
 Building the CustomerHistory component

 	
 Tying it together in App

	
 Compiling Relay queries

	
 Summary

	
 Exercises

	
 Further learning

	
 Section 3: Interactivity

	
 Building a Logo Interpreter

 	
 Studying the Spec Logo user interface

 	
 Looking through the codebase

	
 Undoing and redoing user actions in Redux

 	
 Building the reducer

 	
 Setting the initial state

	
 Handling the undo action

	
 Handling the redo action

	
 Attaching the new reducer

	
 Building buttons

	
 Saving to LocalStorage via Redux middleware

 	
 Building middleware

	
 Changing keyboard focus

 	
 Writing the reducer

	
 Adding the reducer to the store

	
 Focusing the prompt

	
 Requesting focus in other components

	
 Summary

	
 Further learning

	
 Adding Animation

 	
 Isolating components for animation

 	
 Designing the component

	
 Extracting out StaticLines

	
 Building an AnimatedLine component

	
 Animating with requestAnimationFrame

 	
 Drawing lines

	
 Cleaning up after useEffect

	
 Rotating the turtle

	
 Summary

	
 Exercises

	
 Working with WebSockets

 	
 Designing a WebSocket interaction

 	
 The new UI elements

	
 Splitting apart the saga

	
 Test-driving a WebSocket connection

	
 Streaming events with redux-saga

	
 Updating the app

	
 Summary

	
 Exercises

	
 Further learning

	
 Section 4: Acceptance Testing with BDD

	
 Writing Your First Acceptance Test

 	
 Integrating Cucumber and Puppeteer into your code base

	
 Writing your first Cucumber test

	
 Using data tables to perform setup

	
 Summary

	
 Adding Features Guided by Acceptance Tests

 	
 Adding acceptance tests for a dialog box

	
 Fixing acceptance tests by test-driving production code

 	
 Adding a dialog box

	
 Updating sagas to reset or replay state

	
 Adding better wait support

 	
 Alerting when the animation is complete

	
 Updating step definitions to use waitForSelector

	
 Exercises

	
 Summary

	
 Understanding TDD in the Wider Testing Landscape

 	
 Test-driven development as a testing technique

 	
 Best practices for your unit tests

	
 Improving your technique

	
 Manual testing

 	
 Demonstrating software

	
 Testing the whole product

	
 Exploratory testing

	
 Debugging in the browser

	
 Automated testing

 	
 Integration tests

	
 Acceptance tests

	
 Property-based and generative testing

	
 Snapshot testing

	
 Canary testing

	
 Not testing at all

 	
 When quality doesn't matter

	
 Spiking and deleting code

	
 Summary

	
 Further learning

	
 Other Books You May Enjoy

 	
 Leave a review - let other readers know what you think

 Preface

This is a book about dogma. My dogma. It is a set of principles, practices, and rituals that I have found to be extremely beneficial when building React applications. I try to apply these ideas in my daily work, and I believe in them so much that I take every opportunity to teach others about them. That's why I've written this book: to show you the ideas that have helped me be successful in my own career.

As with any dogma, you are free to make your own mind up about it. There are people who will dislike everything about this book. There are those who will love everything about this book. Yet more people will absorb some things and forget others. All of these are fine. The only thing I ask is that you maintain an open mind while you follow along, and prepare to have your own dogmas challenged.

Test-driven development (TDD) did not originate in the JavaScript community. However, it is perfectly possible to test-drive JavaScript code. And although TDD is not common in the React community, there's no reason why it shouldn't be. In fact, React as a UI platform is a much better fit for TDD than older UI platforms, due to its elegant model of functional components and state.

So what is TDD, and why should you use it? Test-driven development is a process for writing software that involves writing tests, or specifications, before writing any code. Its practitioners follow it because they believe that it helps them build and design higher-quality software with longer life spans, at a lower cost. They believe it offers a mechanism for communicating about design and specification that also doubles up as a rock-solid regression suite. There isn't much empirical data available that proves any of that to be true, so the best you can do is try it out yourself and make your own mind up.

Perhaps most importantly for me, I find that TDD removes the fear of making changes to my software, and that this makes my working days much less stressful than they used to be. I don't worry about introducing bugs or regressions into my work, because the tests protect me from that.

TDD is often taught with 'toy' examples: todo lists, temperature converters, Tic Tac Toe, and so on. This book teaches two real-world applications. Often, the tests get hairy. We will hit many challenging scenarios and come up with solutions for all of them. There are over 450 tests contained within this book, and every one will teach you something.

So, before we begin, a few words of advice.

This is a book about first principles. I believe that learning TDD is about understanding the process in exceptional detail. For that reason, we do not use Enzyme or react-testing-library. Instead, we build our own test helpers. Doing so is not very complicated. The benefit of doing so is a deeper understanding and awareness of what those testing libraries are doing for you. I am not suggesting that you shouldn't use these tools in your daily work—I use them myself—but I am suggesting that going without them is a worthwhile adventure.

This book uses React hooks. These are a new feature in version 16.8, and we also make use of the act function, which became usable in version 16.9. There are no class components in this book. I believe that we should embrace hooks because functional components using hooks are simpler than class components. I embraced hooks during the process of writing this book, which originally started out as a book with class components. Halfway through, we decided to scrap classes entirely and instead, focus on the future.

On that topic, the JavaScript and React landscape changes at such a pace that I can't claim that this book will remain 'current' for very long. That is another reason why I use a first-principles approach. My hope is that when things do change, you'll still be able to use this book and apply what you've learned to those new scenarios.

There are a variety of themes that run throughout the book. The theme of first principles is one I've already mentioned. Another is systematic refactoring, which can come across as rather laborious, but is a cornerstone of TDD and other good design practices. I have provided many examples of that within these pages, but for brevity, I sometimes jump straight to a 'post-refactored' solution. For example, I often choose to extract methods before they are written, whereas in the real world, I would usually write methods inline and only extract when the containing method (or test) becomes too long.

Yet another theme is that of cheating, which you won't find mentioned in many TDD books. It's an acknowledgment that TDD is really a scaffold around which you can build your own rules. Once you've learned and practiced the strict version of TDD for a while, you can learn what cheats you can use to cut corners. What tests won't provide much value in the long run? How can you speed up repetitive tests? So, a cheat is almost like saying you cut a corner in a way that wouldn't be obvious to an observer if they came to look at your code tomorrow. Maybe, for example, you implement three tests at once, rather than one at a time.

Finally, do not for a second think that I wrote this book in a linear sequence from start to finish, or that I knew exactly what order to write the tests. It took a great deal of spiking, trial and error, and making horrendous mistakes before I ended up with the text you have before you. Needless to say, I am now an expert with git rebase.

 Who this book is for

If you're a React programmer, this book is for you. I aim to show you how TDD can improve your work.

If you're already knowledgeable with TDD, I hope there's still a lot you can learn from comparing your own process with mine.

If you don't know already know React, you will benefit from spending some time running through the Getting Started guide on the React website. That being said, TDD is a wonderful platform for explaining new technologies, and it's entirely plausible that you'll be able to pick up React simply by following this book.

This book covers in-depth usage of React hooks, which are very new at the time of writing. If you're a React developer and hoping to learn how to use React without classes, then you will indeed learn that by reading this book.

 What this book covers

Chapter 1, First Steps with Test-Driven Development, introduces Jest and the test-driven development cycle. We use them to build a rendering of customer information on a page.

Chapter 2, Test-driving Data Input with React, covers using React component state to manage the display and saving of forms.

Chapter 3, Exploring Test Doubles, introduces various types of test double that are necessary for testing collaborating objects. The collaborator we use in this chapter is the browser fetch API to send and receive data from our application backend.

Chapter 4, Creating a User Interface, ties everything with a root component that threads together a user journey.

Chapter 5, Humanizing Forms, continues with form building by looking at dealing with client- and server-side validation errors, and adding an indicator to show that data is being submitted.

Chapter 6, Filtering and Searching Data, shows building a search component with some complex interaction requirements, in addition to complex fetch request requirements.

Chapter 7, Test-driving React Router, introduces the React Router library to simplify navigation with our user journeys.

Chapter 8, Test-driving Redux, introduces Redux into our application in an effort to simplify our components and evolve our application architecture into something that will support larger use cases.

Chapter 9, Test-driving GraphQL, introduces the GraphQL library to communicate with a GraphQL endpoint that's provided by our application backend.

Chapter 10, Building a Logo Interpreter, introduces a fun application that we begin to explore by building out features across both React components and Redux middleware: undo/redo, persisting state across browser sessions with LocalStorage API, and programmatically managing field focus.

Chapter 11, Adding Animation, covers adding animations to our application using the browser requestAnimationFrame API, all with a test-driven approach.

Chapter 12, Working with WebSockets, adds support for WebSocket communication with our application backend.

Chapter 13, Writing Your First Acceptance Test, introduces CucumberJS and Puppeteer, which we use to build acceptance tests for existing functionality.

Chapter 14, Adding Features Guided by Acceptance Tests, integrates acceptance testing into our development process by first building acceptance tests, before dropping down to unit tests.

Chapter 15, Understanding TDD in the Wider Testing Landscape, finishes the book by looking at how what we've learned fits in with other test and quality practices, and provides some suggestions about where to go from here.

 To get the most out of this book

There are two ways to read this book.

The first is to use it as a reference when you are faced with specific testing challenges. Use the index to find what you're after and move to that page.

The second, and the one I'd recommend starting with, is to follow the walk-throughs step by step, building your own code base as you go along. In this section, I'll detail how to do that.

You will need to be at least a little proficient with Git: a basic understanding of the branch, checkout, clone, commit, diff, and merge commands should be sufficient.

 Keeping up with the book's Git history

This section details all you need to know to work effectively with Git while you're following along with the walk-throughs.

This book is up-to-date with the latest version of React (16.9.0-alpha.0). Packt will update the code repository for future release cycle of React 16.9. Please note this version is not yet production ready. A production release of 16.9 is due for release soon.

 Getting started before Chapter 1

The book has an accompanying GitHub repository that contains all of the walk-throughs already implemented in a series of commits. You should clone this to your local development machine as you'll be working within it.

	If you have a GitHub account, I suggest you fork the repo so that you can push your work to keep a copy safe. Use the Fork button in the top-right hand corner of the GitHub page to do this.

The repository is located at https://github.com/PacktPublishing/Mastering-React-Test-Driven-Development.

	Once forked, you can then clone this locally by going to a terminal window and typing the following command, replacing <username> with your GitHub username:

git clone git@github.com:<username>/Mastering-React-Test-Driven-Development.git

	You may wish to rename the directory to something shorter. On my machine, I've used the name react-tdd.

	Change into this directory using the cd command.

	Issue the command git checkout tags/starting-point.

	Finally, issue the command git checkout -b starting-point-mine to create your own branch from this point.

You're now ready to begin Chapter 1. If the last two commands didn't make any sense, don't panic: I'll explain about tags and branches now.

 Working with section tags

There are two separate code bases in this book, and they have their own branches: appointments and spec-logo. Chapter 1 to Chapter 9 cover appointments; Chapter 10 to Chapter 14 cover spec-logo. (Chapter 15 doesn't have any code.)

If you were to check out these branches, you'd get the final, completed versions of the code. This is an interesting sneak peak but it's not how you'll get started.

Instead, many sections have a designated tag, so you can skip to the tag and examine the code at that point. If you see a callout like this:

The Git tag for this section is animation.

...then you can skip to this tag by issuing the following command:

git checkout tags/animation

Once you've output that command, you will be in the detached head state. If you want to begin making changes at that point, you should create a new branch from the tag and work on that. I'd suggest suffixing the name with -mine so that your branches are clearly distinguishable from tags:

git checkout -b animation-mine

You can then commit to this branch. If you have been following along judiciously within your own branch, then you do not need to check out each tag, since you'll already have all of the same code.

However, sometimes you will see a callout like the one that follows, and that means you will need to check out the new tag:

The Git tag for this section is load-available-time-slots. It contains solutions to the exercises from the previous chapter, so if you haven't completed the Exercises section yourself, then you should move to this tag now so that you're up to date.

For more detailed instructions, see the To get the most out of this book section in the Preface.

This type of callout means that the code base now contains additional changes since the last edits covered in the book. It often happens at the start of each chapter when the preceding chapter had exercises, but it also happens when the code base skips ahead with changes that are uninteresting or not related to the content of the book.

When you see this callout, you have two options:

	You can choose to check out the new tag and start a new branch, starting afresh. In this case, the instructions are the same as before, except now you'd need a different branch name from your existing branch:

git checkout tags/load-available-time-slots
git checkout -b load-available-time-slots-mine

	You can choose to continue working on the branch you have. This could be because you've been creative and made changes that aren't covered in the book (which I fully support). In this case, git diff and git merge are your friends. You will want to review the changes in the latest tag, and then git merge them in. You may need to handle conflicts:

to view the differences in the new tag
git diff tags/load-available-time-slots

to auto-merge those differences into your branch
git merge tags/load-available-time-slots

The second option is not entirely risk free, mainly due to the Exercises section at the end of each chapter.

 Solving the exercises

Almost every chapter has an Exercises section at the end. These exercises are designed to give you ideas for how you continue practicing what you've learned. They have already been solved in the GitHub repository so you can see how I've solved them. The next chapter always starts from the point where I've solved the exercises.

Should you choose to solve the exercises—which I encourage you to do—then the likelihood is that you'll have solved them in a different way than I would have. Unfortunately, this might leave you in merge hell when you begin the next chapter.

If you find yourself in this situation, I suggest you first study the differences between your approach and mine. Think about how they differ and the relative merits of each. (Do not think that mine will be any better than yours.)

Then, ensuring you've committed and successfully stored your code, move to a new tag and a new branch, starting again.

In other words, be pragmatic and don't spend an inordinate amount of time fighting the system. It's better to keep moving and not get stuck or frustrated.

Pro tip: always keep your exercise solutions in a separate commit. When you move on to the next chapter, branch from your pre-Exercises commit and merge in the official exercise solutions instead.

 Debugging when things go wrong

Should you get stuck, or your tests fail in a way that you weren't expecting, feel free to launch the application and see what the console is telling you. Add in console.log statements to help you debug.

The best defense against getting stuck is committing early and often. Any time you have a working feature, commit it!

 Download the example code files

In addition to the GitHub repository, if you prefer you can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packt.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, React component names, test names, directory names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In test/domManipulators.js, add the following new property to the return object of createContainer."

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "The final test for the Undo button is to check that it dispatches an UNDO action when it is clicked."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Understanding code snippets

A block of code is set as follows:

const handleBlur = ({ target }) => {
 const result = required(target.value);
 setValidationErrors({
 ...validationErrors,
 firstName: result
 });
};

There are two important things to know about the code snippets that appear in this book.

The first is that some code samples show modifications to existing sections of code. When this happens, the changed lines appear in bold, and the other lines are simply there to provide context:

const handleBlur = ({ target }) => {
 const validators = {
 firstName: required
 };
 const result = validators[target.name](target.value);
 setValidationErrors({
 ...validationErrors,
 [target.name]: result
 });
};

The second is that, often, some code samples will skip lines in order to keep the context clear. When this occurs, you’ll see this marked by a line with three dots:

if (!anyErrors(validationResult)) {
 ...
} else {
 setValidationErrors(validationResult);
}

Sometimes this happens for function parameters too:

if (!anyErrors(validationResult)) {
 setSubmitting(true);
 const result = await window.fetch(...);
 setSubmitting(false);
 ...
}

 JavaScript syntax

As much as possible, the book aims to be consistent with its approach to syntax. There are some choices that may be contentious but I hope that they won’t put you off reading. For example, I use semi-colons throughout. If you’d prefer to not use semi-colons, please feel free to ignore them in your own code.

 Prettier

I have used Prettier to format code samples, and its configuration is set within package.json in each of the appointments and spec-logo projects. Here it is:

"prettier": {
 "singleQuote": true,
 "printWidth": 67,
 "jsxBracketSameLine": true
}

Feel free to change this to your own configuration and reformat files as you see fit. The line width of 67 characters is particularly short but ensures that, for the most part, code snippets do not suffer from line breaks.

The one place this is not true is with test descriptions:

it('passes from and to times through to appointments when retrieving appointments', async () => {

In these cases, although the text is printed over two lines, you should enter it on one line only. If you are copy and pasting code samples from the electronic version of this book, you’ll need to remove the extra line breaks that are inserted by your editor.

 Arrow functions

The book almost exclusively uses arrow functions for defining functions. The only exceptions are when we write generator functions, which must use the standard function's syntax. If you’re not familiar with arrow functions, they look like this, which defines a single-argument function named inc:

const inc = arg => arg + 1;

They can appear on one line or broken into two:

const inc = arg =>
 arg + 1;

Functions that have more than one argument have the arguments wrapped in brackets:

const add = (a, b) => a+ b;

If a function has multiple statements, then the body is wrapped in curly braces and the return keyword is used to denote when the function returns:

const dailyTimeSlots = (salonOpensAt, salonClosesAt) => {
 const totalSlots = (salonClosesAt - salonOpensAt) * 2;
 const startTime = new Date().setHours(salonOpensAt, 0, 0, 0);
 const increment = 30 * 60 * 1000;
 return timeIncrements(totalSlots, startTime, increment);
};

If the function returns an object, then that object must be wrapped in brackets so that the runtime doesn’t think it’s executing a block:

setAppointment(appointment => ({
 ...appointment,
 [name]: value
});

 Object and array destructuring

This book makes liberal use of destructuring techniques in an effort to keep the code base as concise as possible. As an example, object destructuring generally happens for function parameters:

const handleSelectBoxChange = ({ target: { value, name } }) => {
 ...
};

This is equivalent to saying this:

const handleSelectBoxChange = ({ target: { value, name } }) => {
 const target = event.target;
 const value = target.value;
 const name = target.name;
 ...
};

Return values can also be destructured in the same way. More frequently, you’ll see return values destructured. This happens with the useState hook:

const [customer, setCustomer] = useState({});

This is equivalent to:

const customerState = useState({});
const customer = customerState[0];
const setCustomer = customerState[1];

 Directory structure

Finally, both code bases suffer from a distinct lack of civilized directory structure. I hope this isn’t an issue for you; I just didn’t want to spend time discussing building directories and moving files when it isn’t the focus of the book.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Section 1: First Principles of TDD

This section is an exploration of the principles of test-driven development. You'll test drive the rendering of data and the loading of data from our server, and in the process, you'll build your own test helpers that help to simplify and accelerate your testing. By the end of the section, you'll have a working application.

This section includes the following chapters:

	Chapter 1, First Steps with Test-Driven Development

	Chapter 2, Test-driving Data Input with React

	Chapter 3, Exploring Test Doubles

	Chapter 4, Creating a User Interface

 First Steps with Test-Driven Development

This book follows a simple format: it's a walk-through of building React applications using a test-driven approach. We'll touch on many different parts of the React experience, including building forms, composing interfaces, and animating elements. We'll also integrate React Router, Redux, and GraphQL, all guided by tests. The focus isn't on how these features of React work, but rather on how to test them and make sure you're using them with confidence.

Modern JavaScript programmers rely heavily on packages that other people have developed. This allows us to concentrate on innovating, not reinventing, the wheel. The downside, however, is that we don't always have a full understanding of the technologies we’re dealing with. We simply don't need to learn them.

Among other things, Test-Driven Development (TDD) is an effective technique for learning new frameworks and libraries. That makes it very well suited for a book on React and its ecosystem. This book will allow you to explore React in a way that you may not have experienced before.

If you're new to TDD, some of the steps outlined may leave you scratching your head. You may find yourself wondering why we're going to such Herculean efforts to build an application. There is tremendous value to be gained in specifying our software in this way. By being crystal clear about our requirements, we gain the ability to adapt our code without fear of change. We gain automated regression testing by default. Our tests comment our code, and those comments are verifiable when we run them. We gain a method of communicating our decision-making process with our colleagues. And you'll soon start to recognize the higher level of trust and confidence you have in the code you're working on. If you're anything like me, you'll get hooked on that feeling and find it hard to work without it.

Sections 1 and 2 of this book involve building an appointments system for a hair salon—nothing too revolutionary, but as sample applications go, it offers plenty of scope. We'll get started with that in this chapter. Sections 3 and 4 use an entirely different application: a Logo interpreter. Building that offers a fun way to explore more of the React landscape.

This chapter, and in fact this whole book, takes a first principles approach to React. We start with minuscule steps to slowly uncover the TDD story. We'll prefer rolling our own code to using libraries and packages. We will start from an empty directory and begin building out our application, test by test. Along the way, we’ll discover a lot of the fundamental ideas behind test-driven development and React.

The following topics will be covered in this chapter:

	Creating a new React project from scratch

	Displaying data with your first test

	Refactoring your work

	Writing great tests

	Rendering lists and detail views

 Technical requirements

Later in this chapter, you'll be required to install Node Package Manager (npm) together with a whole host of packages. You'll want to ensure you have a machine capable of running the Node.js environment.

You'll also need access to the command line.

In addition, you should choose a good editor or Integrated Development Environment (IDE) to work with your code.

 Creating a new React project from scratch

There's a standard template for creating React apps: the create-react-app application template. This includes some standard dependencies and boilerplate code that all React applications need. However, it also contains some extra items such as favicon.ico, a sample logo, and CSS files. While these are undoubtedly useful, having them here at the very start of a project is at odds with one of the test-driven developer's core principles: You Ain't Gonna Need It (YAGNI).

This principle says that you should hold off adding anything to your project until you're really sure that it's necessary. Perhaps that's when your team adds a user story for it into the iteration, or maybe it's when a customer asks for it. Until then, YAGNI.

It's a theme that runs throughout this book and we'll start right now by choosing to avoid create-react-app. You can always start every JavaScript project from scratch, and there's a certain joy to be found in going over the basics each time.

 Installing NPM

We’ll be making extensive use of the npm command-line tool and the Node.js execution environment. Each time you run your tests, which will be very frequently, you'll be required to run an npm command.

Toward the end of the chapter, we'll also use npm to package our application.

You can find out if you already have it installed on your machine by opening a Terminal window (or Command Prompt if you’re on Windows) and typing the following:

npm -v

If the command isn’t found, head on over to the Node.js website for details on how to install. The URL is included at the end of this chapter.

The npm program knows how to update itself, so if it's installed, I recommend you ensure you’re on the latest version. You can do this on the command line by typing this:

npm install npm@latest -g

I'm using version 6.9.0 to write this book. If you have any issues with the code samples contained here, differing NPM versions could be one of the causes, so please bear that in mind as you continue.

Yet another resource negotiator (YARN) is an alternative to NPM, and I won’t hold it against you if you choose to use it. There are only a handful of npm commands in this book—I assume that if you’re sticking with YARN, then you’ll already know how to convert npm commands to yarn commands.

 Creating a new Jest project

The Git tag for this section is starting-point. It doesn't contain any code; just a README.md file. If you want to follow along using the book's Git repository then you should ensure you've branched from this tag. Detailed instructions from doing that are in the Getting started before Chapter 1 section of the Preface.

Now that NPM is installed, we can create our project:

	If you're following along with the book's Git repository, open a Terminal window and navigate to the repository directory that you cloned in the Getting started before Chapter 1 section of the Preface. Otherwise, simply navigate to your local projects directory.

	Create a new directory using mkdir appointments and then change to it using cd appointments.

	Enter the npm init command, which begins the process of initializing a new NPM project and generating a package.json file for you.

	The first questions ask you to provide a package name, version, description, and an entrypoint. Since we're building an appointments system, you can call it appointments. Accept the default version (by just hitting Enter), and enter a description of Appointments system. You can accept the default entrypoint too.

	Next, you'll be asked for a test command, for which you should type in jest. This will enable you to run tests by using the npm test shortcut command.

Don't worry if you miss this; you can set it afterward by adding "test": "jest" to the scripts section of the generated package.json.

	You'll be asked to specify a repository, which you could just set as example.com for now. If you don’t fill these fields in, npm will print warnings every time you run a command.

	You can accept the defaults for everything else.

You may wonder why we filled out the repository field. TDD loves fast feedback cycles. Prioritize cleaning your screen and command outputs of as much noise as possible. Any time you see something that is destroying clarity, either fix it right then and there, or put it as an action at the top of your to-do list.

In this particular case, you could also add "private": true to your package.json, instead of setting the repository field.

	Hit Enter on the remaining questions to finish the initialization process.

	Install Jest using npm install --save-dev jest.

You will see the bottom line of your Terminal fill up with a fast-changing stream of package information as NPM installs dependent packages (a paltry 553 packages at the time of writing). You may see some warnings depending on the platform you are installing on, but these can be ignored. Once complete, you should see this:

npm notice created a lockfile as package-lock.json. You should commit this file.

+ jest@24.7.1
+ added 553 packages from 373 contributors and audited 849842 packages in 16.304s
+ found 0 vulnerabilities

 Commit early and often

The second sentence of that command output (You should commit this file) is a good cue for us to commit for the first time.

TDD provides natural breakpoints for you to commit code. If you’re starting out with TDD, I’d recommend committing to source control after every single test. That might seem like overkill for your projects at work, but as you're learning, it can be a very effective tool.

If you've ever watched The Weakest Link, you'll know that contestants can choose to bank their winnings at any time, which decreases their risk of losing money but reduces their earning potential. With git, you can use git add to effectively bank your code. This saves a snapshot of your code but does not commit it. If you make a mess in the next test, you can revert to the last banked state. I tend to do this after every test. And, unlike in The Weakest Link, there's no downside to banking!

Committing early and often simplifies commit messages. If you have just one test in a commit, then you can use the test description as your commit message. No thinking is required.

If you're using git, use the following commands to commit what you’ve done so far:

git init
echo "node_modules" > .gitignore
git add .
git commit -m "Blank project with Jest dependency"

 Bringing in React and Babel

Let's install React. That's actually two packages:

npm install --save react react-dom

React makes heavy use of JavaScript XML (JSX), which we need Babel to transpile for us. Babel also transpiles our modern ES6 and ES7 constructs for us.

The following information is accurate for Babel 7. If you're using a later version, you may need to adjust the installation instructions accordingly.

Thankfully, Jest already includes Babel, so we just need to install presets and plugins:

npm install --save-dev @babel/preset-env @babel/preset-react
npm install --save-dev @babel/plugin-transform-runtime
npm install --save @babel/runtime

A Babel preset is a set of plugins. Each plugin enables a specific feature of the ECMAScript standards, or a preprocessor such as JSX.

The env preset brings in essentially everything possible. It should really be configured with target execution environments. See the Further reading section at the end of this chapter for more information.

We need to enable the packages we've just installed. Create a new file, .babelrc, and add the following:

{
 "presets": ["@babel/env", "@babel/react"],
 "plugins": ["@babel/transform-runtime"]
}

With that, you're all set to write some tests. You may wish to check in at this point.

 Displaying data with your first test

The Git tag for this section is appointment-first-name.

In this section, we'll discover the TDD cycle for the first time.

We'll start our application by building out an appointment view. We won't get very far; the tests we'll create in this chapter will simply display the customer who made the appointment. As we do so, we'll discuss the TDD process in detail.

We'll build a React functional component called Appointment. It is used for displaying the details of a single appointment in our system. The component will be passed in a data structure that represents Appointment, which we can imagine looks a little something like this:

{
 customer: { firstName: 'Ashley', lastName: 'Jones', phoneNumber: '(123) 555-0123' },
 stylist: 'Jay Speares',
 startsAt: '2019-02-02 09:30',
 service: 'Cut',
 notes: ''
}

We won't manage to get all of that information displayed by the time we complete the chapter; in fact, we'll only display the customer's firstName, and we'll make use of the startsAt timestamp to order a list of today's appointments.

But before we get on to that, let's explore Jest a little.

 Writing a failing test

What exactly is a test? We'll discover that by writing one. In your project directory, type the following commands:

mkdir test
touch test/Appointment.test.js

Open the test/Appointment.test.js file in your favorite editor or IDE and enter the following:

describe('Appointment', () => {
});

The describe function defines a test suite, which is simply a set of tests with a given name. The first argument is the name (or description) of the unit you are testing. It could be a React component, a function, or a module. The second argument is a function inside of which you define your tests.

All of the Jest functions are already required and available in the global namespace when you run the npm test command. You don't need to import anything.

For React components, it's good practice to give your describe blocks the same name as the component itself.

You should run this code right now in the Jest test runner. It will give us valuable information about what to do next. You might think that running tests now is pointless, since we haven't even written a test yet, but with TDD, it's normal to run your test runner at every opportunity.

On the command line, run the npm test command:

> appointments@1.0.0 test /home/daniel/work/react-tdd/ch1
> jest

FAIL test/Appointment.test.js
● Test suite failed to run

Your test suite must contain at least one test.

 at node_modules/jest/node_modules/jest-cli/build/TestScheduler.js:225:24

Test Suites: 1 failed, 1 total
Tests: 0 total
Snapshots: 0 total
Time: 0.917s
Ran all test suites.
npm ERR! Test failed. See above for more details.

You can see Jest helpfully tells us Your test suite must contain at least one test. Test-driven developers rely heavily on listening to the test runner and what it tells us. It usually tells them exactly what to do next. In this case, it's telling us to create a test. So, let's do that.

Where should you place your tests?

 If you do try out the create-react-app template, you’ll notice that it contains a single unit test file, App.test.js, which exists in the same directory as the source file, App.js.

I don't recommend mixing production code with test code. For a start, it isn’t the conventional unit-testing approach, which uses two separate directories for production code and test code. More importantly, however, it’s likely that you won’t have a one-to-one mapping between production and test files.

 Writing your first expectation

Change your describe call to this:

describe('Appointment', () => {
 it('renders the customer first name', () => {
 });
});

The it function defines a single test. The first argument is the description of the test and always starts with a present-tense verb, so that it reads in plain English. The it in the function name refers to the noun you used to name your test suite (in this case, Appointment). In fact, if you run tests now, with npm test, remember, it should make sense:

PASS test/Appointment.test.js
 Appointment
 ✓ renders the customer first name (1ms)

You can read the describe and it descriptions together as one sentence: Appointment renders the customer first name. You should aim for all of your tests to be readable in this way.

As we add more tests, Jest will show us a little checklist of passing tests.

You may have used the test function for Jest, which is equivalent to it. Since we’re doing behavior driven development style of TDD, you should stick with it.

Empty tests, such as the one we just wrote, always pass. Let's change that now. Let's add an expectation to our test. Change test to read as follows:

it('renders the customer first name', () => {
 expect(document.body.textContent).toMatch('Ashley');
});

This expect call is an example of a fluent API. Like the test description, it reads like plain English. You can read it like this: I expect document.body.textContent toMatch the string Ashley.

Although it might look complicated, it's quite a simple idea: each expectation has an expected value that is compared against a received value. In this example, the expected value is Ashley and the received value is whatever is stored in document.body.textContent.

The toMatch function is called a matcher and there are a whole lot of different matchers that work in different ways. In this case, the expectation passes if document.body.textContent has the word Ashley anywhere within it.

Each individual test can have as many expectations in it as you like, and we'll see examples of multiple expectations in a test later in this chapter.

Before we run this test, spend a minute thinking about the code. You might have guessed that the test will fail. The question is, how will it fail?

Let's run test now, with npm test, and find out:

FAIL test/Appointment.test.js
 Appointment
 ✕ renders the customer first name (10ms)

 ● Appointment › renders the customer first name

 expect(received).toMatch(expected)

 Expected value to match:
 "Ashley"
 Received:
 ""

 1 | describe('Appointment', () => {
 2 | it('renders the customer first name', () => {
 > 3 | expect(document.body.textContent).toMatch('Ashley');
 | ^
 4 | });
 5 | });
 6 |

 at Object.toMatch (test/Appointment.test.js:3:39)

There are four parts to the test output that are relevant to us:

	The name of the failing test

	The expected answer

	The actual answer

	The location in the source where the error occurred

All of these help us to pinpoint where our tests failed: document.body.textContent is empty. This isn't surprising really, since we've not done anything to set the body text.

But, hold on a second. Where did document.body come from? No one defined that yet. Shouldn’t we expect the test to fail with an error saying that the document is undefined?

Jest magically includes a DOM implementation for us, which is why we have access to document and document.body. It uses jsdom, a headless implementation of the DOM. We can do test browser interactions on the command line, which is much simpler than involving a browser in our work.

In Jest lingo, this is called the Jest environment and it defaults to jsdom. If you want to verify that this is happening, add the following config to your package.json file:

"jest": {
 "testEnvironment": "node"
}

Re-run tests and observe the different output to convince yourself that JSDOM is no longer present.

Be sure to remove this extra configuration before you continue, as we’ll be relying on the JSDOM environment from now on.

 Rendering React from a test

In order to make this test pass, we'll have to write some code above the expectation that will call into our production code.

Since we're testing what happens when a React component is rendered, we'll need to call the ReactDOM.render function. This function takes a component (which in our case will be called Appointment), performs the React render magic, and replaces an existing DOM node with the newly rendered node tree. The DOM node it replaces is known as the React container.

Here's the method signature:

ReactDOM.render(component, container)

In order to call this in our test, we'll need to define both component and container. Let's piece the test together before we write it out in full. It will have this shape:

it('renders the customer first name', () => {
 const component = ???
 const container = ???
 ReactDOM.render(component, container);
 expect(document.body.textContent).toMatch('Ashley');
});

Since we're rendering Appointment, we know what we need to put for component. It's a JSX fragment that takes our customer as a prop:

 const customer = { firstName: 'Ashley' };
 const component = <Appointment customer={customer} />;

Back when we were considering our design, we came up with a whole object format for our appointments. You might think the definition of a customer here is very sparse, as it only contains a first name. But we don't need anything else for a test about customer names.

What about container? We can use the DOM to create a container element:

const container = document.createElement('div');
document.body.appendChild(container);

Now let's take a look at that test in full. Change your test in test/Appointments.test.js to match the following:

it('renders the customer first name', () => {
 const customer = { firstName: 'Ashley' };
 const component = <Appointment customer={customer} />;
 const container = document.createElement('div');
 document.body.appendChild(container);

 ReactDOM.render(component, container);

 expect(document.body.textContent).toMatch('Ashley');
});

As we're using both ReactDOM and JSX, we'll need to include the two standard React import at the top of our test file for this to work, as follows:

import React from 'react';
import ReactDOM from 'react-dom';

Go ahead and run the test. Within the output, you'll see the following:

ReferenceError: Appointment is not defined

This is subtly different from the test failure we saw previously. This is a run-time exception, not an expectation failure. Thankfully, though, the exception is telling us exactly what we need to do, just as a test expectation would. We need to define Appointment.

 Make it pass

We're now ready to make failing test pass:

	Add import to test/Appointment.test.js, below the two React imports:

import { Appointment } from '../src/Appointment';

	Run tests with npm test. You'll get a different error this time:

Cannot find module '../src/Appointment' from 'Appointment.test.js'

Although Appointment was defined as an export, it wasn't defined as a default export. That means we have to import it using the curly brace from of import (import { ... }). I tend to avoid using default exports; doing so keeps the name of my component and its usage in sync: if I change the name of a component, then every place where it's imported will break unless I change those too. This isn't the case with default exports. Once your names are out of sync, it can be hard to track where components are used.

	Let's create that module. Type the following at your command line:

mkdir src
touch src/Appointment.js

	In your editor, add the following content to src/Appointment.js:

export const Appointment = () => {};

Why have I created a shell of an Appointment without actually creating an implementation? This might seem pointless, but another core principle of the test-driven developer is always do the simplest thing to pass the test. We could rephrase this as always do the simplest thing to fix the error you're working on.

Remember when I mentioned that we listen carefully to what the test runner tells us? In this case, the test runner said Cannot find module Appointment, so what was needed was to create that module:

	Run npm test. You'll get a lot of React output as a large stack trace. If you scroll up to the top, you'll see this:

Error: Uncaught [Invariant Violation: Appointment(...): Nothing was returned from render. This usually means a return statement is missing. Or, to render nothing, return null.]

	To fix that, we need to do what it's telling us: we need to return something "from render". So, let's return something. Change the file to read as follows:

import React from 'react';

export const Appointment = () => <div></div>;

	Now, if you run the test, you should get a test failure:

FAIL test/Appointment.test.js
 Appointment
 ✕ renders the customer first name (23ms)

 ● Appointment › renders the customer first name

 expect(received).toMatch(expected)

 Expected value to match:
 "Ashley"
 Received:
 ""

	To fix the test, change the Appointment definition to look like this:

export const Appointment = () => (
 <div>Ashley</div>
);

But, wait a second. This test isn't using our appointment variable that we defined in our test. We just hard-coded a value of Ashley in there!

Remember our principle: always implement the simplest thing that will possibly work. That includes hard-coding, when it's possible. In order to get to the real implementation, we need to add more tests. This process is called triangulation. The more specific our tests get, the more general our production code needs to get.

This is one reason why pair programming using TDD can be so fun. Pairs can play ping pong. Sometimes, your pair will write a test that you can solve trivially, perhaps by hard-coding, and then you force them to do the hard work of both tests by triangulating. They need to remove the hard-coding and add the generalization.

Let's triangulate:

	Make a copy of your first test, pasting it just under the first test, and change the test description and the name of Ashley to Jordan, as follows:

it('renders another customer first name', () => {
 const customer = { firstName: 'Jordan' };
 const component = <Appointment customer={customer} />;
 const container = document.createElement('div');
 document.body.appendChild(container);

 ReactDOM.render(component, container);

 expect(document.body.textContent).toMatch('Jordan');
});

	Run tests with npm test. We expect this test to fail, and it does. Take a careful look at this output:

FAIL test/Appointment.test.js
 Appointment
 ✓ renders the customer name (19ms)
 ✕ renders another customer name (20ms)

● Appointment › renders another customer name

 expect(received).toMatch(expected)

 Expected value to match:
 "Jordan"
 Received:
 "AshleyAshley"

Yes, it did fail—but with the text AshleyAshley!

This kind of repeated text is an indicator that our tests are not running independently of one another. There is some shared state that isn't being cleared. We need to change course and uncover what's going on.

Unit tests should be independent of one another. The simplest way to achieve this is to not have any shared state between tests. Each test should only use variables that it has created itself.

 Backtracking on ourselves

There's only one piece of shared state that our tests use and that's document. It must not be getting cleared each time the tests are run, and so we see the output of each test inside the document.

Even if we fixed our production code to remove the hard-coding, it still wouldn't pass; instead, we'd see the text AshleyJordan.

One solution is to clear the document DOM tree before each test run. But there's a simpler solution: we can rework our tests to not append our container element to the DOM at all, and instead work directly with the container element. In other words, we can change our expectation to check not document.body.textContent but container.textContent.

There may come a time that we actually need to attach our nodes to the DOM, and at that point, we'll need to fix this problem properly. But for now, you ain't gonna need it. So, let's solve this by avoiding the DOM tree altogether. It's the simplest way forward.

Unfortunately, there's a problem. We're in the middle of a red test. We should never refactor, rework, or otherwise change course while we're red.

What we'll have to do is ignore, or pend, this test we're working on. We do that by changing the word it to it.skip. Do that now for the second test:

it.skip('renders another customer first name', () => {

Run tests. You'll see Jest ignores the second test, and the first one still passes:

PASS test/Appointment.test.js
 Appointment
 ✓ renders the customer first name (19ms)
 ○ skipped 1 test

Test Suites: 1 passed, 1 total
Tests: 1 skipped, 1 passed, 2 total

For this refactor, we need to make two changes:

	Change the expectation to match on container.textContent.

	Remove the line that calls appendChild on the document body.

We can also take this opportunity to inline the component variable. Change the test to read as follows:

it('renders the customer first name', () => {
 const customer = { firstName: 'Ashley' };
 const container = document.createElement('div');
 ReactDOM.render(<Appointment customer={customer} />, container);
 expect(container.textContent).toMatch('Ashley');
});

Run your tests: the result should be the same as earlier, with one passing test and one skipped.

It's time to bring that second test back in, by removing the .skip from the function name, and this time, let's update the test code to make the same changes we made in the first, as follows:

it('renders another customer first name', () => {
 const customer = { firstName: 'Jordan' };
 const container = document.createElement('div');
 ReactDOM.render(<Appointment customer={customer} />, container);
 expect(container.textContent).toMatch('Jordan');
});

Running tests now should give us the error that we were originally expecting:

FAIL test/Appointment.test.js
 Appointment
 ✓ renders the customer first name (18ms)
 ✕ renders another customer first name (8ms)

 ● Appointment › renders another customer first name

 expect(received).toMatch(expected)

 Expected value to match:
 "Jordan"
 Received:
 "Ashley"

To fix this, we need to introduce the variable and use it within our JSX, which supports embedding JavaScript expressions within elements. We can also use destructuring assignment to avoid creating unnecessary variables.

Change the definition of Appointment to look as follows:

OEBPS/assets/2871abad-8c79-4f3e-b1f9-b36e367ce34a.png

OEBPS/assets/9b758e48-519e-42f4-9d6b-65189efa802a.png

OEBPS/assets/8e348aca-7989-4f17-935c-58c84a953a4e.png

OEBPS/assets/8bb00c37-37c4-40d9-b58f-a0bafd2a2299.png

OEBPS/assets/d20aa796-d720-42da-8945-ae2f89ada5fb.png

