
		
			[image: java_jellyfish_front_cover_large.png]
		

	
		
			Android Studio Jellyfish

			Essentials

			Java Edition

		

		
			Android Studio Jellyfish Essentials – Java Edition

			ISBN: 978-1-951442-86-6

			© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

			This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

			The content of this book is provided for informational purposes only. Neither the publisher nor the author offers any warranties or representation, express or implied, with regard to the accuracy of information contained in this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

			This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

			Rev: 1.0

			[image:]

			https://www.payloadbooks.com.

			Copyright

			“

		

	
		
			Contents

		

		
			Table of Contents

			1. Introduction

			1.1 Downloading the Code Samples

			1.2 Feedback

			1.3 Errata

			2. Setting up an Android Studio Development Environment

			2.1 System requirements

			2.2 Downloading the Android Studio package

			2.3 Installing Android Studio

			2.3.1 Installation on Windows

			2.3.2 Installation on macOS

			2.3.3 Installation on Linux

			2.4 Installing additional Android SDK packages

			2.5 Installing the Android SDK Command-line Tools

			2.5.1 Windows 8.1

			2.5.2 Windows 10

			2.5.3 Windows 11

			2.5.4 Linux

			2.5.5 macOS

			2.6 Android Studio memory management

			2.7 Updating Android Studio and the SDK

			2.8 Summary

			3. Creating an Example Android App in Android Studio

			3.1 About the Project

			3.2 Creating a New Android Project

			3.3 Creating an Activity

			3.4 Defining the Project and SDK Settings

			3.5 Modifying the Example Application

			3.6 Modifying the User Interface

			3.7 Reviewing the Layout and Resource Files

			3.8 Adding Interaction

			3.9 Summary

			4. Creating an Android Virtual Device (AVD) in Android Studio

			4.1 About Android Virtual Devices

			4.2 Starting the Emulator

			4.3 Running the Application in the AVD

			4.4 Running on Multiple Devices

			4.5 Stopping a Running Application

			4.6 Supporting Dark Theme

			4.7 Running the Emulator in a Separate Window

			4.8 Removing the Device Frame

			4.9 Summary

			5. Using and Configuring the Android Studio AVD Emulator

			5.1 The Emulator Environment

			5.2 Emulator Toolbar Options

			5.3 Working in Zoom Mode

			5.4 Resizing the Emulator Window

			5.5 Extended Control Options

			5.5.1 Location

			5.5.2 Displays

			5.5.3 Cellular

			5.5.4 Battery

			5.5.5 Camera

			5.5.6 Phone

			5.5.7 Directional Pad

			5.5.8 Microphone

			5.5.9 Fingerprint

			5.5.10 Virtual Sensors

			5.5.11 Snapshots

			5.5.12 Record and Playback

			5.5.13 Google Play

			5.5.14 Settings

			5.5.15 Help

			5.6 Working with Snapshots

			5.7 Configuring Fingerprint Emulation

			5.8 The Emulator in Tool Window Mode

			5.9 Creating a Resizable Emulator

			5.10 Summary

			6. A Tour of the Android Studio User Interface

			6.1 The Welcome Screen

			6.2 The Menu Bar

			6.3 The Main Window

			6.4 The Tool Windows

			6.5 The Tool Window Menus

			6.6 Android Studio Keyboard Shortcuts

			6.7 Switcher and Recent Files Navigation

			6.8 Changing the Android Studio Theme

			6.9 Summary

			7. Testing Android Studio Apps on a Physical Android Device

			7.1 An Overview of the Android Debug Bridge (ADB)

			7.2 Enabling USB Debugging ADB on Android Devices

			7.2.1 macOS ADB Configuration

			7.2.2 Windows ADB Configuration

			7.2.3 Linux adb Configuration

			7.3 Resolving USB Connection Issues

			7.4 Enabling Wireless Debugging on Android Devices

			7.5 Testing the adb Connection

			7.6 Device Mirroring

			7.7 Summary

			8. The Basics of the Android Studio Code Editor

			8.1 The Android Studio Editor

			8.2 Splitting the Editor Window

			8.3 Code Completion

			8.4 Statement Completion

			8.5 Parameter Information

			8.6 Parameter Name Hints

			8.7 Code Generation

			8.8 Code Folding

			8.9 Quick Documentation Lookup

			8.10 Code Reformatting

			8.11 Finding Sample Code

			8.12 Live Templates

			8.13 Summary

			9. An Overview of the Android Architecture

			9.1 The Android Software Stack

			9.2 The Linux Kernel

			9.3 Hardware Abstraction Layer

			9.4 Android Runtime – ART

			9.5 Android Libraries

			9.5.1 C/C++ Libraries

			9.6 Application Framework

			9.7 Applications

			9.8 Summary

			10. The Anatomy of an Android App

			10.1 Android Activities

			10.2 Android Fragments

			10.3 Android Intents

			10.4 Broadcast Intents

			10.5 Broadcast Receivers

			10.6 Android Services

			10.7 Content Providers

			10.8 The Application Manifest

			10.9 Application Resources

			10.10 Application Context

			10.11 Summary

			11. An Overview of Android View Binding

			11.1 Find View by Id

			11.2 View Binding

			11.3 Converting the AndroidSample project

			11.4 Enabling View Binding

			11.5 Using View Binding

			11.6 Choosing an Option

			11.7 View Binding in the Book Examples

			11.8 Migrating a Project to View Binding

			11.9 Summary

			12. Understanding Android Application and Activity Lifecycles

			12.1 Android Applications and Resource Management

			12.2 Android Process States

			12.2.1 Foreground Process

			12.2.2 Visible Process

			12.2.3 Service Process

			12.2.4 Background Process

			12.2.5 Empty Process

			12.3 Inter-Process Dependencies

			12.4 The Activity Lifecycle

			12.5 The Activity Stack

			12.6 Activity States

			12.7 Configuration Changes

			12.8 Handling State Change

			12.9 Summary

			13. Handling Android Activity State Changes

			13.1 New vs. Old Lifecycle Techniques

			13.2 The Activity and Fragment Classes

			13.3 Dynamic State vs. Persistent State

			13.4 The Android Lifecycle Methods

			13.5 Lifetimes

			13.6 Foldable Devices and Multi-Resume

			13.7 Disabling Configuration Change Restarts

			13.8 Lifecycle Method Limitations

			13.9 Summary

			14. Android Activity State Changes by Example

			14.1 Creating the State Change Example Project

			14.2 Designing the User Interface

			14.3 Overriding the Activity Lifecycle Methods

			14.4 Filtering the Logcat Panel

			14.5 Running the Application

			14.6 Experimenting with the Activity

			14.7 Summary

			15. Saving and Restoring the State of an Android Activity

			15.1 Saving Dynamic State

			15.2 Default Saving of User Interface State

			15.3 The Bundle Class

			15.4 Saving the State

			15.5 Restoring the State

			15.6 Testing the Application

			15.7 Summary

			16. Understanding Android Views, View Groups and Layouts

			16.1 Designing for Different Android Devices

			16.2 Views and View Groups

			16.3 Android Layout Managers

			16.4 The View Hierarchy

			16.5 Creating User Interfaces

			16.6 Summary

			17. A Guide to the Android Studio Layout Editor Tool

			17.1 Basic vs. Empty Views Activity Templates

			17.2 The Android Studio Layout Editor

			17.3 Design Mode

			17.4 The Palette

			17.5 Design Mode and Layout Views

			17.6 Night Mode

			17.7 Code Mode

			17.8 Split Mode

			17.9 Setting Attributes

			17.10 Transforms

			17.11 Tools Visibility Toggles

			17.12 Converting Views

			17.13 Displaying Sample Data

			17.14 Creating a Custom Device Definition

			17.15 Changing the Current Device

			17.16 Layout Validation

			17.17 Summary

			18. A Guide to the Android ConstraintLayout

			18.1 How ConstraintLayout Works

			18.1.1 Constraints

			18.1.2 Margins

			18.1.3 Opposing Constraints

			18.1.4 Constraint Bias

			18.1.5 Chains

			18.1.6 Chain Styles

			18.2 Baseline Alignment

			18.3 Configuring Widget Dimensions

			18.4 Guideline Helper

			18.5 Group Helper

			18.6 Barrier Helper

			18.7 Flow Helper

			18.8 Ratios

			18.9 ConstraintLayout Advantages

			18.10 ConstraintLayout Availability

			18.11 Summary

			19. A Guide to Using ConstraintLayout in Android Studio

			19.1 Design and Layout Views

			19.2 Autoconnect Mode

			19.3 Inference Mode

			19.4 Manipulating Constraints Manually

			19.5 Adding Constraints in the Inspector

			19.6 Viewing Constraints in the Attributes Window

			19.7 Deleting Constraints

			19.8 Adjusting Constraint Bias

			19.9 Understanding ConstraintLayout Margins

			19.10 The Importance of Opposing Constraints and Bias

			19.11 Configuring Widget Dimensions

			19.12 Design Time Tools Positioning

			19.13 Adding Guidelines

			19.14 Adding Barriers

			19.15 Adding a Group

			19.16 Working with the Flow Helper

			19.17 Widget Group Alignment and Distribution

			19.18 Converting other Layouts to ConstraintLayout

			19.19 Summary

			20. Working with ConstraintLayout Chains and Ratios in Android Studio

			20.1 Creating a Chain

			20.2 Changing the Chain Style

			20.3 Spread Inside Chain Style

			20.4 Packed Chain Style

			20.5 Packed Chain Style with Bias

			20.6 Weighted Chain

			20.7 Working with Ratios

			20.8 Summary

			21. An Android Studio Layout Editor ConstraintLayout Tutorial

			21.1 An Android Studio Layout Editor Tool Example

			21.2 Preparing the Layout Editor Environment

			21.3 Adding the Widgets to the User Interface

			21.4 Adding the Constraints

			21.5 Testing the Layout

			21.6 Using the Layout Inspector

			21.7 Summary

			22. Manual XML Layout Design in Android Studio

			22.1 Manually Creating an XML Layout

			22.2 Manual XML vs. Visual Layout Design

			22.3 Summary

			23. Managing Constraints using Constraint Sets

			23.1 Java Code vs. XML Layout Files

			23.2 Creating Views

			23.3 View Attributes

			23.4 Constraint Sets

			23.4.1 Establishing Connections

			23.4.2 Applying Constraints to a Layout

			23.4.3 Parent Constraint Connections

			23.4.4 Sizing Constraints

			23.4.5 Constraint Bias

			23.4.6 Alignment Constraints

			23.4.7 Copying and Applying Constraint Sets

			23.4.8 ConstraintLayout Chains

			23.4.9 Guidelines

			23.4.10 Removing Constraints

			23.4.11 Scaling

			23.4.12 Rotation

			23.5 Summary

			24. An Android ConstraintSet Tutorial

			24.1 Creating the Example Project in Android Studio

			24.2 Adding Views to an Activity

			24.3 Setting View Attributes

			24.4 Creating View IDs

			24.5 Configuring the Constraint Set

			24.6 Adding the EditText View

			24.7 Converting Density Independent Pixels (dp) to Pixels (px)

			24.8 Summary

			25. A Guide to Using Apply Changes in Android Studio

			25.1 Introducing Apply Changes

			25.2 Understanding Apply Changes Options

			25.3 Using Apply Changes

			25.4 Configuring Apply Changes Fallback Settings

			25.5 An Apply Changes Tutorial

			25.6 Using Apply Code Changes

			25.7 Using Apply Changes and Restart Activity

			25.8 Using Run App

			25.9 Summary

			26. A Guide to Gradle Version Catalogs

			26.1 Library and Plugin Dependencies

			26.2 Project Gradle Build File

			26.3 Module Gradle Build Files

			26.4 Version Catalog File

			26.5 Adding Dependencies

			26.6 Library Updates

			26.7 Summary

			27. An Overview and Example of Android Event Handling

			27.1 Understanding Android Events

			27.2 Using the android:onClick Resource

			27.3 Event Listeners and Callback Methods

			27.4 An Event Handling Example

			27.5 Designing the User Interface

			27.6 The Event Listener and Callback Method

			27.7 Consuming Events

			27.8 Summary

			28. Android Touch and Multi-touch Event Handling

			28.1 Intercepting Touch Events

			28.2 The MotionEvent Object

			28.3 Understanding Touch Actions

			28.4 Handling Multiple Touches

			28.5 An Example Multi-Touch Application

			28.6 Designing the Activity User Interface

			28.7 Implementing the Touch Event Listener

			28.8 Running the Example Application

			28.9 Summary

			29. Detecting Common Gestures Using the Android Gesture Detector Class

			29.1 Implementing Common Gesture Detection

			29.2 Creating an Example Gesture Detection Project

			29.3 Implementing the Listener Class

			29.4 Creating the GestureDetectorCompat Instance

			29.5 Implementing the onTouchEvent() Method

			29.6 Testing the Application

			29.7 Summary

			30. Implementing Custom Gesture and Pinch Recognition on Android

			30.1 The Android Gesture Builder Application

			30.2 The GestureOverlayView Class

			30.3 Detecting Gestures

			30.4 Identifying Specific Gestures

			30.5 Installing and Running the Gesture Builder Application

			30.6 Creating a Gestures File

			30.7 Creating the Example Project

			30.8 Extracting the Gestures File from the SD Card

			30.9 Adding the Gestures File to the Project

			30.10 Designing the User Interface

			30.11 Loading the Gestures File

			30.12 Registering the Event Listener

			30.13 Implementing the onGesturePerformed Method

			30.14 Testing the Application

			30.15 Configuring the GestureOverlayView

			30.16 Intercepting Gestures

			30.17 Detecting Pinch Gestures

			30.18 A Pinch Gesture Example Project

			30.19 Summary

			31. An Introduction to Android Fragments

			31.1 What is a Fragment?

			31.2 Creating a Fragment

			31.3 Adding a Fragment to an Activity using the Layout XML File

			31.4 Adding and Managing Fragments in Code

			31.5 Handling Fragment Events

			31.6 Implementing Fragment Communication

			31.7 Summary

			32. Using Fragments in Android Studio - An Example

			32.1 About the Example Fragment Application

			32.2 Creating the Example Project

			32.3 Creating the First Fragment Layout

			32.4 Migrating a Fragment to View Binding

			32.5 Adding the Second Fragment

			32.6 Adding the Fragments to the Activity

			32.7 Making the Toolbar Fragment Talk to the Activity

			32.8 Making the Activity Talk to the Text Fragment

			32.9 Testing the Application

			32.10 Summary

			33. Modern Android App Architecture with Jetpack

			33.1 What is Android Jetpack?

			33.2 The “Old” Architecture

			33.3 Modern Android Architecture

			33.4 The ViewModel Component

			33.5 The LiveData Component

			33.6 ViewModel Saved State

			33.7 LiveData and Data Binding

			33.8 Android Lifecycles

			33.9 Repository Modules

			33.10 Summary

			34. An Android ViewModel Tutorial

			34.1 About the Project

			34.2 Creating the ViewModel Example Project

			34.3 Removing Unwanted Project Elements

			34.4 Designing the Fragment Layout

			34.5 Implementing the View Model

			34.6 Associating the Fragment with the View Model

			34.7 Modifying the Fragment

			34.8 Accessing the ViewModel Data

			34.9 Testing the Project

			34.10 Summary

			35. An Android Jetpack LiveData Tutorial

			35.1 LiveData - A Recap

			35.2 Adding LiveData to the ViewModel

			35.3 Implementing the Observer

			35.4 Summary

			36. An Overview of Android Jetpack Data Binding

			36.1 An Overview of Data Binding

			36.2 The Key Components of Data Binding

			36.2.1 The Project Build Configuration

			36.2.2 The Data Binding Layout File

			36.2.3 The Layout File Data Element

			36.2.4 The Binding Classes

			36.2.5 Data Binding Variable Configuration

			36.2.6 Binding Expressions (One-Way)

			36.2.7 Binding Expressions (Two-Way)

			36.2.8 Event and Listener Bindings

			36.3 Summary

			37. An Android Jetpack Data Binding Tutorial

			37.1 Removing the Redundant Code

			37.2 Enabling Data Binding

			37.3 Adding the Layout Element

			37.4 Adding the Data Element to Layout File

			37.5 Working with the Binding Class

			37.6 Assigning the ViewModel Instance to the Data Binding Variable

			37.7 Adding Binding Expressions

			37.8 Adding the Conversion Method

			37.9 Adding a Listener Binding

			37.10 Testing the App

			37.11 Summary

			38. An Android ViewModel Saved State Tutorial

			38.1 Understanding ViewModel State Saving

			38.2 Implementing ViewModel State Saving

			38.3 Saving and Restoring State

			38.4 Adding Saved State Support to the ViewModelDemo Project

			38.5 Summary

			39. Working with Android Lifecycle-Aware Components

			39.1 Lifecycle Awareness

			39.2 Lifecycle Owners

			39.3 Lifecycle Observers

			39.4 Lifecycle States and Events

			39.5 Summary

			40. An Android Jetpack Lifecycle Awareness Tutorial

			40.1 Creating the Example Lifecycle Project

			40.2 Creating a Lifecycle Observer

			40.3 Adding the Observer

			40.4 Testing the Observer

			40.5 Creating a Lifecycle Owner

			40.6 Testing the Custom Lifecycle Owner

			40.7 Summary

			41. An Overview of the Navigation Architecture Component

			41.1 Understanding Navigation

			41.2 Declaring a Navigation Host

			41.3 The Navigation Graph

			41.4 Accessing the Navigation Controller

			41.5 Triggering a Navigation Action

			41.6 Passing Arguments

			41.7 Summary

			42. An Android Jetpack Navigation Component Tutorial

			42.1 Creating the NavigationDemo Project

			42.2 Adding Navigation to the Build Configuration

			42.3 Creating the Navigation Graph Resource File

			42.4 Declaring a Navigation Host

			42.5 Adding Navigation Destinations

			42.6 Designing the Destination Fragment Layouts

			42.7 Adding an Action to the Navigation Graph

			42.8 Implement the OnFragmentInteractionListener

			42.9 Adding View Binding Support to the Destination Fragments

			42.10 Triggering the Action

			42.11 Passing Data Using Safeargs

			42.12 Summary

			43. An Introduction to MotionLayout

			43.1 An Overview of MotionLayout

			43.2 MotionLayout

			43.3 MotionScene

			43.4 Configuring ConstraintSets

			43.5 Custom Attributes

			43.6 Triggering an Animation

			43.7 Arc Motion

			43.8 Keyframes

			43.8.1 Attribute Keyframes

			43.8.2 Position Keyframes

			43.9 Time Linearity

			43.10 KeyTrigger

			43.11 Cycle and Time Cycle Keyframes

			43.12 Starting an Animation from Code

			43.13 Summary

			44. An Android MotionLayout Editor Tutorial

			44.1 Creating the MotionLayoutDemo Project

			44.2 ConstraintLayout to MotionLayout Conversion

			44.3 Configuring Start and End Constraints

			44.4 Previewing the MotionLayout Animation

			44.5 Adding an OnClick Gesture

			44.6 Adding an Attribute Keyframe to the Transition

			44.7 Adding a CustomAttribute to a Transition

			44.8 Adding Position Keyframes

			44.9 Summary

			45. A MotionLayout KeyCycle Tutorial

			45.1 An Overview of Cycle Keyframes

			45.2 Using the Cycle Editor

			45.3 Creating the KeyCycleDemo Project

			45.4 Configuring the Start and End Constraints

			45.5 Creating the Cycles

			45.6 Previewing the Animation

			45.7 Adding the KeyFrameSet to the MotionScene

			45.8 Summary

			46. Working with the Floating Action Button and Snackbar

			46.1 The Material Design

			46.2 The Design Library

			46.3 The Floating Action Button (FAB)

			46.4 The Snackbar

			46.5 Creating the Example Project

			46.6 Reviewing the Project

			46.7 Removing Navigation Features

			46.8 Changing the Floating Action Button

			46.9 Adding an Action to the Snackbar

			46.10 Summary

			47. Creating a Tabbed Interface using the TabLayout Component

			47.1 An Introduction to the ViewPager2

			47.2 An Overview of the TabLayout Component

			47.3 Creating the TabLayoutDemo Project

			47.4 Creating the First Fragment

			47.5 Duplicating the Fragments

			47.6 Adding the TabLayout and ViewPager2

			47.7 Performing the Initialization Tasks

			47.8 Testing the Application

			47.9 Customizing the TabLayout

			47.10 Summary

			48. Working with the RecyclerView and CardView Widgets

			48.1 An Overview of the RecyclerView

			48.2 An Overview of the CardView

			48.3 Summary

			49. An Android RecyclerView and CardView Tutorial

			49.1 Creating the CardDemo Project

			49.2 Modifying the Basic Views Activity Project

			49.3 Designing the CardView Layout

			49.4 Adding the RecyclerView

			49.5 Adding the Image Files

			49.6 Creating the RecyclerView Adapter

			49.7 Initializing the RecyclerView Component

			49.8 Testing the Application

			49.9 Responding to Card Selections

			49.10 Summary

			50. A Layout Editor Sample Data Tutorial

			50.1 Adding Sample Data to a Project

			50.2 Using Custom Sample Data

			50.3 Summary

			51. Working with the AppBar and Collapsing Toolbar Layouts

			51.1 The Anatomy of an AppBar

			51.2 The Example Project

			51.3 Coordinating the RecyclerView and Toolbar

			51.4 Introducing the Collapsing Toolbar Layout

			51.5 Changing the Title and Scrim Color

			51.6 Summary

			52. An Android Studio Primary/Detail Flow Tutorial

			52.1 The Primary/Detail Flow

			52.2 Creating a Primary/Detail Flow Activity

			52.3 Adding the Primary/Detail Flow Activity

			52.4 Modifying the Primary/Detail Flow Template

			52.5 Changing the Content Model

			52.6 Changing the Detail Pane

			52.7 Modifying the ItemDetailFragment Class

			52.8 Modifying the ItemListFragment Class

			52.9 Adding Manifest Permissions

			52.10 Running the Application

			52.11 Summary

			53. An Overview of Android Services

			53.1 Intent Service

			53.2 Bound Service

			53.3 The Anatomy of a Service

			53.4 Controlling Destroyed Service Restart Options

			53.5 Declaring a Service in the Manifest File

			53.6 Starting a Service Running on System Startup

			53.7 Summary

			54. An Overview of Android Intents

			54.1 An Overview of Intents

			54.2 Explicit Intents

			54.3 Returning Data from an Activity

			54.4 Implicit Intents

			54.5 Using Intent Filters

			54.6 Automatic Link Verification

			54.7 Manually Enabling Links

			54.8 Checking Intent Availability

			54.9 Summary

			55. Android Explicit Intents – A Worked Example

			55.1 Creating the Explicit Intent Example Application

			55.2 Designing the User Interface Layout for MainActivity

			55.3 Creating the Second Activity Class

			55.4 Designing the User Interface Layout for SecondActivity

			55.5 Reviewing the Application Manifest File

			55.6 Creating the Intent

			55.7 Extracting Intent Data

			55.8 Launching SecondActivity as a Sub-Activity

			55.9 Returning Data from a Sub-Activity

			55.10 Testing the Application

			55.11 Summary

			56. Android Implicit Intents – A Worked Example

			56.1 Creating the Android Studio Implicit Intent Example Project

			56.2 Designing the User Interface

			56.3 Creating the Implicit Intent

			56.4 Adding a Second Matching Activity

			56.5 Adding the Web View to the UI

			56.6 Obtaining the Intent URL

			56.7 Modifying the MyWebView Project Manifest File

			56.8 Installing the MyWebView Package on a Device

			56.9 Testing the Application

			56.10 Manually Enabling the Link

			56.11 Automatic Link Verification

			56.12 Summary

			57. Android Broadcast Intents and Broadcast Receivers

			57.1 An Overview of Broadcast Intents

			57.2 An Overview of Broadcast Receivers

			57.3 Obtaining Results from a Broadcast

			57.4 Sticky Broadcast Intents

			57.5 The Broadcast Intent Example

			57.6 Creating the Example Application

			57.7 Creating and Sending the Broadcast Intent

			57.8 Creating the Broadcast Receiver

			57.9 Registering the Broadcast Receiver

			57.10 Testing the Broadcast Example

			57.11 Listening for System Broadcasts

			57.12 Summary

			58. Android Local Bound Services – A Worked Example

			58.1 Understanding Bound Services

			58.2 Bound Service Interaction Options

			58.3 A Local Bound Service Example

			58.4 Adding a Bound Service to the Project

			58.5 Implementing the Binder

			58.6 Binding the Client to the Service

			58.7 Completing the Example

			58.8 Testing the Application

			58.9 Summary

			59. Android Remote Bound Services – A Worked Example

			59.1 Client to Remote Service Communication

			59.2 Creating the Example Application

			59.3 Designing the User Interface

			59.4 Implementing the Remote Bound Service

			59.5 Configuring a Remote Service in the Manifest File

			59.6 Launching and Binding to the Remote Service

			59.7 Sending a Message to the Remote Service

			59.8 Summary

			60. An Overview of Java Threads, Handlers and Executors

			60.1 The Application Main Thread

			60.2 Thread Handlers

			60.3 A Threading Example

			60.4 Building the App

			60.5 Creating a New Thread

			60.6 Implementing a Thread Handler

			60.7 Passing a Message to the Handler

			60.8 Java Executor Concurrency

			60.9 Working with Runnable Tasks

			60.10 Shutting down an Executor Service

			60.11 Working with Callable Tasks and Futures

			60.12 Handling a Future Result

			60.13 Scheduling Tasks

			60.14 Summary

			61. Making Runtime Permission Requests in Android

			61.1 Understanding Normal and Dangerous Permissions

			61.2 Creating the Permissions Example Project

			61.3 Checking for a Permission

			61.4 Requesting Permission at Runtime

			61.5 Providing a Rationale for the Permission Request

			61.6 Testing the Permissions App

			61.7 Summary

			62. An Android Notifications Tutorial

			62.1 An Overview of Notifications

			62.2 Creating the NotifyDemo Project

			62.3 Designing the User Interface

			62.4 Creating the Second Activity

			62.5 Creating a Notification Channel

			62.6 Requesting Notification Permission

			62.7 Creating and Issuing a Notification

			62.8 Launching an Activity from a Notification

			62.9 Adding Actions to a Notification

			62.10 Bundled Notifications

			62.11 Summary

			63. An Android Direct Reply Notification Tutorial

			63.1 Creating the DirectReply Project

			63.2 Designing the User Interface

			63.3 Requesting Notification Permission

			63.4 Creating the Notification Channel

			63.5 Building the RemoteInput Object

			63.6 Creating the PendingIntent

			63.7 Creating the Reply Action

			63.8 Receiving Direct Reply Input

			63.9 Updating the Notification

			63.10 Summary

			64. Foldable Devices and Multi-Window Support

			64.1 Foldables and Multi-Window Support

			64.2 Using a Foldable Emulator

			64.3 Entering Multi-Window Mode

			64.4 Enabling and using Freeform Support

			64.5 Checking for Freeform Support

			64.6 Enabling Multi-Window Support in an App

			64.7 Specifying Multi-Window Attributes

			64.8 Detecting Multi-Window Mode in an Activity

			64.9 Receiving Multi-Window Notifications

			64.10 Launching an Activity in Multi-Window Mode

			64.11 Configuring Freeform Activity Size and Position

			64.12 Summary

			65. An Overview of Android SQLite Databases

			65.1 Understanding Database Tables

			65.2 Introducing Database Schema

			65.3 Columns and Data Types

			65.4 Database Rows

			65.5 Introducing Primary Keys

			65.6 What is SQLite?

			65.7 Structured Query Language (SQL)

			65.8 Trying SQLite on an Android Virtual Device (AVD)

			65.9 Android SQLite Classes

			65.9.1 Cursor

			65.9.2 SQLiteDatabase

			65.9.3 SQLiteOpenHelper

			65.9.4 ContentValues

			65.10 The Android Room Persistence Library

			65.11 Summary

			66. An Android SQLite Database Tutorial

			66.1 About the Database Example

			66.2 Creating the SQLDemo Project

			66.3 Designing the User interface

			66.4 Creating the Data Model

			66.5 Implementing the Data Handler

			66.6 The Add Handler Method

			66.7 The Query Handler Method

			66.8 The Delete Handler Method

			66.9 Implementing the Activity Event Methods

			66.10 Testing the Application

			66.11 Summary

			67. Understanding Android Content Providers

			67.1 What is a Content Provider?

			67.2 The Content Provider

			67.2.1 onCreate()

			67.2.2 query()

			67.2.3 insert()

			67.2.4 update()

			67.2.5 delete()

			67.2.6 getType()

			67.3 The Content URI

			67.4 The Content Resolver

			67.5 The <provider> Manifest Element

			67.6 Summary

			68. An Android Content Provider Tutorial

			68.1 Copying the SQLDemo Project

			68.2 Adding the Content Provider Package

			68.3 Creating the Content Provider Class

			68.4 Constructing the Authority and Content URI

			68.5 Implementing URI Matching in the Content Provider

			68.6 Implementing the Content Provider onCreate() Method

			68.7 Implementing the Content Provider insert() Method

			68.8 Implementing the Content Provider query() Method

			68.9 Implementing the Content Provider update() Method

			68.10 Implementing the Content Provider delete() Method

			68.11 Declaring the Content Provider in the Manifest File

			68.12 Modifying the Database Handler

			68.13 Summary

			69. An Android Content Provider Client Tutorial

			69.1 Creating the SQLDemoClient Project

			69.2 Designing the User interface

			69.3 Accessing the Content Provider

			69.4 Adding the Query Permission

			69.5 Testing the Project

			69.6 Summary

			70. The Android Room Persistence Library

			70.1 Revisiting Modern App Architecture

			70.2 Key Elements of Room Database Persistence

			70.2.1 Repository

			70.2.2 Room Database

			70.2.3 Data Access Object (DAO)

			70.2.4 Entities

			70.2.5 SQLite Database

			70.3 Understanding Entities

			70.4 Data Access Objects

			70.5 The Room Database

			70.6 The Repository

			70.7 In-Memory Databases

			70.8 Database Inspector

			70.9 Summary

			71. An Android TableLayout and TableRow Tutorial

			71.1 The TableLayout and TableRow Layout Views

			71.2 Creating the Room Database Project

			71.3 Converting to a LinearLayout

			71.4 Adding the TableLayout to the User Interface

			71.5 Configuring the TableRows

			71.6 Adding the Button Bar to the Layout

			71.7 Adding the RecyclerView

			71.8 Adjusting the Layout Margins

			71.9 Summary

			72. An Android Room Database and Repository Tutorial

			72.1 About the RoomDemo Project

			72.2 Modifying the Build Configuration

			72.3 Building the Entity

			72.4 Creating the Data Access Object

			72.5 Adding the Room Database

			72.6 Adding the Repository

			72.7 Adding the ViewModel

			72.8 Creating the Product Item Layout

			72.9 Adding the RecyclerView Adapter

			72.10 Preparing the Main Activity

			72.11 Adding the Button Listeners

			72.12 Adding LiveData Observers

			72.13 Initializing the RecyclerView

			72.14 Testing the RoomDemo App

			72.15 Using the Database Inspector

			72.16 Summary

			73. Accessing Cloud Storage using the Android Storage Access Framework

			73.1 The Storage Access Framework

			73.2 Working with the Storage Access Framework

			73.3 Filtering Picker File Listings

			73.4 Handling Intent Results

			73.5 Reading the Content of a File

			73.6 Writing Content to a File

			73.7 Deleting a File

			73.8 Gaining Persistent Access to a File

			73.9 Summary

			74. An Android Storage Access Framework Example

			74.1 About the Storage Access Framework Example

			74.2 Creating the Storage Access Framework Example

			74.3 Designing the User Interface

			74.4 Adding the Activity Launchers

			74.5 Creating a New Storage File

			74.6 Saving to a Storage File

			74.7 Opening and Reading a Storage File

			74.8 Testing the Storage Access Application

			74.9 Summary

			75. Video Playback on Android using the VideoView and MediaController Classes

			75.1 Introducing the Android VideoView Class

			75.2 Introducing the Android MediaController Class

			75.3 Creating the Video Playback Example

			75.4 Designing the VideoPlayer Layout

			75.5 Downloading the Video File

			75.6 Configuring the VideoView

			75.7 Adding the MediaController to the Video View

			75.8 Setting up the onPreparedListener

			75.9 Summary

			76. Android Picture-in-Picture Mode

			76.1 Picture-in-Picture Features

			76.2 Enabling Picture-in-Picture Mode

			76.3 Configuring Picture-in-Picture Parameters

			76.4 Entering Picture-in-Picture Mode

			76.5 Detecting Picture-in-Picture Mode Changes

			76.6 Adding Picture-in-Picture Actions

			76.7 Summary

			77. An Android Picture-in-Picture Tutorial

			77.1 Adding Picture-in-Picture Support to the Manifest

			77.2 Adding a Picture-in-Picture Button

			77.3 Entering Picture-in-Picture Mode

			77.4 Detecting Picture-in-Picture Mode Changes

			77.5 Adding a Broadcast Receiver

			77.6 Adding the PiP Action

			77.7 Testing the Picture-in-Picture Action

			77.8 Summary

			78. Android Audio Recording and Playback using MediaPlayer and MediaRecorder

			78.1 Playing Audio

			78.2 Recording Audio and Video using the MediaRecorder Class

			78.3 About the Example Project

			78.4 Creating the AudioApp Project

			78.5 Designing the User Interface

			78.6 Checking for Microphone Availability

			78.7 Initializing the Activity

			78.8 Implementing the recordAudio() Method

			78.9 Implementing the stopAudio() Method

			78.10 Implementing the playAudio() method

			78.11 Configuring and Requesting Permissions

			78.12 Testing the Application

			78.13 Summary

			79. Working with the Google Maps Android API in Android Studio

			79.1 The Elements of the Google Maps Android API

			79.2 Creating the Google Maps Project

			79.3 Creating a Google Cloud Billing Account

			79.4 Creating a New Google Cloud Project

			79.5 Enabling the Google Maps SDK

			79.6 Generating a Google Maps API Key

			79.7 Adding the API Key to the Android Studio Project

			79.8 Testing the Application

			79.9 Understanding Geocoding and Reverse Geocoding

			79.10 Adding a Map to an Application

			79.11 Requesting Current Location Permission

			79.12 Displaying the User’s Current Location

			79.13 Changing the Map Type

			79.14 Displaying Map Controls to the User

			79.15 Handling Map Gesture Interaction

			79.15.1 Map Zooming Gestures

			79.15.2 Map Scrolling/Panning Gestures

			79.15.3 Map Tilt Gestures

			79.15.4 Map Rotation Gestures

			79.16 Creating Map Markers

			79.17 Controlling the Map Camera

			79.18 Summary

			80. Printing with the Android Printing Framework

			80.1 The Android Printing Architecture

			80.2 The Print Service Plugins

			80.3 Google Cloud Print

			80.4 Printing to Google Drive

			80.5 Save as PDF

			80.6 Printing from Android Devices

			80.7 Options for Building Print Support into Android Apps

			80.7.1 Image Printing

			80.7.2 Creating and Printing HTML Content

			80.7.3 Printing a Web Page

			80.7.4 Printing a Custom Document

			80.8 Summary

			81. An Android HTML and Web Content Printing Example

			81.1 Creating the HTML Printing Example Application

			81.2 Printing Dynamic HTML Content

			81.3 Creating the Web Page Printing Example

			81.4 Removing the Floating Action Button

			81.5 Removing Navigation Features

			81.6 Designing the User Interface Layout

			81.7 Accessing the WebView from the Main Activity

			81.8 Loading the Web Page into the WebView

			81.9 Adding the Print Menu Option

			81.10 Summary

			82. A Guide to Android Custom Document Printing

			82.1 An Overview of Android Custom Document Printing

			82.1.1 Custom Print Adapters

			82.2 Preparing the Custom Document Printing Project

			82.3 Designing the UI

			82.4 Creating the Custom Print Adapter

			82.5 Implementing the onLayout() Callback Method

			82.6 Implementing the onWrite() Callback Method

			82.7 Checking a Page is in Range

			82.8 Drawing the Content on the Page Canvas

			82.9 Starting the Print Job

			82.10 Testing the Application

			82.11 Summary

			83. An Introduction to Android App Links

			83.1 An Overview of Android App Links

			83.2 App Link Intent Filters

			83.3 Handling App Link Intents

			83.4 Associating the App with a Website

			83.5 Summary

			84. An Android Studio App Links Tutorial

			84.1 About the Example App

			84.2 The Database Schema

			84.3 Loading and Running the Project

			84.4 Adding the URL Mapping

			84.5 Adding the Intent Filter

			84.6 Adding Intent Handling Code

			84.7 Testing the App

			84.8 Creating the Digital Asset Links File

			84.9 Testing the App Link

			84.10 Summary

			85. An Android Biometric Authentication Tutorial

			85.1 An Overview of Biometric Authentication

			85.2 Creating the Biometric Authentication Project

			85.3 Configuring Device Fingerprint Authentication

			85.4 Adding the Biometric Permission to the Manifest File

			85.5 Designing the User Interface

			85.6 Adding a Toast Convenience Method

			85.7 Checking the Security Settings

			85.8 Configuring the Authentication Callbacks

			85.9 Adding the CancellationSignal

			85.10 Starting the Biometric Prompt

			85.11 Testing the Project

			85.12 Summary

			86. Creating, Testing, and Uploading an Android App Bundle

			86.1 The Release Preparation Process

			86.2 Android App Bundles

			86.3 Register for a Google Play Developer Console Account

			86.4 Configuring the App in the Console

			86.5 Enabling Google Play App Signing

			86.6 Creating a Keystore File

			86.7 Creating the Android App Bundle

			86.8 Generating Test APK Files

			86.9 Uploading the App Bundle to the Google Play Developer Console

			86.10 Exploring the App Bundle

			86.11 Managing Testers

			86.12 Rolling the App Out for Testing

			86.13 Uploading New App Bundle Revisions

			86.14 Analyzing the App Bundle File

			86.15 Summary

			87. An Overview of Android In-App Billing

			87.1 Preparing a Project for In-App Purchasing

			87.2 Creating In-App Products and Subscriptions

			87.3 Billing Client Initialization

			87.4 Connecting to the Google Play Billing Library

			87.5 Querying Available Products

			87.6 Starting the Purchase Process

			87.7 Completing the Purchase

			87.8 Querying Previous Purchases

			87.9 Summary

			88. An Android In-App Purchasing Tutorial

			88.1 About the In-App Purchasing Example Project

			88.2 Creating the InAppPurchase Project

			88.3 Adding Libraries to the Project

			88.4 Designing the User Interface

			88.5 Adding the App to the Google Play Store

			88.6 Creating an In-App Product

			88.7 Enabling License Testers

			88.8 Initializing the Billing Client

			88.9 Querying the Product

			88.10 Launching the Purchase Flow

			88.11 Handling Purchase Updates

			88.12 Consuming the Product

			88.13 Restoring a Previous Purchase

			88.14 Testing the App

			88.15 Troubleshooting

			88.16 Summary

			89. Creating and Managing Overflow Menus on Android

			89.1 The Overflow Menu

			89.2 Creating an Overflow Menu

			89.3 Displaying an Overflow Menu

			89.4 Responding to Menu Item Selections

			89.5 Creating Checkable Item Groups

			89.6 Menus and the Android Studio Menu Editor

			89.7 Creating the Example Project

			89.8 Designing the Menu

			89.9 Modifying the onOptionsItemSelected() Method

			89.10 Testing the Application

			89.11 Summary

			90. Working with Material Design 3 Theming

			90.1 Material Design 2 vs. Material Design 3

			90.2 Understanding Material Design Theming

			90.3 Material Design 3 Theming

			90.4 Building a Custom Theme

			90.5 Summary

			91. A Material Design 3 Theming and Dynamic Color Tutorial

			91.1 Creating the ThemeDemo Project

			91.2 Designing the User Interface

			91.3 Building a New Theme

			91.4 Adding the Theme to the Project

			91.5 Enabling Dynamic Color Support

			91.6 Previewing Dynamic Colors

			91.7 Summary

			92. An Overview of Gradle in Android Studio

			92.1 An Overview of Gradle

			92.2 Gradle and Android Studio

			92.2.1 Sensible Defaults

			92.2.2 Dependencies

			92.2.3 Build Variants

			92.2.4 Manifest Entries

			92.2.5 APK Signing

			92.2.6 ProGuard Support

			92.3 The Property and Settings Gradle Build File

			92.4 The Top-level Gradle Build File

			92.5 Module Level Gradle Build Files

			92.6 Configuring Signing Settings in the Build File

			92.7 Running Gradle Tasks from the Command Line

			92.8 Summary

			Index

		

	

		
			1. Introduction

			This book, fully updated for Android Studio Jellyfish (2023.3.1) and the new UI, teaches you how to develop Android-based applications using the Java programming language.

			This book begins with the basics and outlines how to set up an Android development and testing environment, followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the design of Android applications and user interfaces using the Android Studio environment.

			Chapters also cover the Android Architecture Components, including view models, lifecycle management, Room database access, content providers, the Database Inspector, app navigation, live data, and data binding.

			More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

			The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars, tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

			Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers, and direct reply notifications.

			Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app billing, and submitting apps to the Google Play Developer Console.

			Assuming you already have some Java programming experience, are ready to download Android Studio and the Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you are ready to get started.

			1.1 Downloading the Code Samples

			The source code and Android Studio project files for the examples contained in this book are available for download at:

			https://www.payloadbooks.com/product/jellyfishjava

			The steps to load a project from the code samples into Android Studio are as follows:

			1. From the Welcome to Android Studio dialog, click on the Open button option.

			2. In the project selection dialog, navigate to and select the folder containing the project to be imported and click on OK.

			1.2 Feedback

			We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any comments, questions or concerns please contact us at info@payloadbooks.com.

			1.3 Errata

			While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book covering a subject area of this size and complexity may include some errors and oversights. Any known issues with the book will be outlined, together with solutions, at the following URL:

			https://www.payloadbooks.com/jellyfishjava

			If you find an error not listed in the errata, please let us know by emailing our technical support team at info@payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.

		

	
		
			2. Setting up an Android Studio Development Environment

			Before any work can begin on developing an Android application, the first step is to configure a computer system to act as the development platform. This involves several steps consisting of installing the Android Studio Integrated Development Environment (IDE), including the Android Software Development Kit (SDK) and the OpenJDK Java development environment.

			This chapter will cover the steps necessary to install the requisite components for Android application development on Windows, macOS, and Linux-based systems.

			2.1 System requirements

			Android application development may be performed on any of the following system types:

			•Windows 8/10/11 64-bit

			•macOS 10.14 or later running on Intel or Apple silicon

			•Chrome OS device with Intel i5 or higher

			•Linux systems with version 2.31 or later of the GNU C Library (glibc)

			•Minimum of 8GB of RAM

			•Approximately 8GB of available disk space

			•1280 x 800 minimum screen resolution

			2.2 Downloading the Android Studio package

			Most of the work involved in developing applications for Android will be performed using the Android Studio environment. The content and examples in this book were created based on Android Studio Jellyfish 2023.3.1 using the Android API 34 SDK (UpsideDownCake), which, at the time of writing, are the latest stable releases.

			Android Studio is, however, subject to frequent updates, so a newer version may have been released since this book was published.

			The latest release of Android Studio may be downloaded from the primary download page, which can be found at the following URL:

			https://developer.android.com/studio/index.html

			If this page provides instructions for downloading a newer version of Android Studio, there may be differences between this book and the software. A web search for “Android Studio Jellyfish” should provide the option to download the older version if these differences become a problem. Alternatively, visit the following web page to find Android Studio Jellyfish 2023.3.1 in the archives:

			https://developer.android.com/studio/archive

			2.3 Installing Android Studio

			Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which the installation is performed.

			2.3.1 Installation on Windows

			Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes button in the User Account Control dialog if it appears.

			Once the Android Studio setup wizard appears, work through the various screens to configure the installation to meet your requirements in terms of the file system location into which Android Studio should be installed. When prompted to select the components to install, ensure that the Android Studio and Android Virtual Device options are both selected.

			Although there are no strict rules on where Android Studio should be installed on the system, the remainder of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once the options have been configured, click the Install button to complete the installation process.

			2.3.2 Installation on macOS

			Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure 2-1:

			[image:]

			Figure 2-1

			To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android Studio package will then be installed into the Applications folder of the system, a process that will typically take a few seconds to complete.

			To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-click on it.

			For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the dock.

			2.3.3 Installation on Linux

			Having downloaded the Linux Android Studio package, open a terminal window, change directory to the location where Android Studio is to be installed, and execute the following command:

			tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

			Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore, assuming that the above command was executed in /home/demo, the software packages will be unpacked into /home/demo/android-studio.

			To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory, and execute the following command:

			./studio.sh

			2.4 Installing additional Android SDK packages

			When you launch Android Studio, the Welcome to Android Studio screen will appear as shown below:

			[image:]

			Figure 2-2

			The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install any missing or updated packages.

			This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog will appear as shown in Figure 2-3:

			[image:]

			Figure 2-3

			Google pairs each release of Android Studio with a maximum supported Application Programming Interface (API) level of the Android SDK. In the case of Android Studio Jellyfish, this is Android UpsideDownCake (API Level 34). This information can be confirmed using the following link:

			https://developer.android.com/studio/releases#api-level-support

			Immediately after installing Android Studio for the first time, it is likely that only the latest supported version of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes corresponding to the versions and click the Apply button. The rest of this book assumes that the Android UpsideDownCake (API Level 34) SDK is installed.

			Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before performing the installation. Click Finish once the installation is complete.

			It is also possible that updates will be listed as being available for the latest SDK. To access detailed information about the packages that are ready to be updated, enable the Show Package Details option located in the lower right-hand corner of the screen. This will display information similar to that shown in Figure 2-4:

			[image:]

			Figure 2-4

			The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of the item name and click the Apply button.

			In addition to the Android SDK packages, several tools are also installed for building Android applications. To view the currently installed packages and check for updates, remain within the SDK settings screen and select the SDK Tools tab as shown in Figure 2-5:

			[image:]

			Figure 2-5

			Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status column:

			•Android SDK Build-tools

			•Android Emulator

			•Android SDK Platform-tools

			•Google Play Services

			•Intel x86 Emulator Accelerator (HAXM installer)*

			•Google USB Driver (Windows only)

			•Layout Inspector image server for API 31-34

			*Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

			If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog appears, select the recommended memory allocation:

			[image:]

			Figure 2-6

			Once the installation is complete, review the package list and ensure that the selected packages are listed as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply button again.

			2.5 Installing the Android SDK Command-line Tools

			Android Studio includes tools that allow some tasks to be performed from your operating system command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the Android SDK Command-line Tools (latest) package as shown in Figure 2-7:

			[image:]

			Figure 2-7

			If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete the installation. When the installation completes, click Finish and close the SDK Manager dialog.

			For the operating system on which you are developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment variable.

			Regardless of your operating system, you will need to configure the PATH environment variable to include the following paths (where <path_to_android_sdk_installation> represents the file system location into which you installed the Android SDK):

			<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

			<path_to_android_sdk_installation>/sdk/platform-tools

			You can identify the location of the SDK on your system by launching the SDK Manager and referring to the Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-8:

			[image:]

			Figure 2-8

			Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system dependent:

			2.5.1 Windows 8.1

			1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the results area, click on it to launch the tool on the desktop.

			2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons, select the one labeled System.

			3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following entries would need to be added:

			C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

			C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

			4. Click OK in each dialog box and close the system properties control panel.

			Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run dialog. Within the Command Prompt window, enter:

			echo %Path%

			The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that the platform-tools value is correct by attempting to run the adb tool as follows:

			adb

			The tool should output a list of command-line options when executed.

			Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry if the avdmanager tool reports a problem with Java - this will be addressed later):

			avdmanager

			If a message similar to the following message appears for one or both of the commands, it is most likely that an incorrect path was appended to the Path environment variable:

			'adb' is not recognized as an internal or external command,

			operable program or batch file.

			2.5.2 Windows 10

			Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

			2.5.3 Windows 11

			Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen, select Advanced system settings from the Related links section. When the System Properties window appears, click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

			2.5.4 Linux

			This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as follows:

			export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-tools/latest/bin:/home/demo/android-studio/bin:$PATH

			Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable the studio.sh script to be executed regardless of the current directory within a terminal window.

			2.5.5 macOS

			Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

			/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

			/Users/demo/Library/Android/sdk/platform-tools

			Note that since this is a system directory, it will be necessary to use the sudo command when creating the file. For example:

			sudo vi /etc/paths.d/android-sdk

			2.6 Android Studio memory management

			Android Studio is a large and complex software application with many background processes. Although Android Studio has been criticized in the past for providing less than optimal performance, Google has made significant performance improvements in recent releases and continues to do so with each new version. These improvements include allowing the user to configure the amount of memory used by both the Android Studio IDE and the background processes used to build and run apps. This allows the software to take advantage of systems with larger amounts of RAM.

			If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also notify you that performance can be increased via a dialog similar to the one shown below:

			[image:]

			Figure 2-9

			To view and modify the current memory configuration, select the File -> Settings... main menu option (Android Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure 2-10 below:

			[image:]

			Figure 2-10

			When changing the memory allocation, be sure not to allocate more memory than necessary or than your system can spare without slowing down other processes.

			The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently loaded project. On the other hand, when a project is built and run from within Android Studio, several background processes (referred to as daemons) perform the task of compiling and running the app. When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an open project, select the Tools -> SDK Manager... menu option from the main menu.

			2.7 Updating Android Studio and the SDK

			From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready to be installed.

			To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the Android Studio main window (Android Studio -> Check for Updates... on macOS).

			2.8 Summary

			Before beginning the development of Android-based applications, the first step is to set up a suitable development environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK development environment). This chapter covers the steps necessary to install these packages on Windows, macOS, and Linux.

		

	
		
			3. Creating an Example Android App in Android Studio

			The preceding chapters of this book have explained how to configure an environment suitable for developing Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now is a good time to validate that all required development packages are installed and functioning correctly. The best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover creating an Android application project using Android Studio. Once the project has been created, a later chapter will explore using the Android emulator environment to perform a test run of the application.

			3.1 About the Project

			The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key aspects of Android app development without overwhelming the beginner by introducing too many concepts, such as the recommended app architecture and Android architecture components, at once. When following the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be covered in much greater detail later.

			3.2 Creating a New Android Project

			The first step in the application development process is to create a new project within the Android Studio environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-1:

			[image:]

			Figure 3-1

			Once this window appears, Android Studio is ready for a new project to be created. To create the new project, click on the New Project option to display the first screen of the New Project wizard.

			3.3 Creating an Activity

			The next step is to define the type of initial activity to be created for the application. Options are available to create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is available when developing Android applications, many of which will be covered extensively in later chapters. For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting of a single TextView object.

			[image:]

			Figure 3-2

			With the Empty Views Activity option selected, click Next to continue with the project configuration.

			3.4 Defining the Project and SDK Settings

			In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is the name by which the application will be referenced and identified within Android Studio and is also the name that would be used if the completed application were to go on sale in the Google Play store.

			The Package name uniquely identifies the application within the Android application ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the application has been named AndroidSample, then the package name might be specified as follows:

			com.mycompany.androidsample

			If you do not have a domain name, you can enter any other string into the Company Domain field, or you may use example.com for testing, though this will need to be changed before an application can be published:

			com.example.androidsample

			The Save location setting will default to a location in the folder named AndroidStudioProjects located in your home directory and may be changed by clicking on the folder icon to the right of the text field containing the current path setting.

			Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects created in this book unless a necessary feature is only available in a more recent version. The objective here is to build an app using the latest Android SDK while retaining compatibility with devices running older versions of Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDK setting will outline the percentage of Android devices currently in use on which the app will run. Click on the Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

			[image:]

			Figure 3-3

			Finally, change the Language menu to Java and select Kotlin DSL (build.gradle.kts) as the build configuration language before clicking Finish to create the project.

			3.5 Modifying the Example Application

			Once the project has been created, the main window will appear containing our AndroidSample project, as illustrated in Figure 3-4 below:

			[image:]

			Figure 3-4

			The newly created project and references to associated files are listed in the Project tool window on the left side of the main project window. The Project tool window has several modes in which information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the menu to switch mode:

			[image:]

			Figure 3-5

			3.6 Modifying the User Interface

			The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window, double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel of the Android Studio main window:

			[image:]

			Figure 3-6

			In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure) which is reflected in the visual representation of the device within the Layout Editor panel. A range of other device options are available by clicking on this menu.

			Use the System UI Mode button ([image:]) to turn Night mode on and off for the device screen layout. To change the orientation of the device representation between landscape and portrait, use the drop-down menu showing the [image:] icon.

			As we can see in the device screen, the content layout already includes a label that displays a “Hello World!” message. Running down the left-hand side of the panel is a palette containing different categories of user interface components that may be used to construct a user interface, such as buttons, labels, and text fields. However, it should be noted that not all user interface components are visible to the user. One such category consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual user interface components are positioned and managed on the screen. Though it is difficult to tell from looking at the visual representation of the user interface, the current design has been created using a ConstraintLayout. This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

			[image:]

			Figure 3-7

			As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent called main and a TextView child object.

			Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components are added to the layout, the Layout Editor will automatically add constraints to ensure the components are correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

			[image:]

			Figure 3-8

			The next step in modifying the application is to add some additional components to the layout, the first of which will be a Button for the user to press to initiate the currency conversion.

			The Palette panel consists of two columns, with the left-hand column containing a list of view component categories. The right-hand column lists the components contained within the currently selected category. In Figure 3-9, for example, the Button view is currently selected within the Buttons category:

			[image:]

			Figure 3-9

			Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface design so that it is positioned beneath the existing TextView widget:

			[image:]

			Figure 3-10

			The next step is to change the text currently displayed by the Button component. The panel located to the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected component in the layout. Within this panel, locate the text property in the Common Attributes section and change the current value from “Button” to “Convert”, as shown in Figure 3-11:

			[image:]

			Figure 3-11

			The second text property with a wrench next to it allows a text property to be set, which only appears within the Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout will behave with different settings without running the app repeatedly.

			Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints button (Figure 3-12) to add any missing constraints to the layout:

			[image:]

			Figure 3-12

			It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated in Figure 3-13. This warning indicates potential problems with the layout. For details on any problems, click on the button:

			[image:]

			Figure 3-13

			When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

			[image:]

			Figure 3-14

			This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected within the layout file. In our example, only the following problem is listed:

			button <Button>: Hardcoded text

			When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the problem (C). In this case, the explanation reads as follows:

			Hardcoded string "Convert", should use @string resource

			The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

			This I18N message informs us that a potential issue exists concerning the future internationalization of the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N” and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be stored as resources wherever possible when developing Android applications. Doing so enables changes to the appearance of the application to be made by modifying resource files instead of changing the application source code. This can be especially valuable when translating a user interface to a different spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who will then perform the translation work and return the translated file for inclusion in the application. This enables multiple languages to be targeted without the necessity for any source code changes to be made. In this instance, we are going to create a new resource named convert_string and assign to it the string “Convert”.

			Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the menu, as shown in Figure 3-15:

			[image:]

			Figure 3-15

			After selecting this option, the Extract Resource panel (Figure 3-16) will appear. Within this panel, change the resource name field to convert_string and leave the resource value set to Convert before clicking on the OK button:

			[image:]

			Figure 3-16

			The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon and extract the string to a resource named dollars_hint.

			The code written later in this chapter will need to access the dollar value entered by the user into the EditText field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window when the widget is selected in the layout, as shown in Figure 3-17:

			[image:]

			Figure 3-17

			Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any references elsewhere within the project to the old id are automatically updated to use the new id:

			[image:]

			Figure 3-18

			Repeat the steps to set the id of the TextView widget to textView, if necessary.

			Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should resemble that shown in Figure 3-19:

			[image:]

			Figure 3-19

			3.7 Reviewing the Layout and Resource Files

			Before moving on to the next step, we will look at some internal aspects of user interface design and resource handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C in Figure 3-20 below:

			[image:]

			Figure 3-20

			By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the layout and XML are displayed, as shown in Figure 3-21:

			[image:]

			Figure 3-21

			The button to the left of the View Modes button (marked B in Figure 3-20 above) is used to toggle between Code and Split modes quickly.

			As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component, which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the text property of the Button is set to our convert_string resource. Although complexity and content vary, all user interface layouts are structured in this hierarchical, XML-based way.

			As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To see this in action, switch to Split mode and modify the XML layout to change the background color of the ConstraintLayout to a shade of red as follows:

			<?xml version="1.0" encoding="utf-8"?>

			<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

			 xmlns:app="http://schemas.android.com/apk/res-auto"

			 xmlns:tools="http://schemas.android.com/tools"

			 android:id="@+id/main"

			 android:layout_width="match_parent"

			 android:layout_height="match_parent"

			 tools:context=".MainActivity"

			 android:background="#ff2438" >

			.

			.

			</androidx.constraintlayout.widget.ConstraintLayout>

			Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square will display a color chooser allowing a different color to be selected:

			[image:]

			Figure 3-22

			Before proceeding, delete the background property from the layout file so that the background returns to the default setting.

			Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it into the editor. Currently, the XML should read as follows:

			<resources>

			 <string name="app_name">AndroidSample</string>

			 <string name="convert_string">Convert</string>

			 <string name="dollars_hint">dollars</string>

			</resources>

			To demonstrate resources in action, change the string value currently assigned to the convert_string resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor panel. Note that the layout has picked up the new resource value for the string.

			There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource to the original “Convert” text and to add the following additional entry for a string resource that will be referenced later in the app code:

			<resources>

			 <string name="app_name">AndroidSample</string>

			 <string name="convert_string">Convert</string>

			 <string name="dollars_hint">dollars</string>

			 <string name="no_value_string">No Value</string>

			</resources>

			Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel of the Android Studio window:

			[image:]

			Figure 3-23

			This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages to be managed.

			3.8 Adding Interaction

			The final step in this example project is to make the app interactive so that when the user enters a dollar value into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be configured so that a method in the app code is called when an onClick event is triggered. Event handling can be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to the Attributes tool window, and specify a method named convertCurrency as shown below:

			[image:]

			Figure 3-24

			Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it is also necessary to import some additional Android packages:

			package com.example.androidsample;

			

			import android.os.Bundle;

			import android.view.View;

			import android.widget.EditText;

			import android.widget.TextView;

			import java.util.Locale;

			

			public class MainActivity extends AppCompatActivity {

			

			 @Override

			 protected void onCreate(Bundle savedInstanceState) {

			 super.onCreate(savedInstanceState);

			.

			.

			 }

			

			 public void convertCurrency(View view) {

			

			 EditText dollarText = findViewById(R.id.dollarText);

			 TextView textView = findViewById(R.id.textView);

			

			 if (!dollarText.getText().toString().isEmpty()) {

			

			 float dollarValue = Float.parseFloat(dollarText.getText().toString());

			 float euroValue = dollarValue * 0.85F;

			 textView.setText(String.format(Locale.ENGLISH,"%.2f", euroValue));

			 } else {

			 textView.setText(R.string.no_value_string);

			 }

			 }

			}

			The method begins by obtaining references to the EditText and TextView objects by making a call to a method named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating point value, and converted to euros. Finally, the result is displayed on the TextView widget.

			If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In particular, the topic of accessing widgets from within code using findByViewId and an introduction to an alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android View Binding”.

			3.9 Summary

			While not excessively complex, several steps are involved in setting up an Android development environment. Having performed those steps, it is worth working through an example to ensure the environment is correctly installed and configured. In this chapter, we have created an example application and then used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the underlying XML used to store Android application user interface designs.

			Finally, an onClick event was added to a Button connected to a method implemented to extract the user input from the EditText component, convert it from dollars to euros and then display the result on the TextView.

			With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in detail in the next chapter.

		

	

		
			4. Creating an Android Virtual Device (AVD) in Android Studio

			Although the Android Studio Preview panel allows us to see the layout we are designing, compiling and running an entire app will be necessary to thoroughly test that it works. An Android application may be tested by installing and running it on a physical device or in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and configured to match the specifications of a particular device model. In this chapter, we will work through creating such a virtual device using the Pixel 4 phone as a reference example.

			4.1 About Android Virtual Devices

			AVDs are emulators that allow Android applications to be tested without needing to install the application on a physical Android-based device. An AVD may be configured to emulate various hardware features, including screen size, memory capacity, and the presence or otherwise of features such as a camera, GPS navigation support, or an accelerometer. Several emulator templates are installed as part of the standard Android Studio installation, allowing AVDs to be configured for various devices. Custom configurations may be created to match any physical Android device by specifying properties such as processor type, memory capacity, and the size and pixel density of the screen.

			An AVD session can appear as a separate window or embedded within the Android Studio window.

			New AVDs are created and managed using the Android Virtual Device Manager, which may be used in command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android Studio environment by clicking the Device Manager button in the right-hand tool window bar, as indicated in Figure 4-1:

			 [image:]

			Figure 4-1

			Once opened, the manager will appear as a tool window, as shown in Figure 4-2:

			[image:]

			Figure 4-2

			If you installed Android Studio for the first time on a computer (as opposed to upgrading an existing Android Studio installation), the installer might have created an initial AVD instance ready for use, as shown in Figure 4-3:

			[image:]

			Figure 4-3

			If this AVD is present on your system, you can use it to test apps. If no AVD was created, or you would like to create AVDs for different device types, follow the steps in the rest of this chapter.

			To add a new AVD, click on the ‘+’ button in the Device Manager toolbar and select the Create Virtual Device option to open the Virtual Device Configuration dialog:

			[image:]

			Figure 4-4

			Within the dialog, perform the following steps to create a Pixel 4-compatible emulator:

			1. Select the Phone option From the Category panel to display the available Android phone AVD templates.

			2. Select the Pixel 4 device option and click Next.

			3. On the System Image screen, select the latest version of Android. If the system image has not yet been installed, a Download link will be provided next to the Release Name. Click this link to download and install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

			4. Click Next to proceed and enter a descriptive name (for example, Pixel 4 API 34) into the name field or accept the default name.

			5. Click Finish to create the AVD.

			6. If future modifications to the AVD are necessary, re-open the Device Manager, select the AVD from the list, and click on the pencil icon in the Actions column to edit the settings.

			4.2 Starting the Emulator

			To test the newly created AVD emulator, select the emulator from the Device Manager and click the triangle shaped Start button. The emulator will appear embedded into the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to start will depend on the configuration of both the AVD and the system on which it is running:

			[image:]

			Figure 4-5

			To hide and show the emulator tool window, click the Running Devices tool window button (marked A above). Click the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate multiple emulator sessions, with each session represented by a tab. Figure 4-6, for example, shows a tool window with two emulator sessions:

			[image:]

			Figure 4-6

			To switch between sessions, click on the corresponding tab.

			Although the emulator probably defaulted to appearing in portrait orientation, this and other default options can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the Actions column of the device row. In the configuration screen, locate the Startup orientation section and change the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the emulator are covered in the next chapter, “Using and Configuring the Android Studio AVD Emulator”).

			To save time in the next section of this chapter, leave the emulator running before proceeding.

			4.3 Running the Application in the AVD

			With an AVD emulator configured, the example AndroidSample application created in the earlier chapter can now be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-7 below), then either click the run button represented by a triangle (B), select the Run -> Run ‘app’ menu option, or use the Ctrl-R keyboard shortcut:

			[image:]

			Figure 4-7

			The device menu (A) may be used to select a different AVD instance or physical device as the run target and also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device connection configuration and troubleshooting options:

			[image:]

			Figure 4-8

			Once the application is installed and running, the user interface for the first fragment will appear within the emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

			[image:]

			Figure 4-9

			Once the run process begins, the Run tool window will appear. The Run tool window will display diagnostic information as the application package is installed and launched. Figure 4-10 shows the Run tool window output from a typical successful application launch:

			[image:]

			Figure 4-10

			If problems are encountered during the launch process, the Run tool window will provide information to help isolate the problem’s cause.

			Assuming the application loads into the emulator and runs as expected, we have safely verified that the Android development environment is correctly installed and configured. With the app running, try performing a currency conversion to verify that the app works as intended.

			4.4 Running on Multiple Devices

			The run target menu shown in Figure 4-8 above includes an option to run the app on multiple emulators and devices in parallel. When selected, this option displays the dialog in Figure 4-11, providing a list of the AVDs configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or devices to be targeted before clicking on the Run button:

			[image:]

			Figure 4-11

			After clicking the Run button, Android Studio will launch the app on the selected emulators and devices.

			4.5 Stopping a Running Application

			To stop a running application, click the stop button located in the main toolbar, as shown in Figure 4-12:

			[image:]

			Figure 4-12

			An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the window bar button that becomes available when the app is running. Once the Run tool window appears, click the stop button highlighted in Figure 4-13 below:

			[image:]

			Figure 4-13

			4.6 Supporting Dark Theme

			To test how an app behaves when dark theme is enabled, open the Settings app within the running Android instance in the emulator, choose the Display category, and enable the Dark theme option as shown in Figure 4-14:

			[image:]

			Figure 4-14

			With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme, including a black background and a purple background color on the button, as shown in Figure 4-15:

			[image:]

			Figure 4-15

			Return to the Settings app and turn off Dark theme mode before continuing.

			4.7 Running the Emulator in a Separate Window

			So far in this chapter, we have only used the emulator as a tool window embedded within the main Android Studio window. The emulator can be configured to appear in a separate window within the Settings dialog, which can be displayed by clicking on the IDE and Project Settings button located in the Android Studio toolbar, as highlighted in Figure 4-16:

			[image:]

			Figure 4-16

			Within the Settings dialog, navigate to Tools -> Emulator in the side panel, and disable the Launch in the Running Devices tool window option:

			[image:]

			Figure 4-17

			With the option disabled, click the Apply button followed by OK to commit the change, then exit the current emulator session by clicking on the close button on the tab marked B in Figure 4-5 above.

			Run the sample app once again, at which point the emulator will appear as a separate window, as shown below:

			[image:]

			Figure 4-18

			The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator running in a tool window, return to the settings screen and re-enable the Launch in the Running Devices tool window option. Before committing to standalone mode, however, keep in mind that the Running Devices tool window may also be detached from the main Android Studio window from within the tool window Options menu, which is accessed by clicking the button indicated in Figure 4-19:

			[image:]

			Figure 4-19

			From within the Options menu, select View Mode -> Float to detach the tool window from the Android Studio main window:

			[image:]

			Figure 4-20

			To re-dock the Running Devices tool window, click on the Dock button shown in Figure 4-21:

			[image:]

			Figure 4-21

			4.8 Removing the Device Frame

			The emulator can be configured to appear with or without the device frame. To change the setting, exit the emulator, open the Device Manager, select the AVD from the list, and click on the menu button indicated by the arrow in Figure 4-22:

			[image:]

			Figure 4-22

			Select the Edit option and, in the settings screen, locate and switch off the Enable device frame option before clicking the Finish button:

			[image:]

			Figure 4-23

			Once the device frame has been disabled, the emulator will appear as shown in Figure 4-24 the next time it is launched:

			[image:]

			Figure 4-24

			4.9 Summary

			A typical application development process follows a coding, compiling, and running cycle in a test environment. Android applications may be tested on a physical Android device or an Android Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool, which may be used as a command-line tool or via a graphical user interface. When creating an AVD to simulate a specific Android device model, the virtual device should be configured with a hardware specification matching that of the physical device.

			The AVD emulator session may be displayed as a standalone window or embedded into the main Android Studio user interface.

		

	

		
			5. Using and Configuring the Android Studio AVD Emulator

			Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide an overview of the Android Studio AVD emulator and highlight many of the configuration features available to customize the environment in both standalone and tool window modes.

			5.1 The Emulator Environment

			When launched in standalone mode, the emulator displays an initial splash screen during the loading process. Once loaded, the main emulator window appears, containing a representation of the chosen device type (in the case of Figure 5-1, this is a Pixel 4 device):

			[image:]

			Figure 5-1

			The toolbar positioned along the right-hand edge of the window provides quick access to the emulator controls and configuration options.

			5.2 Emulator Toolbar Options

			The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior of the emulator environment.

			[image:]

			Figure 5-2

			Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the extended controls panel.

			Though many of the options contained within the toolbar are self-explanatory, each option will be covered for the sake of completeness:

			•Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected, while the ‘-’ option minimizes the entire window.

			•Power – The Power button simulates the hardware power button on a physical Android device. Clicking and releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate the device “Power off” request sequence.

			•Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

			•Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

			•Take Screenshot – Takes a screenshot of the content displayed on the device screen. The captured image is stored at the location specified in the Settings screen of the extended controls panel, as outlined later in this chapter.

			•Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this chapter.

			•Back – Performs the standard Android “Back” navigation to return to a previous screen.

			•Home – Displays the device’s home screen.

			•Overview – Simulates selection of the standard Android “Overview” navigation, which displays the currently running apps on the device.

			•Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the emulator is running a foldable device system image.

			•Extended Controls – Displays the extended controls panel, allowing for the configuration of options such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint identification.

			5.3 Working in Zoom Mode

			The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active, the toolbar button is depressed, and the mouse pointer appears as a magnifying glass when hovering over the device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

			Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when the mouse button is released.

			While in zoom mode, the screen’s visible area may be panned using the horizontal and vertical scrollbars located within the emulator window.

			5.4 Resizing the Emulator Window

			The emulator window’s size (and the device’s corresponding representation) can be changed at any time by enabling Zoom mode and clicking and dragging on any of the corners or sides of the window.

			5.5 Extended Control Options

			The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings will be displayed. Selecting a different category from the left-hand panel will display the corresponding group of controls:

			[image:]

			Figure 5-3

			5.5.1 Location

			The location controls allow simulated location information to be sent to the emulator as decimal or sexigesimal coordinates. Location information can take the form of a single location or a sequence of points representing the device’s movement, the latter being provided via a file in either GPS Exchange (GPX) or Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to select single points or travel routes visually.

			5.5.2 Displays

			In addition to the main display shown within the emulator screen, the Displays option allows additional displays to be added running within the same Android instance. This can be useful for testing apps for dual-screen devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size and appear within the same emulator window as the main screen.

			5.5.3 Cellular

			The type of cellular connection being simulated can be changed within the cellular settings screen. Options are available to simulate different network types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data scenarios, such as roaming and denied access.

			5.5.4 Battery

			Various battery state and charging conditions can be simulated on this panel of the extended controls screen, including battery charge level, battery health, and whether the AC charger is currently connected.

			5.5.5 Camera

			The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual building through which you can navigate by holding down the Option key (Alt on Windows) while using the mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This extended configuration option allows different images to be uploaded for display within the virtual environment.

			5.5.6 Phone

			The phone extended controls provide two straightforward but helpful simulations within the emulator. The first option simulates an incoming call from a designated phone number. This can be particularly useful when testing how an app handles high-level interrupts.

			The second option allows the receipt of text messages to be simulated within the emulator session. As in the real world, these messages appear within the Message app and trigger the standard notifications within the emulator.

			5.5.7 Directional Pad

			A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected externally (such as a game controller) that provides directional controls (left, right, up, down). The directional pad settings allow D-Pad interaction to be simulated within the emulator.

			5.5.8 Microphone

			The microphone settings allow the microphone to be enabled and virtual headset and microphone connections to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

			5.5.9 Fingerprint

			Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes it possible to test fingerprint authentication without the need to test apps on a physical device containing a fingerprint sensor. Details on configuring fingerprint testing within the emulator will be covered later in this chapter.

			5.5.10 Virtual Sensors

			The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects of the physical motion of a device, such as rotation, movement, and tilting through yaw, pitch, and roll settings.

			5.5.11 Snapshots

			Snapshots contain the state of the currently running AVD session to be saved and rapidly restored, making it easy to return the emulator to an exact state. Snapshots are covered later in this chapter.

			5.5.12 Record and Playback

			Allows the emulator screen and audio to be recorded and saved in WebM or animated GIF format.

			5.5.13 Google Play

			If the emulator is running a version of Android with Google Play Services installed, this option displays the current Google Play version. It also provides the option to update the emulator to the latest version.

			5.5.14 Settings

			The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved, configure OpenGL support levels, and configure the emulator window to appear on top of other windows on the desktop.

			5.5.15 Help

			The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator online documentation, file bugs and send feedback, and emulator version information.

			5.6 Working with Snapshots

			When an emulator starts for the first time, it performs a cold boot, much like a physical Android device when powered on. This cold boot process can take some time to complete as the operating system loads and all the background processes are started. To avoid the necessity of going through this process every time the emulator is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is loaded into memory, and execution resumes from where it left off previously, allowing the emulator to restart in a fraction of the time needed for a cold boot to complete.

			The Snapshots screen of the extended controls panel can store additional snapshots at any point during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list (B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the snapshot name and description and to delete (E) the currently selected snapshot:

			[image:]

			Figure 5-4

			You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot, or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in Figure 5-5:

			[image:]

			Figure 5-5

			5.7 Configuring Fingerprint Emulation

			The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication within Android apps. Configuring simulated fingerprints begins by launching the emulator, opening the Settings app, and selecting the Security option.

			Within the Security settings screen, select the fingerprint option. On the resulting information screen, click on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled, a backup screen unlocking method (such as a PIN) must be configured. Enter and confirm a suitable PIN and complete the PIN entry process by accepting the default notifications option.

			Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point, display the extended controls dialog, select the Fingerprint category in the left-hand panel, and make sure that Finger 1 is selected in the main settings panel:

			[image:]

			Figure 5-6

			Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report the successful addition of the fingerprint:

			[image:]

			Figure 5-7

			To add additional fingerprints, click on the Add Another button and select another finger from the extended controls panel menu before clicking on the Touch Sensor button again.

			5.8 The Emulator in Tool Window Mode

			As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android Studio can be configured to launch the emulator in an embedded tool window so that it does not appear in a separate window. When running in this mode, the same controls available in standalone mode are provided in the toolbar, as shown in Figure 5-8:

			[image:]

			Figure 5-8

			From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

			•Power

			•Volume Up

			•Volume Down

			•Rotate Left

			•Rotate Right

			•Back

			•Home

			•Overview

			•Screenshot

			•Snapshots

			•Extended Controls

			5.9 Creating a Resizable Emulator

			In addition to emulators configured to match specific Android device models, Android Studio also provides a resizable AVD that allows you to switch between phone, tablet, and foldable device sizes. To create a resizable emulator, open the Device Manager and click the ‘+’ toolbar button. Next, select the Resizable device definition illustrated in Figure 5-9, and follow the usual steps to create a new AVD:

			[image:]

			Figure 5-9

			When you run an app on the new emulator within a tool window, the Display mode option will appear in the toolbar, allowing you to switch between emulator configurations as shown in Figure 5-10:

			[image:]

			Figure 5-10

			If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar, as shown below:

			[image:]

			Figure 5-11

			Once a foldable display mode has been selected, the Change posture menu may be used to test the app in open, closed, and half-open configurations:

			[image:]

			Figure 5-12

			5.10 Summary

			Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test applications without running them on a physical Android device. This chapter has provided a brief tour of the emulator and highlighted key features available to configure and customize the environment to simulate different testing conditions.

		

	
		
			6. A Tour of the Android Studio User Interface

			While it is tempting to plunge into running the example application created in the previous chapter, it involves using aspects of the Android Studio user interface, which are best described in advance.

			Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use. That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio user interface will shorten the learning curve in later chapters of the book. With this in mind, this chapter will provide an overview of the various areas and components of the Android Studio environment.

			6.1 The Welcome Screen

			The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android Studio was previously exited while a project was still open, the tool will bypass the welcome screen the next time it is launched, automatically opening the previously active project.

			[image:]

			Figure 6-1

			In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening and creating projects, along with access to projects currently under version control. In addition, the Customize screen provides options to change the theme and font settings used by both the IDE and the editor. Android Studio plugins may be viewed, installed, and managed using the Plugins option.

			Additional options are available by selecting the More Actions link or using the menu shown in Figure 6-2 when the list of recent projects replaces the More Actions link:

			[image:]

			Figure 6-2

			6.2 The Menu Bar

			The Android Studio main window will appear when a new project is created, or an existing one is opened. When multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration of the window will vary depending on the operating system Android Studio is running on and which tools and panels were displayed the last time the project was open. The appearance, for example, of the main menu bar will differ depending on the host operating system. On macOS, Android Studio follows the standard convention of placing the menu bar along the top edge of the desktop, as illustrated in Figure 6-3:

			[image:]

			Figure 6-3

			When Android Studio is running on Windows or Linux, however, the main menu is accessed via the button highlighted in Figure 6-4:

			[image:]

			Figure 6-4

			6.3 The Main Window

			Once a project is open, the Android Studio main window will typically resemble that of Figure 6-5:

			[image:]

			Figure 6-5

			The various elements of the main window can be summarized as follows:

			A – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting the Customize Toolbar… menu option. The toolbar menu shown in Figure 6-6 provides a convenient way to perform tasks such as creating and opening projects and switching between windows when multiple projects are open:

			[image:]

			Figure 6-6

			B – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders and files at that location, ready for selection. Similarly, clicking on a class name displays a menu listing methods contained within that class:

			[image:]

			Figure 6-7

			Select a method from the list to be taken to the corresponding location within the code editor. You can hide, display, and change the position of this bar using the View -> Appearance -> Navigation Bar menu option.

			C – Editor Window – The editor window displays the content of the file on which the developer is currently working. When multiple files are open, each file is represented by a tab located along the top edge of the editor, as shown in Figure 6-8:

			[image:]

			Figure 6-8

			D – Status Bar – The status bar displays informational messages about the project and the activities of Android Studio. Hovering over items in the status bar will display a description of that field. Many fields are interactive, allowing users to click to perform tasks or obtain more detailed status information.

			[image:]

			Figure 6-9

			The widgets displayed in the status bar can be changed using the View -> Appearance -> Status Bar Widgets menu.

			E – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in several different ways. The default setting is the Android view which is the mode primarily used in the remainder of this book.

			The project tool window is just one of many available tools within the Android Studio environment.

			6.4 The Tool Windows

			In addition to the project view tool window, Android Studio also includes many other windows, which, when enabled, are displayed tool window bars that appear along the left and right edges of the main window and contain buttons for showing and hiding each of the tool windows. Figure 6-10 shows typical tool window bar configurations, though the buttons and their positioning may differ for your Android Studio installation.

			[image:]

			Figure 6-10

			Clicking on a button will display the corresponding tool window, while a second click will hide the window. The location of a button in a tool window bar indicates the side of the window against which the window will appear when displayed. These positions can be changed by clicking and dragging the buttons to different locations in other window toolbars.

			Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

			•Project (A) – The project view provides an overview of the file structure that makes up the project allowing for quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded into the appropriate editing tool.

			•Resource Manager (B) - A tool for adding and managing resources and assets within the project, such as images, colors, and layout files.

			•More Tool Windows (C) - Displays a menu containing additional tool windows not currently displayed in a tool window bar. When a tool window is selected from this menu, it will appear as a button in a tool window bar.

			•Build (D) - Displays a real-time view of each process step while Android Studio builds the current project.

			•Run (E) – The run tool window becomes available when an application is currently running and provides a view of the results of the run together with options to stop or restart a running process. If an application fails to install and run on a device or emulator, this window typically provides diagnostic information about the problem.

			•App Quality Insights (F) - Provides access to the cloud-based Firebase app quality and crash analytics platform.

			•Logcat (G) – The Logcat tool window provides access to the monitoring log output from a running application and options for taking screenshots and videos of the application and stopping and restarting a process.

			•Problems (H) - A central location to view all of the current errors or warnings within the project. Double-clicking on an item in the problem list will take you to the problem file and location.

			•Terminal (I) – Provides access to a terminal window on the system on which Android Studio is running. On Windows systems, this is the Command Prompt interface, while on Linux and macOS systems, this takes the form of a Terminal prompt.

			•Version Control (J) - This tool window is used when the project files are under source code version control, allowing access to Git repositories and code change history.

			•Notifications (K) - This tool window is used when the project files are under source code version control, allowing access to Git repositories and code change history.

			•Gradle (L) – The Gradle tool window provides a view of the Gradle tasks that make up the project build configuration. The window lists the tasks involved in compiling the various elements of the project into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later in this book.

			•Device Manager (M) - Provides access to the Device Manager tool window where physical Android device connections and emulators may be added, removed, and managed.

			•Running Devices (N) - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

			•Gemini (O) - Android Studio’s AI powered coding assistant. Currently in preview, this tool helps you develop your app by providing coding suggestions and solutions.

			•Assistant (P) - Display the Assistant panel, the content of which will differ depending on which Android Studio feature you are currently using.

			•App Inspection - Provides access to the Database and Background Task inspectors. The Database Inspector allows you to inspect, query, and modify your app’s databases while running. The Background Task Inspector allows background worker tasks created using WorkManager to be monitored and managed.

			•Bookmarks – The Bookmarks tool window provides quick access to bookmarked files and code lines. For example, right-clicking on a file in the project view allows access to an Add to Bookmarks menu option. Similarly, you can bookmark a line of code in a source file by moving the cursor to that line and pressing the F11 key (F3 on macOS). All bookmarked items can be accessed through this tool window.

			•Build Variants – The build variants tool window provides a quick way to configure different build targets for the current application project (for example, different builds for debugging and release versions of the application or multiple builds to target different device categories).

			•Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window provides direct access to the filesystem of the currently connected Android device or emulator, allowing the filesystem to be browsed and files copied to the local filesystem.

			•Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user interface layout.

			•Structure – The structure tool provides a high-level view of the structure of the source file currently displayed in the editor. This information includes a list of items such as classes, methods, and variables in the file. Selecting an item from the structure list will take you to that location in the source file in the editor window.

			•TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on the project. Android Studio compiles this list by scanning the source files that make up the project to look for comments that match specified TODO patterns. These patterns can be reviewed and changed by opening the Settings dialog and navigating to the TODO entry listed under Editor.

			6.5 The Tool Window Menus

			Each tool window has its own toolbar along the top edge. The menu buttons within these toolbars vary from one tool to the next, though all tool windows contain an Options menu (marked A in Figure 6-11):

			[image:]

			Figure 6-11

			The Options menu allows various aspects of the window to be changed. Figure 6-12, for example, shows the Options menu for the Project tool window. Settings are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android Studio main window, and to move and resize the tool panel:

			[image:]

			Figure 6-12

			All tool windows also include a far-right button on the toolbar (marked B in Figure 6-11 above), providing an additional way to hide the tool window from view. A search of the items within a tool window can be performed by giving that window focus by clicking on it and then typing the search term (for example, the name of a file in the Project tool window). A search box will appear in the window’s toolbar, and items matching the search highlighted.

			6.6 Android Studio Keyboard Shortcuts

			Android Studio includes many keyboard shortcuts to save time when performing common tasks. A complete keyboard shortcut keymap listing can be viewed and printed from within the Android Studio project window by selecting the Help -> Keyboard Shortcuts PDF menu option. You may also list and modify the keyboard shortcuts by opening the Settings dialog and clicking on the Keymap entry, as shown in Figure 6-13 below:

			[image:]

			Figure 6-13

			6.7 Switcher and Recent Files Navigation

			Another useful mechanism for navigating within the Android Studio main window involves using the Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool windows and currently open files (Figure 6-14).

			[image:]

			Figure 6-14

			Once displayed, the switcher will remain visible as long as the Ctrl key remains depressed. Repeatedly tapping the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

			In addition to the Switcher, the Recent Files panel provides navigation to recently opened files (Figure 6-15). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse pointer can be used to select an option, or the keyboard arrow keys can be used to scroll through the file name and tool window options. Pressing the Enter key will select the currently highlighted item:

			[image:]

			Figure 6-15

			6.8 Changing the Android Studio Theme

			The overall theme of the Android Studio environment may be changed using the Settings dialog. Once the settings dialog is displayed, select the Appearance & Behavior option in the left-hand panel, followed by Appearance. Then, change the setting of the Theme menu before clicking on the OK button. The themes available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast, and Darcula. Figure 6-16 shows an example of the main window with the Dark theme selected:

			[image:]

			Figure 6-16

			To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the Sync with OS option and use the drop-down menu to control which theme to use for each mode:

			[image:]

			Figure 6-17

			Hundreds of additional themes are available for download in the Android Studio Marketplace, which can be accessed by clicking on the Get more themes link.

			6.9 Summary

			The primary elements of the Android Studio environment consist of the welcome screen and main window. Each open project is assigned its own main window, which, in turn, consists of a menu bar, toolbar, editing and design area, status bar, and a collection of tool windows. Tool windows appear on the sides of the main window.

			There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

		

	
		
			7. Testing Android Studio Apps on a Physical Android Device

			While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute for performing real-world application testing on a physical Android device, and some Android features are only available on physical Android devices.

			Communication with both AVD instances and connected Android devices is handled by the Android Debug Bridge (ADB). This chapter explains how to configure the adb environment to enable application testing on an Android device with macOS, Windows, and Linux-based systems.

			7.1 An Overview of the Android Debug Bridge (ADB)

			The primary purpose of the ADB is to facilitate interaction between a development system, in this case, Android Studio, and both AVD emulators and Android devices to run and debug applications. ADB allows you to connect to devices via WiFi or USB cable.

			The ADB consists of a client, a server process running in the background on the development system, and a daemon background process running in either AVDs or real Android devices such as phones and tablets.

			The ADB client can take a variety of forms. For example, a client is provided as a command-line tool named adb in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a built-in client.

			A variety of tasks may be performed using the adb command-line tool. For example, active virtual or physical devices may be listed using the devices command-line argument. The following command output indicates the presence of an AVD on the system but no physical devices:

			$ adb devices

			List of devices attached

			emulator-5554 device

			7.2 Enabling USB Debugging ADB on Android Devices

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/as_device_and_run_toolbar.jpg
[Pixel 4 API 34

OEBPS/image/as_android_sample_button_text.jpg
strokeWidth

cornerRadius @null
rippleColor 22 @color/m3_button_rip
& text

contentDescription

OEBPS/image/as_stop_button.jpg
[Pixel 4 API 34 = app . O i

OEBPS/image/as_android_sample_button.jpg
Hello World!

OEBPS/image/as_layout_editor_view_mode_buttons.jpg
Y

11t Attributes
Iofl ° 6 o

-

9

ﬁw. Il

(

OEBPS/image/as_sdk_manager_command_line_tools.jpg
Settings

Q- Languages & Frameworks > Android SDK Reset
> Appearance & Behavior Manager for the Android SDK and Tools used by the IDE
Keymap Android SDK Location: /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space
> Editor
> Build, Execution, Deployment SDK Platforms SDK Tools SDK Update Sites
idCanguagesiirameworks Below are the available SDK developer tools. Once installed, the IDE will automatically check
Android SDK for updates. Check "show package details" to display available versions of an SDK Tool.
Kotlin Name Version Status
> Tools Android SDK Build-Tools 34 Installed
Advanced Settings D o ol Not Installed
Layout Inspector & Not Installed
CMake Not Installed
Android Auto API Simulators 1 Not installed
Android Auto Desktop Head Unit Emulator 21 Not installed
Android Emulator 33.1.20 Installed
Android SDK Platform-Tools 34.0.5 Installed
Google Play APK Expansion library 1 Not installed
Google Play Instant Development SDK 1.9.0 Not installed
Google Play Licensing Library 1 Not installed
Google Play services 49 Installed
Google Web Driver 2 Not installed
Layout Inspector image server for AP 29-30 6 Not installed
Layout Inspector image server for API 31-34 3 Installed
5 - _— PN 2 Niat inctallan

Hide Obsolete Packages Show Package Details

? Cancel Apply “

OEBPS/image/as_menu_bar.jpg
6 Android Studio File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

Version control - [], samsung SM-T290

[Android </> activity_main.xml

E?A Coapp Palette Q @ —

OEBPS/image/as_night_mode_button.jpg

OEBPS/image/as_problems_extract_button.jpg
/. button <Button>: Hardcoded text

= Extract string resource

X Suppress: Add tools:ignore="HardcodedText" attribute

OEBPS/image/as_appearance_themes.jpg
Appearance & Behavior > Appearance

Theme: L Sync with 0S @3, Get more themes
Preferred Theme
Zoom: 100% v
o = - " - Light
Change with ~"\C= or ~"_-. Set to 100% with ~\C0
V Light
[Use custom font: § Light with Light Header
IntelliJ Light
Accessibility Dark
| Support screen readers Requires restart v Dark
~ =1 and ~ - will navigate Ul controls in dialogs and will not k Darcula

switching editor tabs or other IDE actions. Tooltips on mouse h¢ High Contrast

| Use contrast scrollbars

OEBPS/image/as_avd_run_snapshot.jpg
[Pixel 4 API 34 - Quick Boot app

Runnina Devices
[& Pixel 4 API 34

Cold Boot
[0 Select Multiple Devices... Quick Boot
@ Pair Devices Using Wi-Fi snap_2023-11-06_13-58-08

i= Troubleshoot Device Connections

OEBPS/image/as_layout_warnings.jpg
@ Default (en-us) A

-

OEBPS/image/java_jellyfish_front_cover_large.png
Android Studio
Jellyfish
Essentials

Java Edition

Neil Smyth & Paylosd

OEBPS/image/as_windows_menu.jpg
AS AndroidSample

g Android v B © X 8 =

L)
> [manifests
> [(Djava

OEBPS/image/as_3.5_avd_toolbar.jpg
% = | Exit/ Minimize
Power =——> (1)

) | Volume Up
Volume Down ==}/
€= Rotate Left

Rotate Right ==———p

<

ko

[| €= Take Screenshot
Zoom Mode =—————p| @

<] | Back
Home === O
O

€ Overview

Fold Device mmmmp [

| €= Extended Controls

OEBPS/image/as_avd_multiple_devices.jpg
[] o Select Multiple Devices

Available devices

Type Device

E! Pixel 4 API 33
[l, samsung SM-T290

[& Resizable API 34

Cancel

OEBPS/image/as_new_project_template.jpg
ece New Project

Phone and Tablet

Wear OS

Television .

Automotive

No Activity Empty Activity Basic Views Activity

.

Bottom Navigation Views Activity Empty Views Activity Navigation Drawer Views Activity

m O C

Gancet] ([previous

OEBPS/image/as_haxm_memory.jpg
[HAXM

Emulator Settings

We have detected that your system can run the Android emulator in an accelerated performance mode.

Set the maximum amount of RAM available for the Intel® Hardware Accelerated Execution Manager (HAXM) to use for all x86 emulator instances. You can
change these settings at any time by running the Intel® HAXM installer.

Refer to the Intel® HAXM Documentation » for more information.

512.0 MB 2.068 3368 4668 6.068
(Recommended)

RAM allocation: 2,048 T MiB Userecommended size

Ganeet | [previows Fiih

OEBPS/image/as_memory_settings.jpg
Q-

v Appearance & Behavior
Appearance
New Ul ‘Beta
Menus and Toolbars
v System Settings
HTTP Proxy
Data Sharing
Date Formats
Updates
Process Elevation
Passwords
Memory Settings
File Colors
Scopes
Notifications
Quick Lists
Path Variables
Keymap

Appearance & Behavior > System Settings > Memory Settings

Configure the maximum amount of RAM the OS should allocate for Android Studio processes,
such as the core IDE or Gradle daemon. Similar to allocating too little memory, allocating too
much memory might degrade performance.

IDE Heap Size Settings

IDE max heap size: 2048 MB - current v

This is a global setting that applies to all projects you open using Android Studio.
You need to restart the IDE before any changes to its heap size take effect.

Daemon Heap Size Settings

These settings apply only to the current project, and changes take effect only after you
rebuild your project (by selecting Build > Rebuild Project from the menu bar). After changing
the heap size and rebuilding your project, you may find daemons with old settings and stop
them manually.

Find existing Gradle daemon(s)

Gradle daemon max heap size: 2048 MB - current v

Kotlin daemon max heap size: 2048 MB - current v

OEBPS/image/as_new_avd.jpg
Device Manager

B .o b
~ Name

No devices connected.

Add a new device...

API

Type

OEBPS/image/as_avd_separate_window.jpg
Hello World!

OEBPS/image/as_avd_snapshots.jpg
JA
o

- O

v B O «

Lo

Extended Controls - Pixel_4_API_33:5554

Snapshots Settings

©® Quickboot

snap_2023-06-13_10-56-47 .
808 MB, captured 6/13/23 10:56 AM
File: snap_2023-06-13_10-56-47

0 TAKE SNAPSHOT

OEBPS/image/as_project_menu.jpg
Sa

Pac

Proj

AS roidSample

B)Gooa D o ¢ 2 -

Proj

ect
kages

ect Files

Production roidsampl

Tests

Pro

Pro

ject Source Files roidsampl;

ject Non-Source Files ~ foidsampl

Open Files

Scratches and Consoles
Android

~7~acuvity_tiant. xml

OEBPS/image/as_3.5_increase_memory_notification.jpg
© Studio performance could be improved

Increasing the maximum heap size from 1280MB
to 2048MB could make the IDE perform better,
based on the available memory and your project
size.

Actions v Don't show again

OEBPS/image/as_running_devices_menu_button.jpg
Running Devices [Pixel 4 API 34 + = A

O M DU O D@D &

)

OEBPS/image/as_logcat.jpg
Run ~app T

T
B¢:o

2023-11-06 12:48:21: Launching app on 'Pixel 4 API 34'.

¥ 1
v Starting: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] cmp=com.example.androidsample/.M
=° 0Open logcat panel for emulator Pixel 4 API 34
€ =L Connected to process 9114 on device 'Pixel_4_API_34 [emulator-5554]'.
a |
B
o]

OEBPS/image/as_tool_window_menu.jpg
<>
><

Android (4)
Tree Appearance

v [5app Enable Preview Tab

> [manifests Open Files with Single Click

v Dkotlin+java Always Select Opened File

~ [2J com.example.andro
@ MainActivity - Edit Scopes...
> [com.example.andro , Group Tabs
> [5] com.example.andro View Mode
ML Move to
> [c] drawable .
Resize
>[5 layout
>[5 mipmap Remove from Sidebar
v [values 2 Help

</> colors.xml

OEBPS/image/as_translations_editor.jpg
</> activity_main.xml </> strings.xml @ Translations Editor

=+ @ Show All Keys ¥ Show All Locales v ¥ » 7
Key Resource Folder Untranslatable Default Value
app_name app/src/main/res AndroidSample
convert_string app/src/main/res Convert
dollars_hint app/src/main/res dollars

No Value

no_value_string app/src/main/res

XML:

Key:

&

Default value:

Translation:

OEBPS/image/as_extract_resource.jpg
[] o Extract Resource

Resource name: | convert_string

Convert
Resource value:
Source set: main src/main/res v
File name: strings.xml v

Create the resource in directories:
+ — & O3

values

[] values-night

OEBPS/image/as_navigation_menu.jpg
6J

- @ convertCurrency |

14 | (@ onCreate |

~ OAndroidSample > Oapp > src > Omain > java > com > example > androidsample > (@ MainActivity > @ convertCurrency
OO st ookt

OEBPS/image/as_tool_window_options_float.jpg
G & Q8 @

ra

B

v/ Show Zoom Controls

v/ Show Toolbar

View Mode > v Dock Pinned
Move to > Dock Unpinned
Resize > Undock

Float

Remove from Sidebar
Window

OEBPS/image/as_avd_select_hardware.jpg
Select Hardware

Choose a device definition

Qa

Category Name ~ Play Store

i Pixel 6 Pro

Tablet Pixel 6

Wear 0S Pixel 5

De=Ktop) Pixel 4a

w Pixel 4 XL

Automotive Pixel 4 >
Pixel 3a XL

New Hardware Profile Import Hardware Profiles

Size

6.7"

6.4"

6.0"

5.8"

6.3"

5.7"

6.0"

Virtual Device Configuration

Resolution

1440x3120

1080x2400

1080x2340

1080x2340

1440x3040

1080x2280

1080x2160

Density
560dpi
420dpi
440dpi
440dpi
560dpi
440dpi
400dpi

>

[Pixel4
1080px
Size: large
Ratio: long
Density: 440dpi
5572 2280px

Cancel

Clone Device...

OEBPS/image/as_android_sample_ui.jpg
dollars

Hello World!

OEBPS/image/avd_running_devices_toolbar.jpg
Running Devices [Pixel 4 API 33

O P> DHU<C OO0 B@ D

OEBPS/image/as_avd_touch_sensor.jpg
1]

Location

Displays

Cellular

Battery

Fingerprint
Finger 1

Touch Sensor

OEBPS/image/as_two_avds_running.jpg
Running Devices [Pixel 4 API 33 . Resizable API 34

O P> DHU<C OO0 B@ D

OEBPS/image/as_rename_id_dialog.jpg
[NON] Rename
Rename ID Resource 'editTextNumberDecimal' and its usages to:

dollarText|

Search in comments and strings
Scope:

Project Files v

? Cancel Preview

OEBPS/image/as_component_tree.jpg
Component Tree

L, main

Ab TextView "Hello World!"

OEBPS/image/as_avd_fingerprint_added.jpg
11.08 & © \ /|

5

Fingerprint added

Now you can use your fingerprint to
unlock your phone or verify it's you, like
when you sign in to apps

ADD ANOTHER DONE

OEBPS/image/as_dark_theme.jpg
i

® @ ® AndroidSample v

D

&

9 © & vV I

i

Android v

v C3app
> [manifests
v [kotlin+java

Version control v

@ MainActivity.kt
Palette

Common

Text

~ B3 com.example.androidsamplc

(@ MainActivity

Buttons

> [J com.example.androidsampl; Widgets

> [com.example.androidsampl¢ Layouts

v Cares
> [drawable
> [layout
> [mipmap
v [values
</> colors.xml
</> strings.xml
> [themes
> Exml
Cares
> & Gradle Scripts

Containers
Helpers
Google
Legacy
Component Tree
, ConstraintLayout
Ab textView

O button
Ab dollarText

[Pixel 4 API 34 - Quick Boot

</> activity_main.xml

Q

Ab TextView
[Button

& —

& ImageView

= RecyclerVi

ew

[J FragmentCon...

3 ScrollView
=® Switch

0 AndroidSample > Oapp > src > Omain > res > layout > </> activity_main.xml

activity_main.

@ U o,

> app v

Lxml v

off

M

> &

Q

¢

0 Pixel v

o G & Q8
34w e =
z
? 8

dollarText
11 LF @ 4 spaces

@ P R

&

OEBPS/image/as_avd_device_frame_option.jpg
Verify Configuration

AVD Name Pixel 4 API 34
[pixel 4 5.7 1080x2280 440dpi

‘ UpsideDownCakePrivacySandbox Android APl UpsideDownCakePrivacySandbox

0 O

Portrait Landscape

Startup orientation

Emulated
Performance

Graphics:

OEBPS/image/as_avd_extended_controls.jpg
A
o

e r

(=

Rl

O & @

Location
Displays
Cellular
Battery
Camera

Phone
Directional pad
Microphone
Fingerprint
Virtual sensors
Bug report
Snapshots
Record and Playback
Google Play
Settings

Help

Extended Controls - Pixel_4_AP|_33:5554
Single points Routes

NN\ AW\~ saved points

Points that you save shall appear here

b %)

Wl wose

Enable GPS signal

Import GPX/KML Set Location

OEBPS/image/as_layout_editor_split_mode.jpg
</> activity_main.xml

<?xml version="1.0" encoding="utf-8"?> @1 /b2 ~ v
@ <androidx.constraintlayout.widget.ConstraintLayout xmlns ig
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

activity_mainxml~v &, O ¢, [Pixelv =£33v

© U 0dp, o8

B Palette

9 ITextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!" Heto ot
app:layout_constraintBottom_toBottom0f="parent" —
app:layout_constraintEnd_toEnd0f="parent"
app:layout_constraintStart_toStart0f="parent"
app:layout_constraintTop_toTopOf="parent" . “
<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

"
&
2
g
5
g
s
g
13
o

OEBPS/image/as_menu_bar_java.jpg
© MainActivity.java </> activity_main.xml &2 build.gradle.kts (AndroidSample)

package com.example.androidsample;

import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;

OEBPS/image/as_tool_window_buttons.jpg
AS AndroidSample Version control
-
> Q@

O AndroidSample > Oapp > src > Omain > res > la

OEBPS/image/as_keymap.jpg
Q-

Appearance & Behavior
Keymap

Editor

Plugins

Version Control

Build, Execution, Deploy.
Languages & Framework
Tools

Advanced Settings
Kotlin Compiler
Experimental

Settings

Keymap

mac0os v g

Get more keymaps in Preferences | Plugins

C X o N

[Editor Actions
Add or Remove Caret
Add Rectangular Selection on Mouse Drag
Backspace
Move Caret Backward a Paragraph
Move Caret Backward a Paragraph with Selection

Choose Lookup Item

Choose Lookup ltem and Invoke Complete Statement inherited from Complete Current Statement @883

Choose Lookup Item and Insert Dot
Choose Lookup Item Replace
Clone Caret Above
Clone Caret Below
Move Caret to Code Block End
Move Caret to Code Block End with Selection
Move Caret to Code Block Start
Move Caret to Code Block Start with Selection
Complete Current Statement
A Cobv inherited from Cobv

A Select Next Tab in multi-editor file, Select Next Tab, Select Previous Tab and 9 more shortcuts conflict with the mac(

Assign custom shortcuts or change the macOS system settings.

Cancel

OEBPS/image/as_avd_no_device_frame.jpg
Hello World!

4

OEBPS/image/as_problems_tool_window.jpg
Problems File 1 Project Errors Layout and Qualifiers 1 § =

v </>activity_main.xml ~/Dropbox/D: ts/Books/Giraffe_Kol
®, /: Y. /Dropbox/Documents/Books/Giraffe_Ko! Hardcoded text

® . button <Button>: Hardcoded text
Hardcoded string "Convert", should use @string resource

Hardcoding text attributes directly in layout files is bad for several reasons:

* When creating configuration variations (for example for landscape or portrait) you have to repeat the actual text
(and keep it up to date when making changes)

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="106dp"
android:text="Convert"

OEBPS/image/as_welcome_menu.jpg
New Project Open Get from VCS

oks/Hedgehog_Kotlin/WORK/AndroidSample

£ Import an Android Code Sample
“ Profile or Debug APK

[L Virtual Device Manager
T} SDK Manager

OEBPS/image/as_main_window.jpg
AS AndroidSample Version control

No Devices
[J Android - </> activity_main.xml (© MainActivity.java : (g3
:?A ~ C3app package com.example.androidsample; v P
> [D manifests .
v Djava import ... [15
~ [2J com.example.androidsample
i 2 [></> public class MainActivity extends AppCompatActivity { &
© MainActivity
> [com.example.androidsample (androidTest) @verride +
> [£ com.example.androidsample (test) () protected void onCreate(Bundle savedInstanceState) {

> [2res

super.onCreate(savedInstanceState);
(&7 Gradle Scripts

EdgeToEdge.enable(S$this$enableEdgeToEdge: this);
setContentView(R.layout.activity_main);

18 [] ViewCompat.setOnApplyWindowInsetsListener(findViewById(R.id.main), (v, insets) -> { T
‘ﬁ\ Insets systemBars = insets.getInsets(WindowInsetsCompat.Type.systemBars());
@ v.setPadding(systemBars.left, systemBars.top, systemBars.right, systemBars.bottom);
return insets;
E) 1o
}
(O] }

¥

0 AndroidSample > Oapp > src > Omain > java > com > example > androidsample > © MainActivity > @ onCreate 18:20 LF UTF-8 [4spaces o

OEBPS/image/as_avd_fold_button.jpg
Running Devices [Resizable API 34 ’ = 5 = Q
O A < 0o OY : c?

[Phone X{@0
] Unfolded Foldable ~ "U1+1
- Tablet

ke, Juim) 18

OEBPS/image/avd_resizable_menu.jpg

OEBPS/image/as_avd_running.jpg
AndroidSample Version control [Pixel 4 API 34 app

O <> activity_main.xml (@ MainActivity.kt : Running Devices [Pixel 4 API 34 G =B

S Al VO MO IO D@D E o
import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.View
import android.widget.EditText
import android.widget.TextView

</> class MainActivity : AppCompatActivity() {

of override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.gctivity main)

+
fun convertCurrency(view: View) {
val dollarText: EditText = findViewById(R.id.dollarText)
T val textView: TextView = findViewById(R.id.textView)
ES) if (dollarText.text.isNotEmpty()) {
[0} val dollarValue = dollarText.text.toString().toFloat()~
\'4 val euroValue = dollarValue * 0.85f
= X
textView.text = euroValue.toString()
99 } else {
28 textView.text = getString(R.string.no value string)

oidSample Oapp > src > Omain java > com example androidsample @MamActlthy > @ convertCurrency 28:58 LF UTF-8 [4spaces f

OEBPS/image/as_avd_dark_theme_setting.jpg
Appearance

Dark theme
Will never turn off automatically

OEBPS/image/as_logcat_stop.jpg
Run

= app

&

I Y« -

b @

-11-06 12:48:21: Launching app on 'Pixel 4 API 34'.

StaM@ing: Intent { act=android.intent.action.MAIN cat=[android.intent.category.L

Open logcat panel for emulator Pixel 4 API 34

Connected to process 9114 on device 'Pixel_4_API_34 [emulator-5554]"'.

OEBPS/image/as_palette_button_selected.jpg
Palette
Common
Text
Buttons
Widgets
Layouts
Containers
Helpers
Google

Legacy

Button

2] ImageButton

S ChipGroup

@ Chip

v/ CheckBox

@® RadioGroup

(® RadioButton

[N ToggleButton

=® Switch

@ FloatingActionButton

OEBPS/image/as_device_manager.jpg
Device Manager

s
88, + %

~ Name

2 Pixel_3a_API_34_extension_level_7_arm64-v8a
= Android 14.0 ("UpsideDownCake") \ arm64

API

34

Type

Virtual

>

OEBPS/image/as_layout_editor_autoconnect.jpg
activity_mainxmli~ < QO ¢, [Pixelv =34+v @ AndroidSample v & Default (en-us) -

4

®© U 0dp, S ¥ I8 I8 T

OEBPS/image/as_dmg_drag_to_applications.jpg
[2) Android Studio 4.3.0

androidstudio

JN
la

Android Studio Applications

OEBPS/image/as_jellyfish_welcome2.jpg
[XN J Welcome to Android Studio

A Android Studio
Jellyfish | 2023.3.1

Projects

. Welcome to Android Studio
Plugins Create a new project to start from scratch.
Learn Open existing project from disk or version control.

oty (B 15
New Project Open Get from VCS

More Actions v

OEBPS/image/as_autoconnect_disabled.jpg
©, Y 0dp,

OEBPS/image/as_project_switch_menu.jpg
AndroidSample Version control

OO An New Project...
[open...
[¢) v
oa f9 Get from Version Control...

eee Open Projects

MySecondProject
~/Dropbox/Documents/Books/Giraffe_Kotlin/WORK/MySecondProject

AndroidSample
~/Dropbox/Documents/Books/Giraffe_Kotlin/WORK/AndroidSample

VTEZTes

OEBPS/image/as_rotate_button.jpg
WY

OEBPS/toc.xhtml

		
		Contents

			
						1. Introduction
					
								1.1 Downloading the Code Samples

								1.2 Feedback

								1.3 Errata

					

				

						2. Setting up an Android Studio Development Environment
					
								2.1 System requirements

								2.2 Downloading the Android Studio package

								2.3 Installing Android Studio
							
										2.3.1 Installation on Windows

										2.3.2 Installation on macOS

										2.3.3 Installation on Linux

							

						

								2.4 Installing additional Android SDK packages

								2.5 Installing the Android SDK Command-line Tools
							
										2.5.1 Windows 8.1

										2.5.2 Windows 10

										2.5.3 Windows 11

										2.5.4 Linux

										2.5.5 macOS

							

						

								2.6 Android Studio memory management

								2.7 Updating Android Studio and the SDK

								2.8 Summary

					

				

						3. Creating an Example Android App in Android Studio
					
								3.1 About the Project

								3.2 Creating a New Android Project

								3.3 Creating an Activity

								3.4 Defining the Project and SDK Settings

								3.5 Modifying the Example Application

								3.6 Modifying the User Interface

								3.7 Reviewing the Layout and Resource Files

								3.8 Adding Interaction

								3.9 Summary

					

				

						4. Creating an Android Virtual Device (AVD) in Android Studio
					
								4.1 About Android Virtual Devices

								4.2 Starting the Emulator

								4.3 Running the Application in the AVD

								4.4 Running on Multiple Devices

								4.5 Stopping a Running Application

								4.6 Supporting Dark Theme

								4.7 Running the Emulator in a Separate Window

								4.8 Removing the Device Frame

								4.9 Summary

					

				

						5. Using and Configuring the Android Studio AVD Emulator
					
								5.1 The Emulator Environment

								5.2 Emulator Toolbar Options

								5.3 Working in Zoom Mode

								5.4 Resizing the Emulator Window

								5.5 Extended Control Options
							
										5.5.1 Location

										5.5.2 Displays

										5.5.3 Cellular

										5.5.4 Battery

										5.5.5 Camera

										5.5.6 Phone

										5.5.7 Directional Pad

										5.5.8 Microphone

										5.5.9 Fingerprint

										5.5.10 Virtual Sensors

										5.5.11 Snapshots

										5.5.12 Record and Playback

										5.5.13 Google Play

										5.5.14 Settings

										5.5.15 Help

							

						

								5.6 Working with Snapshots

								5.7 Configuring Fingerprint Emulation

								5.8 The Emulator in Tool Window Mode

								5.9 Creating a Resizable Emulator

								5.10 Summary

					

				

						6. A Tour of the Android Studio User Interface
					
								6.1 The Welcome Screen

								6.2 The Menu Bar

								6.3 The Main Window

								6.4 The Tool Windows

								6.5 The Tool Window Menus

								6.6 Android Studio Keyboard Shortcuts

								6.7 Switcher and Recent Files Navigation

								6.8 Changing the Android Studio Theme

								6.9 Summary

					

				

						7. Testing Android Studio Apps on a Physical Android Device
					
								7.1 An Overview of the Android Debug Bridge (ADB)

								7.2 Enabling USB Debugging ADB on Android Devices
							
										7.2.1 macOS ADB Configuration

										7.2.2 Windows ADB Configuration

										7.2.3 Linux adb Configuration

							

						

								7.3 Resolving USB Connection Issues

								7.4 Enabling Wireless Debugging on Android Devices

								7.5 Testing the adb Connection

								7.6 Device Mirroring

								7.7 Summary

					

				

						8. The Basics of the Android Studio Code Editor
					
								8.1 The Android Studio Editor

								8.2 Splitting the Editor Window

								8.3 Code Completion

								8.4 Statement Completion

								8.5 Parameter Information

								8.6 Parameter Name Hints

								8.7 Code Generation

								8.8 Code Folding

								8.9 Quick Documentation Lookup

								8.10 Code Reformatting

								8.11 Finding Sample Code

								8.12 Live Templates

								8.13 Summary

					

				

						9. An Overview of the Android Architecture
					
								9.1 The Android Software Stack

								9.2 The Linux Kernel

								9.3 Hardware Abstraction Layer

								9.4 Android Runtime – ART

								9.5 Android Libraries
							
										9.5.1 C/C++ Libraries

							

						

								9.6 Application Framework

								9.7 Applications

								9.8 Summary

					

				

						10. The Anatomy of an Android App
					
								10.1 Android Activities

								10.2 Android Fragments

								10.3 Android Intents

								10.4 Broadcast Intents

								10.5 Broadcast Receivers

								10.6 Android Services

								10.7 Content Providers

								10.8 The Application Manifest

								10.9 Application Resources

								10.10 Application Context

								10.11 Summary

					

				

						11. An Overview of Android View Binding
					
								11.1 Find View by Id

								11.2 View Binding

								11.3 Converting the AndroidSample project

								11.4 Enabling View Binding

								11.5 Using View Binding

								11.6 Choosing an Option

								11.7 View Binding in the Book Examples

								11.8 Migrating a Project to View Binding

								11.9 Summary

					

				

						12. Understanding Android Application and Activity Lifecycles
					
								12.1 Android Applications and Resource Management

								12.2 Android Process States
							
										12.2.1 Foreground Process

										12.2.2 Visible Process

										12.2.3 Service Process

										12.2.4 Background Process

										12.2.5 Empty Process

							

						

								12.3 Inter-Process Dependencies

								12.4 The Activity Lifecycle

								12.5 The Activity Stack

								12.6 Activity States

								12.7 Configuration Changes

								12.8 Handling State Change

								12.9 Summary

					

				

						13. Handling Android Activity State Changes
					
								13.1 New vs. Old Lifecycle Techniques

								13.2 The Activity and Fragment Classes

								13.3 Dynamic State vs. Persistent State

								13.4 The Android Lifecycle Methods

								13.5 Lifetimes

								13.6 Foldable Devices and Multi-Resume

								13.7 Disabling Configuration Change Restarts

								13.8 Lifecycle Method Limitations

								13.9 Summary

					

				

						14. Android Activity State Changes by Example
					
								14.1 Creating the State Change Example Project

								14.2 Designing the User Interface

								14.3 Overriding the Activity Lifecycle Methods

								14.4 Filtering the Logcat Panel

								14.5 Running the Application

								14.6 Experimenting with the Activity

								14.7 Summary

					

				

						15. Saving and Restoring the State of an Android Activity
					
								15.1 Saving Dynamic State

								15.2 Default Saving of User Interface State

								15.3 The Bundle Class

								15.4 Saving the State

								15.5 Restoring the State

								15.6 Testing the Application

								15.7 Summary

					

				

						16. Understanding Android Views, View Groups and Layouts
					
								16.1 Designing for Different Android Devices

								16.2 Views and View Groups

								16.3 Android Layout Managers

								16.4 The View Hierarchy

								16.5 Creating User Interfaces

								16.6 Summary

					

				

						17. A Guide to the Android Studio Layout Editor Tool
					
								17.1 Basic vs. Empty Views Activity Templates

								17.2 The Android Studio Layout Editor

								17.3 Design Mode

								17.4 The Palette

								17.5 Design Mode and Layout Views

								17.6 Night Mode

								17.7 Code Mode

								17.8 Split Mode

								17.9 Setting Attributes

								17.10 Transforms

								17.11 Tools Visibility Toggles

								17.12 Converting Views

								17.13 Displaying Sample Data

								17.14 Creating a Custom Device Definition

								17.15 Changing the Current Device

								17.16 Layout Validation

								17.17 Summary

					

				

						18. A Guide to the Android ConstraintLayout
					
								18.1 How ConstraintLayout Works
							
										18.1.1 Constraints

										18.1.2 Margins

										18.1.3 Opposing Constraints

										18.1.4 Constraint Bias

										18.1.5 Chains

										18.1.6 Chain Styles

							

						

								18.2 Baseline Alignment

								18.3 Configuring Widget Dimensions

								18.4 Guideline Helper

								18.5 Group Helper

								18.6 Barrier Helper

								18.7 Flow Helper

								18.8 Ratios

								18.9 ConstraintLayout Advantages

								18.10 ConstraintLayout Availability

								18.11 Summary

					

				

						19. A Guide to Using ConstraintLayout in Android Studio
					
								19.1 Design and Layout Views

								19.2 Autoconnect Mode

								19.3 Inference Mode

								19.4 Manipulating Constraints Manually

								19.5 Adding Constraints in the Inspector

								19.6 Viewing Constraints in the Attributes Window

								19.7 Deleting Constraints

								19.8 Adjusting Constraint Bias

								19.9 Understanding ConstraintLayout Margins

								19.10 The Importance of Opposing Constraints and Bias

								19.11 Configuring Widget Dimensions

								19.12 Design Time Tools Positioning

								19.13 Adding Guidelines

								19.14 Adding Barriers

								19.15 Adding a Group

								19.16 Working with the Flow Helper

								19.17 Widget Group Alignment and Distribution

								19.18 Converting other Layouts to ConstraintLayout

								19.19 Summary

					

				

						20. Working with ConstraintLayout Chains and Ratios in Android Studio
					
								20.1 Creating a Chain

								20.2 Changing the Chain Style

								20.3 Spread Inside Chain Style

								20.4 Packed Chain Style

								20.5 Packed Chain Style with Bias

								20.6 Weighted Chain

								20.7 Working with Ratios

								20.8 Summary

					

				

						21. An Android Studio Layout Editor ConstraintLayout Tutorial
					
								21.1 An Android Studio Layout Editor Tool Example

								21.2 Preparing the Layout Editor Environment

								21.3 Adding the Widgets to the User Interface

								21.4 Adding the Constraints

								21.5 Testing the Layout

								21.6 Using the Layout Inspector

								21.7 Summary

					

				

						22. Manual XML Layout Design in Android Studio
					
								22.1 Manually Creating an XML Layout

								22.2 Manual XML vs. Visual Layout Design

								22.3 Summary

					

				

						23. Managing Constraints using Constraint Sets
					
								23.1 Java Code vs. XML Layout Files

								23.2 Creating Views

								23.3 View Attributes

								23.4 Constraint Sets
							
										23.4.1 Establishing Connections

										23.4.2 Applying Constraints to a Layout

										23.4.3 Parent Constraint Connections

										23.4.4 Sizing Constraints

										23.4.5 Constraint Bias

										23.4.6 Alignment Constraints

										23.4.7 Copying and Applying Constraint Sets

										23.4.8 ConstraintLayout Chains

										23.4.9 Guidelines

										23.4.10 Removing Constraints

										23.4.11 Scaling

										23.4.12 Rotation

							

						

								23.5 Summary

					

				

						24. An Android ConstraintSet Tutorial
					
								24.1 Creating the Example Project in Android Studio

								24.2 Adding Views to an Activity

								24.3 Setting View Attributes

								24.4 Creating View IDs

								24.5 Configuring the Constraint Set

								24.6 Adding the EditText View

								24.7 Converting Density Independent Pixels (dp) to Pixels (px)

								24.8 Summary

					

				

						25. A Guide to Using Apply Changes in Android Studio
					
								25.1 Introducing Apply Changes

								25.2 Understanding Apply Changes Options

								25.3 Using Apply Changes

								25.4 Configuring Apply Changes Fallback Settings

								25.5 An Apply Changes Tutorial

								25.6 Using Apply Code Changes

								25.7 Using Apply Changes and Restart Activity

								25.8 Using Run App

								25.9 Summary

					

				

						26. A Guide to Gradle Version Catalogs
					
								26.1 Library and Plugin Dependencies

								26.2 Project Gradle Build File

								26.3 Module Gradle Build Files

								26.4 Version Catalog File

								26.5 Adding Dependencies

								26.6 Library Updates

								26.7 Summary

					

				

						27. An Overview and Example of Android Event Handling
					
								27.1 Understanding Android Events

								27.2 Using the android:onClick Resource

								27.3 Event Listeners and Callback Methods

								27.4 An Event Handling Example

								27.5 Designing the User Interface

								27.6 The Event Listener and Callback Method

								27.7 Consuming Events

								27.8 Summary

					

				

						28. Android Touch and Multi-touch Event Handling
					
								28.1 Intercepting Touch Events

								28.2 The MotionEvent Object

								28.3 Understanding Touch Actions

								28.4 Handling Multiple Touches

								28.5 An Example Multi-Touch Application

								28.6 Designing the Activity User Interface

								28.7 Implementing the Touch Event Listener

								28.8 Running the Example Application

								28.9 Summary

					

				

						29. Detecting Common Gestures Using the Android Gesture Detector Class
					
								29.1 Implementing Common Gesture Detection

								29.2 Creating an Example Gesture Detection Project

								29.3 Implementing the Listener Class

								29.4 Creating the GestureDetectorCompat Instance

								29.5 Implementing the onTouchEvent() Method

								29.6 Testing the Application

								29.7 Summary

					

				

						30. Implementing Custom Gesture and Pinch Recognition on Android
					
								30.1 The Android Gesture Builder Application

								30.2 The GestureOverlayView Class

								30.3 Detecting Gestures

								30.4 Identifying Specific Gestures

								30.5 Installing and Running the Gesture Builder Application

								30.6 Creating a Gestures File

								30.7 Creating the Example Project

								30.8 Extracting the Gestures File from the SD Card

								30.9 Adding the Gestures File to the Project

								30.10 Designing the User Interface

								30.11 Loading the Gestures File

								30.12 Registering the Event Listener

								30.13 Implementing the onGesturePerformed Method

								30.14 Testing the Application

								30.15 Configuring the GestureOverlayView

								30.16 Intercepting Gestures

								30.17 Detecting Pinch Gestures

								30.18 A Pinch Gesture Example Project

								30.19 Summary

					

				

						31. An Introduction to Android Fragments
					
								31.1 What is a Fragment?

								31.2 Creating a Fragment

								31.3 Adding a Fragment to an Activity using the Layout XML File

								31.4 Adding and Managing Fragments in Code

								31.5 Handling Fragment Events

								31.6 Implementing Fragment Communication

								31.7 Summary

					

				

						32. Using Fragments in Android Studio - An Example
					
								32.1 About the Example Fragment Application

								32.2 Creating the Example Project

								32.3 Creating the First Fragment Layout

								32.4 Migrating a Fragment to View Binding

								32.5 Adding the Second Fragment

								32.6 Adding the Fragments to the Activity

								32.7 Making the Toolbar Fragment Talk to the Activity

								32.8 Making the Activity Talk to the Text Fragment

								32.9 Testing the Application

								32.10 Summary

					

				

						33. Modern Android App Architecture with Jetpack
					
								33.1 What is Android Jetpack?

								33.2 The “Old” Architecture

								33.3 Modern Android Architecture

								33.4 The ViewModel Component

								33.5 The LiveData Component

								33.6 ViewModel Saved State

								33.7 LiveData and Data Binding

								33.8 Android Lifecycles

								33.9 Repository Modules

								33.10 Summary

					

				

						34. An Android ViewModel Tutorial
					
								34.1 About the Project

								34.2 Creating the ViewModel Example Project

								34.3 Removing Unwanted Project Elements

								34.4 Designing the Fragment Layout

								34.5 Implementing the View Model

								34.6 Associating the Fragment with the View Model

								34.7 Modifying the Fragment

								34.8 Accessing the ViewModel Data

								34.9 Testing the Project

								34.10 Summary

					

				

						35. An Android Jetpack LiveData Tutorial
					
								35.1 LiveData - A Recap

								35.2 Adding LiveData to the ViewModel

								35.3 Implementing the Observer

								35.4 Summary

					

				

						36. An Overview of Android Jetpack Data Binding
					
								36.1 An Overview of Data Binding

								36.2 The Key Components of Data Binding
							
										36.2.1 The Project Build Configuration

										36.2.2 The Data Binding Layout File

										36.2.3 The Layout File Data Element

										36.2.4 The Binding Classes

										36.2.5 Data Binding Variable Configuration

										36.2.6 Binding Expressions (One-Way)

										36.2.7 Binding Expressions (Two-Way)

										36.2.8 Event and Listener Bindings

							

						

								36.3 Summary

					

				

						37. An Android Jetpack Data Binding Tutorial
					
								37.1 Removing the Redundant Code

								37.2 Enabling Data Binding

								37.3 Adding the Layout Element

								37.4 Adding the Data Element to Layout File

								37.5 Working with the Binding Class

								37.6 Assigning the ViewModel Instance to the Data Binding Variable

								37.7 Adding Binding Expressions

								37.8 Adding the Conversion Method

								37.9 Adding a Listener Binding

								37.10 Testing the App

								37.11 Summary

					

				

						38. An Android ViewModel Saved State Tutorial
					
								38.1 Understanding ViewModel State Saving

								38.2 Implementing ViewModel State Saving

								38.3 Saving and Restoring State

								38.4 Adding Saved State Support to the ViewModelDemo Project

								38.5 Summary

					

				

						39. Working with Android Lifecycle-Aware Components
					
								39.1 Lifecycle Awareness

								39.2 Lifecycle Owners

								39.3 Lifecycle Observers

								39.4 Lifecycle States and Events

								39.5 Summary

					

				

						40. An Android Jetpack Lifecycle Awareness Tutorial
					
								40.1 Creating the Example Lifecycle Project

								40.2 Creating a Lifecycle Observer

								40.3 Adding the Observer

								40.4 Testing the Observer

								40.5 Creating a Lifecycle Owner

								40.6 Testing the Custom Lifecycle Owner

								40.7 Summary

					

				

						41. An Overview of the Navigation Architecture Component
					
								41.1 Understanding Navigation

								41.2 Declaring a Navigation Host

								41.3 The Navigation Graph

								41.4 Accessing the Navigation Controller

								41.5 Triggering a Navigation Action

								41.6 Passing Arguments

								41.7 Summary

					

				

						42. An Android Jetpack Navigation Component Tutorial
					
								42.1 Creating the NavigationDemo Project

								42.2 Adding Navigation to the Build Configuration

								42.3 Creating the Navigation Graph Resource File

								42.4 Declaring a Navigation Host

								42.5 Adding Navigation Destinations

								42.6 Designing the Destination Fragment Layouts

								42.7 Adding an Action to the Navigation Graph

								42.8 Implement the OnFragmentInteractionListener

								42.9 Adding View Binding Support to the Destination Fragments

								42.10 Triggering the Action

								42.11 Passing Data Using Safeargs

								42.12 Summary

					

				

						43. An Introduction to MotionLayout
					
								43.1 An Overview of MotionLayout

								43.2 MotionLayout

								43.3 MotionScene

								43.4 Configuring ConstraintSets

								43.5 Custom Attributes

								43.6 Triggering an Animation

								43.7 Arc Motion

								43.8 Keyframes
							
										43.8.1 Attribute Keyframes

										43.8.2 Position Keyframes

							

						

								43.9 Time Linearity

								43.10 KeyTrigger

								43.11 Cycle and Time Cycle Keyframes

								43.12 Starting an Animation from Code

								43.13 Summary

					

				

						44. An Android MotionLayout Editor Tutorial
					
								44.1 Creating the MotionLayoutDemo Project

								44.2 ConstraintLayout to MotionLayout Conversion

								44.3 Configuring Start and End Constraints

								44.4 Previewing the MotionLayout Animation

								44.5 Adding an OnClick Gesture

								44.6 Adding an Attribute Keyframe to the Transition

								44.7 Adding a CustomAttribute to a Transition

								44.8 Adding Position Keyframes

								44.9 Summary

					

				

						45. A MotionLayout KeyCycle Tutorial
					
								45.1 An Overview of Cycle Keyframes

								45.2 Using the Cycle Editor

								45.3 Creating the KeyCycleDemo Project

								45.4 Configuring the Start and End Constraints

								45.5 Creating the Cycles

								45.6 Previewing the Animation

								45.7 Adding the KeyFrameSet to the MotionScene

								45.8 Summary

					

				

						46. Working with the Floating Action Button and Snackbar
					
								46.1 The Material Design

								46.2 The Design Library

								46.3 The Floating Action Button (FAB)

								46.4 The Snackbar

								46.5 Creating the Example Project

								46.6 Reviewing the Project

								46.7 Removing Navigation Features

								46.8 Changing the Floating Action Button

								46.9 Adding an Action to the Snackbar

								46.10 Summary

					

				

						47. Creating a Tabbed Interface using the TabLayout Component
					
								47.1 An Introduction to the ViewPager2

								47.2 An Overview of the TabLayout Component

								47.3 Creating the TabLayoutDemo Project

								47.4 Creating the First Fragment

								47.5 Duplicating the Fragments

								47.6 Adding the TabLayout and ViewPager2

								47.7 Performing the Initialization Tasks

								47.8 Testing the Application

								47.9 Customizing the TabLayout

								47.10 Summary

					

				

						48. Working with the RecyclerView and CardView Widgets
					
								48.1 An Overview of the RecyclerView

								48.2 An Overview of the CardView

								48.3 Summary

					

				

						49. An Android RecyclerView and CardView Tutorial
					
								49.1 Creating the CardDemo Project

								49.2 Modifying the Basic Views Activity Project

								49.3 Designing the CardView Layout

								49.4 Adding the RecyclerView

								49.5 Adding the Image Files

								49.6 Creating the RecyclerView Adapter

								49.7 Initializing the RecyclerView Component

								49.8 Testing the Application

								49.9 Responding to Card Selections

								49.10 Summary

					

				

						50. A Layout Editor Sample Data Tutorial
					
								50.1 Adding Sample Data to a Project

								50.2 Using Custom Sample Data

								50.3 Summary

					

				

						51. Working with the AppBar and Collapsing Toolbar Layouts
					
								51.1 The Anatomy of an AppBar

								51.2 The Example Project

								51.3 Coordinating the RecyclerView and Toolbar

								51.4 Introducing the Collapsing Toolbar Layout

								51.5 Changing the Title and Scrim Color

								51.6 Summary

					

				

						52. An Android Studio Primary/Detail Flow Tutorial
					
								52.1 The Primary/Detail Flow

								52.2 Creating a Primary/Detail Flow Activity

								52.3 Adding the Primary/Detail Flow Activity

								52.4 Modifying the Primary/Detail Flow Template

								52.5 Changing the Content Model

								52.6 Changing the Detail Pane

								52.7 Modifying the ItemDetailFragment Class

								52.8 Modifying the ItemListFragment Class

								52.9 Adding Manifest Permissions

								52.10 Running the Application

								52.11 Summary

					

				

						53. An Overview of Android Services
					
								53.1 Intent Service

								53.2 Bound Service

								53.3 The Anatomy of a Service

								53.4 Controlling Destroyed Service Restart Options

								53.5 Declaring a Service in the Manifest File

								53.6 Starting a Service Running on System Startup

								53.7 Summary

					

				

						54. An Overview of Android Intents
					
								54.1 An Overview of Intents

								54.2 Explicit Intents

								54.3 Returning Data from an Activity

								54.4 Implicit Intents

								54.5 Using Intent Filters

								54.6 Automatic Link Verification

								54.7 Manually Enabling Links

								54.8 Checking Intent Availability

								54.9 Summary

					

				

						55. Android Explicit Intents – A Worked Example
					
								55.1 Creating the Explicit Intent Example Application

								55.2 Designing the User Interface Layout for MainActivity

								55.3 Creating the Second Activity Class

								55.4 Designing the User Interface Layout for SecondActivity

								55.5 Reviewing the Application Manifest File

								55.6 Creating the Intent

								55.7 Extracting Intent Data

								55.8 Launching SecondActivity as a Sub-Activity

								55.9 Returning Data from a Sub-Activity

								55.10 Testing the Application

								55.11 Summary

					

				

						56. Android Implicit Intents – A Worked Example
					
								56.1 Creating the Android Studio Implicit Intent Example Project

								56.2 Designing the User Interface

								56.3 Creating the Implicit Intent

								56.4 Adding a Second Matching Activity

								56.5 Adding the Web View to the UI

								56.6 Obtaining the Intent URL

								56.7 Modifying the MyWebView Project Manifest File

								56.8 Installing the MyWebView Package on a Device

								56.9 Testing the Application

								56.10 Manually Enabling the Link

								56.11 Automatic Link Verification

								56.12 Summary

					

				

						57. Android Broadcast Intents and Broadcast Receivers
					
								57.1 An Overview of Broadcast Intents

								57.2 An Overview of Broadcast Receivers

								57.3 Obtaining Results from a Broadcast

								57.4 Sticky Broadcast Intents

								57.5 The Broadcast Intent Example

								57.6 Creating the Example Application

								57.7 Creating and Sending the Broadcast Intent

								57.8 Creating the Broadcast Receiver

								57.9 Registering the Broadcast Receiver

								57.10 Testing the Broadcast Example

								57.11 Listening for System Broadcasts

								57.12 Summary

					

				

						58. Android Local Bound Services – A Worked Example
					
								58.1 Understanding Bound Services

								58.2 Bound Service Interaction Options

								58.3 A Local Bound Service Example

								58.4 Adding a Bound Service to the Project

								58.5 Implementing the Binder

								58.6 Binding the Client to the Service

								58.7 Completing the Example

								58.8 Testing the Application

								58.9 Summary

					

				

						59. Android Remote Bound Services – A Worked Example
					
								59.1 Client to Remote Service Communication

								59.2 Creating the Example Application

								59.3 Designing the User Interface

								59.4 Implementing the Remote Bound Service

								59.5 Configuring a Remote Service in the Manifest File

								59.6 Launching and Binding to the Remote Service

								59.7 Sending a Message to the Remote Service

								59.8 Summary

					

				

						60. An Overview of Java Threads, Handlers and Executors
					
								60.1 The Application Main Thread

								60.2 Thread Handlers

								60.3 A Threading Example

								60.4 Building the App

								60.5 Creating a New Thread

								60.6 Implementing a Thread Handler

								60.7 Passing a Message to the Handler

								60.8 Java Executor Concurrency

								60.9 Working with Runnable Tasks

								60.10 Shutting down an Executor Service

								60.11 Working with Callable Tasks and Futures

								60.12 Handling a Future Result

								60.13 Scheduling Tasks

								60.14 Summary

					

				

						61. Making Runtime Permission Requests in Android
					
								61.1 Understanding Normal and Dangerous Permissions

								61.2 Creating the Permissions Example Project

								61.3 Checking for a Permission

								61.4 Requesting Permission at Runtime

								61.5 Providing a Rationale for the Permission Request

								61.6 Testing the Permissions App

								61.7 Summary

					

				

						62. An Android Notifications Tutorial
					
								62.1 An Overview of Notifications

								62.2 Creating the NotifyDemo Project

								62.3 Designing the User Interface

								62.4 Creating the Second Activity

								62.5 Creating a Notification Channel

								62.6 Requesting Notification Permission

								62.7 Creating and Issuing a Notification

								62.8 Launching an Activity from a Notification

								62.9 Adding Actions to a Notification

								62.10 Bundled Notifications

								62.11 Summary

					

				

						63. An Android Direct Reply Notification Tutorial
					
								63.1 Creating the DirectReply Project

								63.2 Designing the User Interface

								63.3 Requesting Notification Permission

								63.4 Creating the Notification Channel

								63.5 Building the RemoteInput Object

								63.6 Creating the PendingIntent

								63.7 Creating the Reply Action

								63.8 Receiving Direct Reply Input

								63.9 Updating the Notification

								63.10 Summary

					

				

						64. Foldable Devices and Multi-Window Support
					
								64.1 Foldables and Multi-Window Support

								64.2 Using a Foldable Emulator

								64.3 Entering Multi-Window Mode

								64.4 Enabling and using Freeform Support

								64.5 Checking for Freeform Support

								64.6 Enabling Multi-Window Support in an App

								64.7 Specifying Multi-Window Attributes

								64.8 Detecting Multi-Window Mode in an Activity

								64.9 Receiving Multi-Window Notifications

								64.10 Launching an Activity in Multi-Window Mode

								64.11 Configuring Freeform Activity Size and Position

								64.12 Summary

					

				

						65. An Overview of Android SQLite Databases
					
								65.1 Understanding Database Tables

								65.2 Introducing Database Schema

								65.3 Columns and Data Types

								65.4 Database Rows

								65.5 Introducing Primary Keys

								65.6 What is SQLite?

								65.7 Structured Query Language (SQL)

								65.8 Trying SQLite on an Android Virtual Device (AVD)

								65.9 Android SQLite Classes
							
										65.9.1 Cursor

										65.9.2 SQLiteDatabase

										65.9.3 SQLiteOpenHelper

										65.9.4 ContentValues

							

						

								65.10 The Android Room Persistence Library

								65.11 Summary

					

				

						66. An Android SQLite Database Tutorial
					
								66.1 About the Database Example

								66.2 Creating the SQLDemo Project

								66.3 Designing the User interface

								66.4 Creating the Data Model

								66.5 Implementing the Data Handler

								66.6 The Add Handler Method

								66.7 The Query Handler Method

								66.8 The Delete Handler Method

								66.9 Implementing the Activity Event Methods

								66.10 Testing the Application

								66.11 Summary

					

				

						67. Understanding Android Content Providers
					
								67.1 What is a Content Provider?

								67.2 The Content Provider
							
										67.2.1 onCreate()

										67.2.2 query()

										67.2.3 insert()

										67.2.4 update()

										67.2.5 delete()

										67.2.6 getType()

							

						

								67.3 The Content URI

								67.4 The Content Resolver

								67.5 The <provider> Manifest Element

								67.6 Summary

					

				

						68. An Android Content Provider Tutorial
					
								68.1 Copying the SQLDemo Project

								68.2 Adding the Content Provider Package

								68.3 Creating the Content Provider Class

								68.4 Constructing the Authority and Content URI

								68.5 Implementing URI Matching in the Content Provider

								68.6 Implementing the Content Provider onCreate() Method

								68.7 Implementing the Content Provider insert() Method

								68.8 Implementing the Content Provider query() Method

								68.9 Implementing the Content Provider update() Method

								68.10 Implementing the Content Provider delete() Method

								68.11 Declaring the Content Provider in the Manifest File

								68.12 Modifying the Database Handler

								68.13 Summary

					

				

						69. An Android Content Provider Client Tutorial
					
								69.1 Creating the SQLDemoClient Project

								69.2 Designing the User interface

								69.3 Accessing the Content Provider

								69.4 Adding the Query Permission

								69.5 Testing the Project

								69.6 Summary

					

				

						70. The Android Room Persistence Library
					
								70.1 Revisiting Modern App Architecture

								70.2 Key Elements of Room Database Persistence
							
										70.2.1 Repository

										70.2.2 Room Database

										70.2.3 Data Access Object (DAO)

										70.2.4 Entities

										70.2.5 SQLite Database

							

						

								70.3 Understanding Entities

								70.4 Data Access Objects

								70.5 The Room Database

								70.6 The Repository

								70.7 In-Memory Databases

								70.8 Database Inspector

								70.9 Summary

					

				

						71. An Android TableLayout and TableRow Tutorial
					
								71.1 The TableLayout and TableRow Layout Views

								71.2 Creating the Room Database Project

								71.3 Converting to a LinearLayout

								71.4 Adding the TableLayout to the User Interface

								71.5 Configuring the TableRows

								71.6 Adding the Button Bar to the Layout

								71.7 Adding the RecyclerView

								71.8 Adjusting the Layout Margins

								71.9 Summary

					

				

						72. An Android Room Database and Repository Tutorial
					
								72.1 About the RoomDemo Project

								72.2 Modifying the Build Configuration

								72.3 Building the Entity

								72.4 Creating the Data Access Object

								72.5 Adding the Room Database

								72.6 Adding the Repository

								72.7 Adding the ViewModel

								72.8 Creating the Product Item Layout

								72.9 Adding the RecyclerView Adapter

								72.10 Preparing the Main Activity

								72.11 Adding the Button Listeners

								72.12 Adding LiveData Observers

								72.13 Initializing the RecyclerView

								72.14 Testing the RoomDemo App

								72.15 Using the Database Inspector

								72.16 Summary

					

				

						73. Accessing Cloud Storage using the Android Storage Access Framework
					
								73.1 The Storage Access Framework

								73.2 Working with the Storage Access Framework

								73.3 Filtering Picker File Listings

								73.4 Handling Intent Results

								73.5 Reading the Content of a File

								73.6 Writing Content to a File

								73.7 Deleting a File

								73.8 Gaining Persistent Access to a File

								73.9 Summary

					

				

						74. An Android Storage Access Framework Example
					
								74.1 About the Storage Access Framework Example

								74.2 Creating the Storage Access Framework Example

								74.3 Designing the User Interface

								74.4 Adding the Activity Launchers

								74.5 Creating a New Storage File

								74.6 Saving to a Storage File

								74.7 Opening and Reading a Storage File

								74.8 Testing the Storage Access Application

								74.9 Summary

					

				

						75. Video Playback on Android using the VideoView and MediaController Classes
					
								75.1 Introducing the Android VideoView Class

								75.2 Introducing the Android MediaController Class

								75.3 Creating the Video Playback Example

								75.4 Designing the VideoPlayer Layout

								75.5 Downloading the Video File

								75.6 Configuring the VideoView

								75.7 Adding the MediaController to the Video View

								75.8 Setting up the onPreparedListener

								75.9 Summary

					

				

						76. Android Picture-in-Picture Mode
					
								76.1 Picture-in-Picture Features

								76.2 Enabling Picture-in-Picture Mode

								76.3 Configuring Picture-in-Picture Parameters

								76.4 Entering Picture-in-Picture Mode

								76.5 Detecting Picture-in-Picture Mode Changes

								76.6 Adding Picture-in-Picture Actions

								76.7 Summary

					

				

						77. An Android Picture-in-Picture Tutorial
					
								77.1 Adding Picture-in-Picture Support to the Manifest

								77.2 Adding a Picture-in-Picture Button

								77.3 Entering Picture-in-Picture Mode

								77.4 Detecting Picture-in-Picture Mode Changes

								77.5 Adding a Broadcast Receiver

								77.6 Adding the PiP Action

								77.7 Testing the Picture-in-Picture Action

								77.8 Summary

					

				

						78. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
					
								78.1 Playing Audio

								78.2 Recording Audio and Video using the MediaRecorder Class

								78.3 About the Example Project

								78.4 Creating the AudioApp Project

								78.5 Designing the User Interface

								78.6 Checking for Microphone Availability

								78.7 Initializing the Activity

								78.8 Implementing the recordAudio() Method

								78.9 Implementing the stopAudio() Method

								78.10 Implementing the playAudio() method

								78.11 Configuring and Requesting Permissions

								78.12 Testing the Application

								78.13 Summary

					

				

						79. Working with the Google Maps Android API in Android Studio
					
								79.1 The Elements of the Google Maps Android API

								79.2 Creating the Google Maps Project

								79.3 Creating a Google Cloud Billing Account

								79.4 Creating a New Google Cloud Project

								79.5 Enabling the Google Maps SDK

								79.6 Generating a Google Maps API Key

								79.7 Adding the API Key to the Android Studio Project

								79.8 Testing the Application

								79.9 Understanding Geocoding and Reverse Geocoding

								79.10 Adding a Map to an Application

								79.11 Requesting Current Location Permission

								79.12 Displaying the User’s Current Location

								79.13 Changing the Map Type

								79.14 Displaying Map Controls to the User

								79.15 Handling Map Gesture Interaction
							
										79.15.1 Map Zooming Gestures

										79.15.2 Map Scrolling/Panning Gestures

										79.15.3 Map Tilt Gestures

										79.15.4 Map Rotation Gestures

							

						

								79.16 Creating Map Markers

								79.17 Controlling the Map Camera

								79.18 Summary

					

				

						80. Printing with the Android Printing Framework
					
								80.1 The Android Printing Architecture

								80.2 The Print Service Plugins

								80.3 Google Cloud Print

								80.4 Printing to Google Drive

								80.5 Save as PDF

								80.6 Printing from Android Devices

								80.7 Options for Building Print Support into Android Apps
							
										80.7.1 Image Printing

										80.7.2 Creating and Printing HTML Content

										80.7.3 Printing a Web Page

										80.7.4 Printing a Custom Document

							

						

								80.8 Summary

					

				

						81. An Android HTML and Web Content Printing Example
					
								81.1 Creating the HTML Printing Example Application

								81.2 Printing Dynamic HTML Content

								81.3 Creating the Web Page Printing Example

								81.4 Removing the Floating Action Button

								81.5 Removing Navigation Features

								81.6 Designing the User Interface Layout

								81.7 Accessing the WebView from the Main Activity

								81.8 Loading the Web Page into the WebView

								81.9 Adding the Print Menu Option

								81.10 Summary

					

				

						82. A Guide to Android Custom Document Printing
					
								82.1 An Overview of Android Custom Document Printing
							
										82.1.1 Custom Print Adapters

							

						

								82.2 Preparing the Custom Document Printing Project

								82.3 Designing the UI

								82.4 Creating the Custom Print Adapter

								82.5 Implementing the onLayout() Callback Method

								82.6 Implementing the onWrite() Callback Method

								82.7 Checking a Page is in Range

								82.8 Drawing the Content on the Page Canvas

								82.9 Starting the Print Job

								82.10 Testing the Application

								82.11 Summary

					

				

						83. An Introduction to Android App Links
					
								83.1 An Overview of Android App Links

								83.2 App Link Intent Filters

								83.3 Handling App Link Intents

								83.4 Associating the App with a Website

								83.5 Summary

					

				

						84. An Android Studio App Links Tutorial
					
								84.1 About the Example App

								84.2 The Database Schema

								84.3 Loading and Running the Project

								84.4 Adding the URL Mapping

								84.5 Adding the Intent Filter

								84.6 Adding Intent Handling Code

								84.7 Testing the App

								84.8 Creating the Digital Asset Links File

								84.9 Testing the App Link

								84.10 Summary

					

				

						85. An Android Biometric Authentication Tutorial
					
								85.1 An Overview of Biometric Authentication

								85.2 Creating the Biometric Authentication Project

								85.3 Configuring Device Fingerprint Authentication

								85.4 Adding the Biometric Permission to the Manifest File

								85.5 Designing the User Interface

								85.6 Adding a Toast Convenience Method

								85.7 Checking the Security Settings

								85.8 Configuring the Authentication Callbacks

								85.9 Adding the CancellationSignal

								85.10 Starting the Biometric Prompt

								85.11 Testing the Project

								85.12 Summary

					

				

						86. Creating, Testing, and Uploading an Android App Bundle
					
								86.1 The Release Preparation Process

								86.2 Android App Bundles

								86.3 Register for a Google Play Developer Console Account

								86.4 Configuring the App in the Console

								86.5 Enabling Google Play App Signing

								86.6 Creating a Keystore File

								86.7 Creating the Android App Bundle

								86.8 Generating Test APK Files

								86.9 Uploading the App Bundle to the Google Play Developer Console

								86.10 Exploring the App Bundle

								86.11 Managing Testers

								86.12 Rolling the App Out for Testing

								86.13 Uploading New App Bundle Revisions

								86.14 Analyzing the App Bundle File

								86.15 Summary

					

				

						87. An Overview of Android In-App Billing
					
								87.1 Preparing a Project for In-App Purchasing

								87.2 Creating In-App Products and Subscriptions

								87.3 Billing Client Initialization

								87.4 Connecting to the Google Play Billing Library

								87.5 Querying Available Products

								87.6 Starting the Purchase Process

								87.7 Completing the Purchase

								87.8 Querying Previous Purchases

								87.9 Summary

					

				

						88. An Android In-App Purchasing Tutorial
					
								88.1 About the In-App Purchasing Example Project

								88.2 Creating the InAppPurchase Project

								88.3 Adding Libraries to the Project

								88.4 Designing the User Interface

								88.5 Adding the App to the Google Play Store

								88.6 Creating an In-App Product

								88.7 Enabling License Testers

								88.8 Initializing the Billing Client

								88.9 Querying the Product

								88.10 Launching the Purchase Flow

								88.11 Handling Purchase Updates

								88.12 Consuming the Product

								88.13 Restoring a Previous Purchase

								88.14 Testing the App

								88.15 Troubleshooting

								88.16 Summary

					

				

						89. Creating and Managing Overflow Menus on Android
					
								89.1 The Overflow Menu

								89.2 Creating an Overflow Menu

								89.3 Displaying an Overflow Menu

								89.4 Responding to Menu Item Selections

								89.5 Creating Checkable Item Groups

								89.6 Menus and the Android Studio Menu Editor

								89.7 Creating the Example Project

								89.8 Designing the Menu

								89.9 Modifying the onOptionsItemSelected() Method

								89.10 Testing the Application

								89.11 Summary

					

				

						90. Working with Material Design 3 Theming
					
								90.1 Material Design 2 vs. Material Design 3

								90.2 Understanding Material Design Theming

								90.3 Material Design 3 Theming

								90.4 Building a Custom Theme

								90.5 Summary

					

				

						91. A Material Design 3 Theming and Dynamic Color Tutorial
					
								91.1 Creating the ThemeDemo Project

								91.2 Designing the User Interface

								91.3 Building a New Theme

								91.4 Adding the Theme to the Project

								91.5 Enabling Dynamic Color Support

								91.6 Previewing Dynamic Colors

								91.7 Summary

					

				

						92. An Overview of Gradle in Android Studio
					
								92.1 An Overview of Gradle

								92.2 Gradle and Android Studio
							
										92.2.1 Sensible Defaults

										92.2.2 Dependencies

										92.2.3 Build Variants

										92.2.4 Manifest Entries

										92.2.5 APK Signing

										92.2.6 ProGuard Support

							

						

								92.3 The Property and Settings Gradle Build File

								92.4 The Top-level Gradle Build File

								92.5 Module Level Gradle Build Files

								92.6 Configuring Signing Settings in the Build File

								92.7 Running Gradle Tasks from the Command Line

								92.8 Summary

					

				

						Index

			

		
		
		Landmarks

			
						Cover

						Table of Contents

						Index

			

		
	

OEBPS/image/as_sdk_location.jpg
Languages & Frameworks > Android SDK

Manager for the Android SDK and Tools used by the IDE

Edit Optimize disk space

SDK Platforms SDK Tools SDK Update Sites

OEBPS/image/as_sdk_manager.jpg
e} [€] Settings

Q- Languages & Frameworks > Android SDK
> Appearance & Behavior Manager for the Android SDK and Tools used by the IDE
Keymap Android SDK Location: /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space
> Editor
> Build, Execution, Deployment SDK Platforms SDK Tools SDK Update Sites

* Languages & Frameworks Each Android SDK Platform package includes the Android platform and sources pertaining to

Android SDK an API level by default. Once installed, the IDE will automatically check for updates. Check
"show package details" to display individual SDK components.

Kotlin
> Tools Name API Level Revision Status
Advanced Settings 4 Android UpsideDownCakePrivacySandbox Preview
Layout Inspector Android SDK Platform UpsideDownCakePrivacySandbox ~ UpsideDownCakePriva... 2 Not installed
Google Play ARM 64 v8a System Image UpsideDownCakePriva... 2 Not installed
Google Play Intel x86_64 Atom System Image UpsideDownCakePriva... 2 Not installed
~ & Android 14.0 ("UpsideDownCake")
Android SDK Platform 34 34 2 Installed
Sources for Android 34 34 2 Installed
Android TV ARM 64 v8a System Image 34 2 Not installed
Android TV Intel x86 Atom System Image 34 2 Not installed
ARM 64 v8a System Image 34 2 Not installed
Intel x86_64 Atom System Image 34 2 Not installed
Google TV ARM 64 v8a System Image 34 2 Not installed
Google TV Intel x86 Atom System Image 34 2 Not installed
Google APIs ARM 64 v8a System Image 34 10 Installed
Gooale APIs Intel x86 64 Atom Svstem Imaae 34 10 Not installed

Hide Obsolete Packages Show Package Details

? Cancel -

OEBPS/image/as_avd_in_tool_window_setting.jpg
Q.

Appearance & Behavior

Quick Lists
Path Variables
Keymap
> Editor
Plugins
> Version Control
> Build, Execution, Deployment
> Languages & Frameworks
v Tools
Actions on Save
Web Browsers and Preview
External Tools
Terminal
Database Inspector

Device Explorer

Tools > Emulator

Launch in the Runnmg Devices tool window

Ched from Device Manager or when
running an app will appear in the Rurmmg Devices tool window. Otherwise virtual
devices will launch in a standalone Android Emulator application. Virtual devices
launched from the Running Devices window will always appear in that window
regardless of this setting

Open the Running Devices tool window when launching an app
Open the Running Devices tool window when launching a test

Enable clipboard sharing

Show camera control prompts

Velocity control keys for virtual scene camera:

WASDQE (for QWERTY keyboard) v

When encountering snapshots incompatible with the current configuration:

Ask before deleting v

OEBPS/image/as_tool_window_dock_button.jpg
[NON) Running Devices
Running Devices [Pixel 4 API 33

O P> DHU<C OO0 B@ D
1002 & ©

OEBPS/image/as_avd_posture.jpg

OEBPS/image/as_layout_editor.jpg
</> activity_main.xml

Palette Q @ — activity_mainxmlv O @ &, [OPixelv 34~ > @ Auributes Qa8 —
Common Ab TextView © W 0dp, S ¥ I, 2 ?, ConstraintLayout <unnamed>
Text] Button id
Buttons =] ImageView > Declared Attributes =
T = RecyclerView (e
] FragmentCon...
Layouts O ScrollView layout_width match_parent -
Containers -8 Switch layout_height match_parent
Halnare visibility ¥
Component Tree e — _ £ visibility v
°L, ConstraintLayout

v Transforms
Ab TextView "Hello World!"

View

androidx.constraintlayout.widget.ConstraintLayout

OEBPS/image/as_jellyfish_welcome.jpg
[N Welcome to Android Studio

‘A Android Studio
Jellyfish | 2023.3.1

Projects

. .
. Welcome to Android Studio
Plugins Create a new project to start from scratch.
Learn Open existing project from disk or version control.

ot D 79
New Project Open Get from VCS

More Actions v

OEBPS/image/as_device_manager_button.jpg

OEBPS/image/as_jellyfish_welcome1.jpg
LC N Welcome to Android Studio

A Android Studio
Jellyfish | 2023.3.1

Projects

Customize Welcome to Android Studio
Plugins Create a new project to start from scratch

(T Open existing project from disk or version control.

ol D 1
New Project Open Get from VCS

More Actions v

OEBPS/image/avd_running_standalone.jpg
Android Emulator - Pixel_4_API_34...

OEBPS/image/as_settings_menu.jpg
=] Run Anything...

T} SDK Manager...
C.: Project Structure...

@ Settings...
Plugins...

Theme...
Keymap...
View Mode...

Switch to Classic Ul...

OEBPS/image/as_main_window1.jpg
[Android © MainActivity.java

AndroidSample Version control 4_extension. ®
Q

package com.example.androidsample;

S v C3app <
> [manifests :
import ... o
v Djava =
~ & com.example.androidsample 11 public class MainActivity extends AppCompatActivity { &
(© MainActivity
>[5 com.example.androidsample (androidTest) @Override
> [com.example.androidsample (test) of protected void onCreate(Bundle savedInstanceState) {
) java (generated) super.onCreate(savedInstanceState);
v [2res setContentView(R.layout.activity_main);
> [2) drawable ¥

v (2] layout e
1
</> activity_main.xml usage

public void convertCurrency(View view) {
> [E mipmap

> [values
>) xml

es (generated)

EditText dollarText = findViewById(R.id.dollarText);
TextView textView = findViewById(R.id.textView);

(7 Gradle Scripts if (!dollarText.getText().toString().equals("")) {

) 2 build.gradle.kts (Project: AndroidSample)

2 build.gradle.kts (Module :app) float dollarValue = Float.parseFloat(dollarText.getText().toString());
) = proguard-rules.pro (ProGuard Rules for ":app") float euroValue = dollarValue * 0.85F;
© 3 gradie.properties (Project Properties) textView.setText(String.format(Locale.ENGLISH, format: "%.2f", euroValue));

1 gradle-wrapper.properties (Gradle Version) }else {

. textView.setText(R.string.no_valve_string);

B 1 local.properties (SDK Location)

& settings.gradle.kts (Project Settings)

©

1
0 AndroidSample > Oapp > src > Omain > java > com > example > androidsample > © MainActivity e M1 LF UTF-8 @ 4spaces of

OEBPS/image/avd_create_resizable.jpg
Choose a device defil

& ECI Resizable (Experimental)
Category Name v Play Store Size Resolution Density
Phone Resizable (Experimental) 6.0" 1080x2340 420dpi
1080px

Tablet Pixel XL 5.5" 1440x2560 560dpi Size: large

Ratio: long

" " . Density: 420dpi
Wear OS Pixel 7 Pro >3 6.71 1440x3120 560dpi Folded: 884x2208
2340,

Desktop Pixel 7 > 6.31" 1080x2400 420dpi P This device resizes to:

Phone (1080 x 2340 @ 420dpi)
v Pixel 6a > 6.13" 1080x2400 420dpi Foldable (1768 x 2208 @ 420dpi)

Tablet (1920 x 1200 @ 240dpi)

Desktop (1920 x 1080 @ 160dpi)
Automotive Pixel 6 Pro 6.7" 1440x3120 560dpi

OEBPS/image/as_java_project_settings.jpg
New Project

Empty Views Activity

Creates a new empty activity

Name AndroidSample
Package name ‘com.ebookfrenzy.androidsample

save location ers/neilsmyth/Dropbox/Documents/Books/Giraffe_Javajmigration/AndroidSample
Language Java -

um SDK API 26 (“Oreo"; Android 8.0) =

® Your app will run on approximately 92.4% of devices.
Help me choose

Build configuration language ? Kotlin DSL (build.gradle.kts) [Recommended] -

Cancel Previous A

OEBPS/image/as_widget_id.jpg
Attributes Q @ —

Ab editTextNumberDecimal

id editTextNumberDecimal

v Declared Attributes P =

OEBPS/image/as_device_manager_avd_menu.jpg
Device Manager

Iy

8 + 3

~ Name API Type ~

’
B Pixel 4 API 34
o

Upsi... Virtual
= Android UpsideDownCakePrivacySandbox Preview | a... 2

Cold Boot

Pair Wearable

& Edit
Duplicate
) Wipe Data

] Delete

)

View Details
@© Show on Disk

OEBPS/image/payload-publishing.jpg
& Payload
publishing

OEBPS/image/as_recent_files.jpg
Recent Files

[Project

[> Run

(9 Problems

9 Version Control

€ App Quality Insights
[L Device Manager

&7 Gradle

4J Logcat

[% Notifications

(&) Profiler

& Resource Manager
[Running Devices

() Terminal

Recent Locations

</> activity_main.xml

</> strings.xml

(@ MainActivity.kt

&2 build.gradle.kts (:app)
@ Translations Editor
© Button.java

|| Show edited only 3£E

~/Dropbox/Documents/Books/Giraffe_Kotlin/WORK/AndroidSample/app/src/main/res/values

OEBPS/image/as_switcher.jpg
her

Logeat
Project
Bookmarks

Notifications
Profiler

a
e

Problems
Structure
Services

Version Control
App Inspection
Device File Explorer
Emulator

Gradie

Layout Inspector
Device Manager

o = ToDO

Q @ App Quality Insights
R

mo
BAVAOm T O

Resource Manager
Terminal
v = Build Variants

ropbox/Documents/Books/

activity_main.xmi

el_Java)WORK/AndroidSamplefapp/srcjmainjres/

OEBPS/image/as_tool_window_buttons1.jpg
g Android - 6 ¢ X
S v Coapp G 6

> [manifests

v [Djava
v [5] com.example.androidsample

OEBPS/image/as_status_bar.jpg
Gradle Build Running e=——————— X 13:6 LF UTF-8 4 spaces

OEBPS/image/as_sdk_manager_update_available.jpg
Name

Android TV ARM 64 v8a System Image
Android TV Intel x86 Atom System Image
Google TV ARM 64 v8a System Image
Google TV Intel x86 Atom System Image
B Google APIs ARM 64 v8a System Image
Google APIs Intel x86 Atom_64 System Image
Google Play ARM 64 v8a System Image

API Level

33
33
33
33
33
33
33

Revision

N © 0o oo oo

Status

Not installed
Not installed
Not installed
Not in

pdate Available: 9
Not installed

Installed

OEBPS/image/as_androidsample_running_dark.jpg
dollars

Hello World!

OEBPS/image/as_select_run_device.jpg
[], samsung SM-T290 app

[], samsung SM-T290

[& Pixel 4 APl 34 >
[Resizable API 34

[0 Select Multiple Devices...
@ Pair Devices Using Wi-Fi

i= Troubleshoot Device Connections

OEBPS/image/as_layout_editor_color_selector.jpg
Resources Custom

= |
y (RS []
255 36 56 FFFF2438
Material 500 v

- -

OEBPS/image/as_sdk_manager_tools.jpg
e e Settings

Q- Languages & Frameworks > Android SDK
> Appearance & Behavior Manager for the Android SDK and Tools used by the IDE

Keymap Android SDK Location: /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space
> Editor

Build, Execution, Deployment SDK Platforms DK Update Sites

NdLangusgss ElRrameworks Below are the available SDK developer tools. Once installed, the IDE will automatically check

Android SDK for updates. Check "show package details" to display available versions of an SDK Tool.
Kotlin Name Version Status
> Tools Android SDK Build-Tools 34 Installed
Advanced Settings NDK (Side by side) Not Installed
Layout Inspector Android SDK Command-line Tools (latest) Not Installed
CMake Not Installed
Android Auto AP Simulators 1 Not installed
Android Auto Desktop Head Unit Emulator 21 Not installed

Android Emulator 33.1.20 Installed

OEBPS/image/as_androidsample_running.jpg
v4n

Hello World!

OEBPS/image/as_onclick_attribute.jpg
v Common Attributes

style @style/Widget.Material3.B | v

* | convertCurrency ‘

stateListAnimator

onClick

elevation

