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    Foreword

    I started building what became the pandas project in 2008, during a rather different era in statistical computing and what we now call data science. At that time, data analysis was commonly performed using databases and SQL, Microsoft Excel, proprietary programming environments, and open-source languages like R. Python had a small but growing scientific computing community, yet it had little traction in statistical analysis and business analytics. While pandas began as my personal toolbox for data analysis work in Python, after a few years, it took on a life of its own as it became clear to me that Python had the potential to become a mainstream language for data analysis using open-source software.

    Until 2013, I actively developed and maintained pandas for about five years. Since then, it has been community-maintained by a small, passionate group of core developers and thousands of community contributors. I published one of the first books to teach users about pandas in 2012, but today there are many books and online resources catering to different audiences. Some books focus mainly on explaining how to use the features of pandas, while others use pandas as an essential data manipulation tool as part of learning how to do data science or machine learning.

    I’ve known Will Ayd and Matt Harrison for many years and have admired the work that they have done as open-source developers and educators for the Python community. Will is a member of the pandas core team and has built and maintained many of the features that are discussed in this book. Matt is an author of many successful Python books and possesses an amazing track record as a trainer and educator of Python programming, pandas, and other data science tools. This is a trustworthy duo to teach you how to do things the right way.

    I am excited to see the third edition of this book come together. It is an excellent resource full of practical solutions to problems you will encounter in your data analysis work in Python. It covers the essential features of pandas while delving into more advanced functionality and features that were only added to the library in the last few years.

    Wes McKinney

    Creator of the pandas and Ibis projects

    Co-creator of Apache Arrow
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    William Ayd is a core maintainer of the pandas project, serving in that role since 2018. For over a decade working as a consultant, Will has helped countless clients get the most value from their data using pandas and the open-source ecosystem surrounding it.

    Matt Harrison has been using Python since 2000. He runs MetaSnake, which provides corporate training for Python and data science. He is the author of Machine Learning Pocket Reference, the bestselling Illustrated Guide to Python 3, and Learning the Pandas Library, among other books.
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    Preface

    pandas is a library for creating and manipulating structured data with Python. What do I mean by structured? I mean tabular data in rows and columns like what you would find in a spreadsheet or database. Data scientists, analysts, programmers, engineers, and others are leveraging it to mold their data.

    pandas is limited to “small data” (data that can fit in memory on a single machine). However, the syntax and operations have been adopted by or inspired other projects: PySpark, Dask, and cuDF, among others. These projects have different goals, but some of them will scale out to big data. So, there is value in understanding how pandas works as the features are becoming the de facto API for interacting with structured data.

    I, Will Ayd, have been a core maintainer of the pandas library since 2018. During that time, I have had the pleasure of contributing to and collaborating on a host of other open source projects in the same ecosystem, including but not limited to Arrow, NumPy and Cython.

    I also consult for a living, utilizing the same ecosystem that I contribute to. Using the best open source tooling, I help clients develop data strategies, implement processes and patterns, and train associates to stay ahead of the ever-changing analytics curve. I strongly believe in the freedom that open source tooling provides, and have proven that value to many companies.

    If your company is interested in optimizing your data strategy, feel free to reach out (will_ayd@innobi.io).

    Who this book is for

    This book contains a huge number of recipes, ranging from very simple to advanced. All recipes strive to be written in clear, concise, and modern idiomatic pandas code. The How it works sections contain extremely detailed descriptions of the intricacies of each step of the recipe. Often, in the There’s more… section, you will get what may seem like an entirely new recipe. This book is densely packed with an extraordinary amount of pandas code.

    While not strictly required, users are advised to read the book chronologically. The recipes are structured in such a way that they first introduce concepts and features using very small, directed examples, but continuously build from there into more complex applications.

    Due to the wide range of complexity, this book can be useful to both novice and everyday users alike. It has been my experience that even those who use pandas regularly will not master it without being exposed to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There are almost always multiple ways of completing the same operation, which can have users get the result they want but in a very inefficient manner. It is not uncommon to see an order of magnitude or more in performance difference between two sets of pandas solutions to the same problem.

    The only real prerequisite for this book is a fundamental knowledge of Python. It is assumed that the reader is familiar with all the common built-in data containers in Python, such as lists, sets, dictionaries, and tuples.

    What this book covers

    Chapter 1, pandas Foundations, introduces the main pandas objects, namely, Series, DataFrames, and Index.

    Chapter 2, Selection and Assignment, shows you how to sift through the data that you have loaded into any of the pandas data structures.

    Chapter 3, Data Types, explores the type system underlying pandas. This is an area that has evolved rapidly and will continue to do so, so knowing the types and what distinguishes them is invaluable information.

    Chapter 4, The pandas I/O System, shows why pandas has long been a popular tool to read from and write to a variety of storage formats.

    Chapter 5, Algorithms and How to Apply Them, introduces you to the foundation of performing calculations with the pandas data structures.

    Chapter 6, Visualization, shows you how pandas can be used directly for plotting, alongside the seaborn library which integrates well with pandas.

    Chapter 7, Reshaping DataFrames, discusses the many ways in which data can be transformed and summarized robustly via the pandas pd.DataFrame.

    Chapter 8, Group By, showcases how to segment and summarize subsets of your data contained within a pd.DataFrame.

    Chapter 9, Temporal Data Types and Algorithms, introduces users to the date/time types which underlie time-series-based analyses that pandas is famous for and highlights usage against real data.

    Chapter 10, General Usage/Performance Tips, goes over common pitfalls users run into when using pandas, and showcases the idiomatic solutions.

    Chapter 11, The pandas Ecosystem, discusses other open source libraries that integrate, extend, and/or complement pandas.

    To get the most out of this book

    There are a couple of things you can do to get the most out of this book. First, and most importantly, you should download all the code, which is stored in Jupyter Notebook. While reading through each recipe, run each step of code in the notebook. Make sure you explore on your own as you run through the code. Second, have the pandas official documentation open (http://pandas.pydata.org/pandas-docs/stable/) in one of your browser tabs. The pandas documentation is an excellent resource containing over 1,000 pages of material. There are examples for most of the pandas operations in the documentation, and they will often be directly linked from the See also section. While it covers the basics of most operations, it does so with trivial examples and fake data that don’t reflect situations that you are likely to encounter when analyzing datasets from the real world.

    What you need for this book

    pandas is a third-party package for the Python programming language and, as of the printing of this book, is transitioning from the 2.x to the 3.x series. The examples in this book should work with a minimum pandas version of 2.0 along with Python versions 3.9 and above.

    The code in this book will make use of the pandas, NumPy, and PyArrow libraries. Jupyter Notebook files are also a popular way to visualize and inspect code. All of these libraries should be installable via pip or the package manager of your choice. For pip users, you can run:

    python -m pip install pandas numpy pyarrow notebook


    Download the example code files

    You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support/errata and register to have the files emailed directly to you.

    You can download the code files by following these steps:

    
      	Log in or register at www.packt.com.

      	Select the Support tab.

      	Click on Code Downloads.

      	Enter the name of the book in the Search box and follow the on-screen instructions.

    

    The code bundle for the book is also hosted on GitHub at https://github.com/WillAyd/Pandas-Cookbook-Third-Edition. In case there is an update to the code, it will be updated in the existing GitHub repository.

    Running a Jupyter notebook

    The suggested method to work through the content of this book is to have a Jupyter notebook up and running so that you can run the code while reading through the recipes. Following along on your computer allows you to go off exploring on your own and gain a deeper understanding than by just reading the book alone.

    After installing Jupyter notebook, open a Command Prompt (type cmd at the search bar on Windows, or open Terminal on Mac or Linux) and type:

    jupyter notebook


    It is not necessary to run this command from your home directory. You can run it from any location, and the contents in the browser will reflect that location. Although we have now started the Jupyter Notebook program, we haven’t actually launched a single individual notebook where we can start developing in Python. To do so, you can click on the New button on the right-hand side of the page, which will drop down a list of all the possible kernels available for you to use. If you are working from a fresh installation, then you will only have a single kernel available to you (Python 3). After selecting the Python 3 kernel, a new tab will open in the browser, where you can start writing Python code.

    You can, of course, open previously created notebooks instead of beginning a new one. To do so, navigate through the filesystem provided in the Jupyter Notebook browser home page and select the notebook you want to open. All Jupyter Notebook files end in .ipynb.

    Alternatively, you may use cloud providers for a notebook environment. Both Google and Microsoft provide free notebook environments that come preloaded with pandas.

    Download the color images

    We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781836205876.

    Conventions

    There are a number of text conventions used throughout this book.

    CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter/X handles. Here is an example: “You may need to install xlwt or openpyxl to write XLS or XLSX files, respectively.”

    A block of code is set as follows:

    import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies


    Bold: Indicates an important word, or words that you see on the screen. Here is an example: “Select System info from the Administration panel.”

    Italics: Indicates terminology that has extra importance within the context of the writing.

    
      Important notes

      Appear like this.

    

    
      Tips

      Appear like this.

    

    Assumptions for every recipe

    It should be assumed that at the beginning of each recipe, pandas, NumPy, PyArrow, and Matplotlib are imported into the namespace:

    import numpy as np
import pyarrow as pa
import pandas as pd


    Dataset descriptions

    There are about two dozen datasets that are used throughout this book. It can be very helpful to have background information on each dataset as you complete the steps in the recipes. A detailed description of each dataset may be found in the dataset_descriptions Jupyter Notebook file found at https://github.com/WillAyd/Pandas-Cookbook-Third-Edition. For each dataset, there will be a list of the columns, information about each column, and notes on how the data was procured.

    Sections

    In this book, you will find several headings that appear frequently.

    To give clear instructions on how to complete a recipe, we may use some or all of the following sections:

    How to do it

    This section contains the steps required to follow the recipe.

    How it works

    This section usually consists of a detailed explanation of what happened in the previous section.

    There’s more…

    This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.

    Get in touch

    Feedback from our readers is always welcome.

    General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

    Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit, www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

    Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

    If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

  

  
    Leave a Review!

    Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you. 
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    Download a free PDF copy of this book
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    Do you like to read on the go but are unable to carry your print books everywhere?
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    pandas Foundations

    The pandas library is useful for dealing with structured data. What is structured data? Data that is stored in tables, such as CSV files, Excel spreadsheets, or database tables, is all structured. Unstructured data consists of free-form text, images, sound, or video. If you find yourself dealing with structured data, pandas will be of great utility to you.

    pd.Series is a one-dimensional collection of data. If you are coming from Excel, you can think of this as a column. The main difference is that, like a column in a database, all of the values within pd.Series must have a single, homogeneous type.

    pd.DataFrame is a two-dimensional object. Much like an Excel sheet or database table can be thought of as a collection of columns, pd.DataFrame can be thought of as a collection of pd.Series objects. Each pd.Series has a homogeneous data type, but the pd.DataFrame is allowed to be heterogeneous and store a variety of pd.Series objects with different data types.

    pd.Index does not have a direct analogy with other tools. Excel may offer the closest with auto-numbered rows on the left-hand side of a worksheet, but those numbers tend to be for display purposes only. pd.Index, as you will find over the course of this book, can be used for selecting values, joining tables, and much more.

    The recipes in this chapter will show you how to manually construct pd.Series and pd.DataFrame objects, customize the pd.Index object(s) associated with each, and showcase common attributes of the pd.Series and pd.DataFrame that you may need to inspect during your analyses.

    We are going to cover the following recipes in this chapter:

    
      	Importing pandas

      	Series

      	DataFrame

      	Index

      	Series attributes

      	DataFrame attributes

    

    Importing pandas

    Most users of the pandas library will use an import alias so they can refer to it as pd. In general, in this book, we will not show the pandas and NumPy imports, but they look like this:

    import pandas as pd
import numpy as np


    While it is an optional dependency in the 2.x series of pandas, many examples in this book will also leverage the PyArrow library, which we assume to be imported as:

    import pyarrow as pa


    Series

    The basic building block in pandas is a pd.Series, which is a one-dimensional array of data paired with a pd.Index. The index labels can be used as a simplistic way to look up values in the pd.Series, much like the Python dictionary built into the language uses key/value pairs (we will expand on this and much more pd.Index functionality in Chapter 2, Selection and Assignment).

    The following section demonstrates a few ways of creating a pd.Series directly.

    How to do it

    The easiest way to construct a pd.Series is to provide a sequence of values, like a list of integers:

    pd.Series([0, 1, 2])


    0    0
1    1
2    2
dtype: int64


    A tuple is another type of sequence, making it valid as an argument to the pd.Series constructor:

    pd.Series((12.34, 56.78, 91.01))


    0    12.34
1    56.78
2    91.01
dtype: float64


    When generating sample data, you may often reach for the Python range function:

    pd.Series(range(0, 7, 2))


    0    0
1    2
2    4
3    6
dtype: int64


    In all of the examples so far, pandas will try and infer a proper data type from its arguments for you. However, there are times when you will know more about the type and size of your data than can be inferred. Providing that information explicitly to pandas via the dtype= argument can be useful to save memory or ensure proper integration with other typed systems, like SQL databases.

    To illustrate this, let’s use a simple range argument to fill a pd.Series with a sequence of integers. When we did this before, the inferred data type was a 64-bit integer, but we, as developers, may know that we never expect to store larger values in this pd.Series and would be fine with only 8 bits of storage (if you do not know the difference between an 8-bit and 64-bit integer, that topic will be covered in Chapter 3, Data Types). Passing dtype="int8" to the pd.Series constructor will let pandas know we want to use the smaller data type:

    pd.Series(range(3), dtype="int8")


    0    0
1    1
2    2
dtype: int8


    A pd.Series can also have a name attached to it, which can be specified via the name= argument (if not specified, the name defaults to None):

    pd.Series(["apple", "banana", "orange"], name="fruit")


    0     apple
1     banana
2     orange
Name: fruit, dtype: object


    DataFrame

    While pd.Series is the building block, pd.DataFrame is the main object that comes to mind for users of pandas. pd.DataFrame is the primary and most commonly used object in pandas, and when people think of pandas, they typically envision working with a pd.DataFrame.

    In most analysis workflows, you will be importing your data from another source, but for now, we will show you how to construct a pd.DataFrame directly (input/output will be covered in Chapter 4, The pandas I/O System).

    How to do it

    The most basic construction of a pd.DataFrame happens with a two-dimensional sequence, like a list of lists:

    pd.DataFrame([
    [0, 1, 2],
    [3, 4, 5],
    [6, 7, 8],
])


        0   1   2
0   0   1   2
1   3   4   5
2   6   7   8


    With a list of lists, pandas will automatically number the row and column labels for you. Typically, users of pandas will at least provide labels for columns, as it makes indexing and selecting from a pd.DataFrame much more intuitive (see Chapter 2, Selection and Assignment, for an introduction to indexing and selecting). To label your columns when constructing a pd.DataFrame from a list of lists, you can provide a columns= argument to the constructor:

    pd.DataFrame([
    [1, 2],
    [4, 8],
], columns=["col_a", "col_b"])


         col_a    col_b
0    1          2
1    4          8


    Instead of using a list of lists, you could also provide a dictionary. The keys of the dictionary will be used as column labels, and the values of the dictionary will represent the values placed in that column of the pd.DataFrame:

    pd.DataFrame({
    "first_name": ["Jane", "John"],
    "last_name": ["Doe", "Smith"],
})


                first_name      last_name
0           Jane            Doe
1           John            Smith


    In the above example, our dictionary values were lists of strings, but the pd.DataFrame does not strictly require lists. Any sequence will work, including a pd.Series:

    ser1 = pd.Series(range(3), dtype="int8", name="int8_col")
ser2 = pd.Series(range(3), dtype="int16", name="int16_col")
pd.DataFrame({ser1.name: ser1, ser2.name: ser2})


                 int8_col         int16_col
0            0                0
1            1                1
2            2                2


    Index

    When constructing both the pd.Series and pd.DataFrame objects in the previous sections, you likely noticed the values to the left of these objects starting at 0 and incrementing by 1 for each new row of data. The object responsible for those values is the pd.Index, highlighted in the following image:

    [image: ]
    Figure 1.1: Default pd.Index, highlighted in red

    In the case of a pd.DataFrame, you have a pd.Index not only to the left of the object (often referred to as the row index or even just index) but also above (often referred to as the column index or columns):

    [image: A screenshot of a computer]
    Figure 1.2: A pd.DataFrame with a row and column index

    Unless explicitly provided, pandas will create an auto-numbered pd.Index for you (technically, this is a pd.RangeIndex, a subclass of the pd.Index class). However, it is very rare to use pd.RangeIndex for your columns, as referring to a column named City or Date is more expressive than referring to a column in the nth position. The pd.RangeIndex appears more commonly in the row index, although you may still want custom labels to appear there as well. More advanced selection operations with the default pd.RangeIndex and custom pd.Index values will be covered in Chapter 2, Selection and Assignment, to help you understand different use cases, but for now, let’s just look at how you would override the construction of the row and column pd.Index objects during pd.Series and pd.DataFrame construction.

    How to do it

    When constructing a pd.Series, the easiest way to change the row index is by providing a sequence of labels to the index= argument. In this example, the labels dog, cat, and human will be used instead of the default pd.RangeIndex numbered from 0 to 2:

    pd.Series([4, 4, 2], index=["dog", "cat", "human"])


    dog          4
cat          4
human        2
dtype: int64


    If you want finer control, you may want to construct the pd.Index yourself before passing it as an argument to index=. In the following example, the pd.Index is given the name animal, and the pd.Series itself is named num_legs, providing more context to the data:

    index = pd.Index(["dog", "cat", "human"], name="animal")
pd.Series([4, 4, 2], name="num_legs", index=index)


    animal
dog          4
cat          4
human        2
Name: num_legs, dtype: int64


    A pd.DataFrame uses a pd.Index for both dimensions. Much like with the pd.Series constructor, the index= argument can be used to specify the row labels, but you now also have the columns= argument to control the column labels:

    pd.DataFrame([
    [24, 180],
    [42, 166],
], columns=["age", "height_cm"], index=["Jack", "Jill"])


             age    height_cm
Jack     24     180
Jill     42     166


    Series attributes

    Once you have a pd.Series, there are quite a few attributes you may want to inspect. The most basic attributes can tell you the type and size of your data, which is often the first thing you will inspect when reading in data from a data source.

    How to do it

    Let’s start by creating a pd.Series that has a name, alongside a custom pd.Index, which itself has a name. Although not all of these elements are required, having them will help us more clearly understand what the attributes we access through this recipe are actually showing us:

    index = pd.Index(["dog", "cat", "human"], name="animal")
ser = pd.Series([4, 4, 2], name="num_legs", index=index)
ser


    animal
dog      4
cat      4
human    2
Name: num_legs, dtype: int64


    The first thing users typically want to know about their data is the type of pd.Series. This can be inspected via the pd.Series.dtype attribute:

    ser.dtype


    dtype('int64')


    The name may be inspected via the pd.Series.name attribute. The data we constructed in this recipe was created with the name="num_legs" argument, which is what you will see when accessing this attribute (if not provided, this will return None):

    ser.name


    num_legs


    The associated pd.Index can be accessed via pd.Series.index:

    ser.index


    Index(['dog', 'cat', 'human'], dtype='object', name='animal')


    The name of the associated pd.Index can be accessed via pd.Series.index.name:

    ser.index.name


    animal


    The shape can be accessed via pd.Series.shape. For a one-dimensional pd.Series, the shape is returned as a one-tuple where the first element represents the number of rows:

    ser.shape


    3


    The size (number of elements) can be accessed via pd.Series.size:

    ser.size


    3


    The Python built-in function len can show you the length (number of rows):

    len(ser)


    3


    DataFrame attributes

    The pd.DataFrame shares many of the attributes of the pd.Series, with some slight differences. Generally, pandas tries to share as many attributes as possible between the pd.Series and pd.DataFrame, but the two-dimensional nature of the pd.DataFrame makes it more natural to express some things in plural form (for example, the .dtype attribute becomes .dtypes) and gives us a few more attributes to inspect (for example, .columns exists for a pd.DataFrame but not for a pd.Series).

    How to do it

    Much like we did in the previous section, we are going to construct a pd.DataFrame with a custom pd.Index in the rows, while also using custom labels in the columns. This will be more helpful when inspecting the various attributes:

    index = pd.Index(["Jack", "Jill"], name="person")
df = pd.DataFrame([
    [24, 180, "red"],
    [42, 166, "blue"],
], columns=["age", "height_cm", "favorite_color"], index=index)
df


               age    height_cm    favorite_color
person
Jack       24     180          red
Jill       42     166          blue


    The types of each column can be inspected via the pd.DataFrame.dtypes attribute. This attribute returns a pd.Series where each row shows the data type corresponding to each column in our pd.DataFrame:

    df.dtypes


    age                int64
height_cm          int64
favorite_color     object
dtype: object


    The row index can be accessed via pd.DataFrame.index:

    df.index


    Index(['Jack', 'Jill'], dtype='object', name='person')


    The column index can be accessed via pd.DataFrame.columns:

    df.columns


    Index(['age', 'height_cm', 'favorite_color'], dtype='object')


    The shape can be accessed via pd.DataFrame.shape. For a two-dimensional pd.DataFrame, the shape is returned as a two-tuple where the first element represents the number of rows and the second element represents the number of columns:

    df.shape


    2     3


    The size (number of elements) can be accessed via pd.DataFrame.size:

    df.size


    6


    The Python built-in function len can show you the length (number of rows):

    len(df)


    2


    Join our community on Discord

    Join our community’s Discord space for discussions with the authors and other readers:

    https://packt.link/pandas
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    Selection and Assignment

    In the previous chapter, we looked at how to create a pd.Series and pd.DataFrame, and we also looked at their relationship to the pd.Index. With a foundation in constructors, we now shift focus to the crucial processes of selection and assignment. Selection, also referred to as indexing, is considered a getter; i.e., it is used to retrieve values from a pandas object. Assignment, by contrast, is a setter that is used to update values.

    The recipes in this chapter start out by showing you how to retrieve values from pd.Series and pd.DataFrame objects, with ever-increasing complexity. We will eventually introduce the pd.MultiIndex, which can be used to select data hierarchically, before finally ending with an introduction to the assignment operators. The pandas API takes great care to reuse many of the same methods for selection and assignment, which ultimately allows you to be very expressive in how you would like to interact with your data.

    By the end of this chapter, you will be adept at efficiently retrieving data from and updating values within your pandas objects. We are going to cover the following recipes in this chapter: 

    
      	Basic selection from a Series

      	Basic selection from a DataFrame

      	Position-based selection of a Series

      	Position-based selection of a DataFrame

      	Label-based selection from a Series

      	Label-based selection from a DataFrame

      	Mixing position-based and label-based selection

      	DataFrame.filter

      	Selection by data type

      	Selection/filtering via Boolean arrays

      	Selection with a MultiIndex – A single level

      	Selection with a MultiIndex – Multiple levels

      	Selection with a MultiIndex – a DataFrame

      	Item assignment with .loc and .iloc

      	DataFrame column assignment

    

    Basic selection from a Series

    Selection from a pd.Series involves accessing elements either by their position or by their label. This is akin to accessing elements in a list by their index or in a dictionary by their key, respectively. The versatility of the pd.Series object allows intuitive and straightforward data retrieval, making it an essential tool for data manipulation.

    The pd.Series is considered a container in Python, much like the built-in list, tuple, and dict objects. As such, for simple selection operations, the first place users turn to is the Python index operator, using the [] syntax.

    How to do it

    To introduce the basics of selection, let’s start with a very simple pd.Series:

    ser = pd.Series(list("abc") * 3)
ser


    0    a
1    b
2    c
3    a
4    b
5    c
6    a
7    b
8    c
dtype: object


    In Python, you’ve already discovered that the [] operator can be used to select elements from a container; i.e., some_dictionary[0] will give you the value associated with a key of 0. With a pd.Series, basic selection behaves similarly:

    ser[3]


    a


    With the expression ser[3], pandas tries to find the label 3 in the index of the pd.Series and, assuming only one match, returns the value associated with that label.

    Instead of selecting the associated value from the pd.Series, alternatively, you may want a pd.Series returned, as doing so helps you keep the label 3 associated with the data element “a.” With pandas, you can do this by providing a list argument that contains a single element:

    ser[[3]]


    3    a
dtype: object


    Expanding on the usage of a list argument, you can select multiple values from the pd.Series if your list contains multiple elements:

    ser[[0, 2]]


    0    a
2    c
dtype: object


    Assuming you use the default index, you can use slice arguments that work very similarly to slicing a Python list. For example, to get up to (but not including) the element at position 3 of a pd.Series, you can use:

    ser[:3]


    0    a
1    b
2    c
dtype: object


    Negative slice indexers are not a problem for pandas. The following code will select the last four elements of the pd.Series:

    ser[-4:]


    5    c
6    a
7    b
8    c
dtype: object


    You can even provide slices with start and stop arguments. The following code will retrieve all elements of the pd.Series, starting in position 2 and up to (but not including) position 6:

    ser[2:6]


    2    c
3    a
4    b
5    c
dtype: object


    This final example on slices uses start, stop and step arguments to grab every third element, starting at position 1 and stopping when position 8 is encountered:

    ser[1:8:3]


    1    b
4    b
7    b
dtype: object


    Selection still works when providing your own pd.Index values. Let’s create a small pd.Series with string index labels to illustrate:

    ser = pd.Series(range(3), index=["Jack", "Jill", "Jayne"])
ser


    Jack     0
Jill     1
Jayne    2
dtype: int64


    Selection via ser["Jill"] will scan the index for the string Jill and return the corresponding element:

    ser["Jill"]


    1


    Once again, providing a single-element list argument will ensure that you receive a pd.Series in return instead of a single value:

    ser[["Jill"]]


    Jill    1
dtype: int64


    There’s more…

    A common pitfall when using the [] operator is to assume that selection with integer arguments works the same as when selecting from a Python list. This is only true when you use the default pd.Index, which is auto-numbered, starting at 0 (this is technically called a pd.RangeIndex).

    When not using a pd.RangeIndex, extra attention must be paid to the behavior. To illustrate, let’s start with a small pd.Series, which still uses integers in its pd.Index, but does not use an auto-incrementing sequence that starts at 0:

    ser = pd.Series(list("abc"), index=[2, 42, 21])
ser


    2     a
42    b
21    c
dtype: object


    It is important to note that an integer argument selects by label and not by position; i.e., the following code will return the value associated with a label of 2, not the value in position 2:

    ser[2]


    a


    While the integer argument matches by label and not by position, slicing still works positionally. The following example does not stop when encountering the number 2 and, instead, gives the first two elements back:

    ser[:2]


    2     a
42    b
dtype: object


    Users should also be familiar with selection behavior when working with a non-unique pd.Index. Let’s create a small pd.Series where the number 1 appears twice in our row index:

    ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser


    0     apple
1    banana
1    orange
dtype: object


    With this pd.Series, attempting to select the number 1 will not return a single value and, instead, return another pd.Series:

    ser[1]


    1    banana
1    orange
dtype: object


    The fact that a selection like ser[1] can be thought to be done by position or label interchangeably when using the default pd.RangeIndex but, in actuality, selects by label with other pd.Index types can be the source of subtle bugs in user programs. Many users may think they are selecting the nth element, only to have that assumption break when their data changes. To resolve the ambiguity between wanting to select by label or by position with an integer argument, it is highly recommended to leverage the .loc and .iloc methods introduced later in this chapter.

    Basic selection from a DataFrame

    When using the [] operator with a pd.DataFrame, simple selection typically involves selecting data from the column index rather than the row index. This distinction is crucial for effective data manipulation and analysis. Columns in a pd.DataFrame can be accessed by their labels, making it easy to work with named data from a pd.Series within the larger pd.DataFrame structure.

    Understanding this fundamental difference in selection behavior is key to utilizing the full power of a pd.DataFrame in pandas. By leveraging the [] operator, you can efficiently access and manipulate specific columns of data, setting the stage for more advanced operations and analyses.

    How to do it

    Let’s start by creating a simple 3x3 pd.DataFrame. The values of the pd.DataFrame are not important, but we are intentionally going to provide our own column labels instead of having pandas create an auto-numbered column index for us:

    df = pd.DataFrame(np.arange(9).reshape(3, -1), columns=["a", "b", "c"])
df


         a     b     c
0    0     1     2
1    3     4     5
2    6     7     8


    To select a single column, use the [] operator with a scalar argument:

    df["a"]


    0    0
1    3
2    6
Name: a, dtype: int64


    To select a single column but still get back a pd.DataFrame instead of a pd.Series, pass a single-element list:

    df[["a"]]


         a
0    0
1    3
2    6


    Multiple columns can be selected using a list:

    df[["a", "b"]]


         a     b
0    0     1
1    3     4
2    6     7


    In all of these examples, the arguments for [] have been selected from the columns, but providing a slice argument exhibits different behavior and will actually select from rows. Note that the following example selects all columns and the first two rows of data, not the other way around:

    df[:2]


         a     b     c
0    0     1     2
1    3     4     5


    There’s more…

    When using a list argument for the [] operator, you have the flexibility to specify the order of columns in the output. This allows you to customize the pd.DataFrame to suit your needs. The order of columns in the output will exactly match the order of labels provided as input. For example:

    df[["a", "b"]]


         a     b
0    0     1
1    3     4
2    6     7


    Swapping the order of the elements in the list as an argument to [] will swap the order of the columns in the resulting pd.DataFrame:

    df[["b", "a"]]


         b     a
0    1     0
1    4     3
2    7     6


    This feature is particularly useful when you need to reorder columns for presentation purposes, or when preparing data for export to CSV or Excel formats where a specific column order is required (see Chapter 4, The pandas I/O System, for more on the pandas I/O system).

    Position-based selection of a Series

    As discussed back in the Basic selection from a DataFrame section, using [] as a selection mechanism does not signal the clearest intent and can sometimes be downright confusing. The fact that ser[42] selects from a label matching the number 42 and not the 42nd row of a pd.Series is a common mistake for new users, and such an ambiguity can grow even more complex as you start trying to select two dimensions with the [] operator from a pd.DataFrame.

    To clearly signal that you are trying to select by position instead of by label, you should use pd.Series.iloc.

    How to do it

    Let’s create a pd.Series where we have an index using integral labels that are also non-unique:

    ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser


    0     apple
1    banana
1    orange
dtype: object


    To select a scalar, you can use pd.Series.iloc with an integer argument:

    ser.iloc[1]


    banana


    Following the same patterns we have seen before, turning that integer argument into a list containing a single element will return a pd.Series instead of a scalar:

    ser.iloc[[1]]


    1    banana
dtype: object


    Multiple integers in the list argument will select multiple elements of the pd.Series by position:

    ser.iloc[[0, 2]]


    0     apple
1    orange
dtype: object


    Slices are a natural way of expressing a range of elements that you would select, and they pair very nicely as an argument to pd.Series.iloc:

    ser.iloc[:2]


    0     apple
1    banana
dtype: object


    Position-based selection of a DataFrame

    Much like with a pd.Series, integers, lists of integers, and slice objects are all valid arguments to DataFrame.iloc. However, with a pd.DataFrame, two arguments are required. The first argument handles selecting from the rows, and the second is responsible for the columns.

    In most use cases, users reach for position-based selection when retrieving rows and label-based selection when retrieving columns. We will cover the latter in the Label-based selection from a DataFrame section and will show you how to combine both in the Mixing position-based and label-based selection section. However, when your row index uses the default pd.RangeIndex and the order of columns is significant, the techniques shown in this section will be of immense value.

    How to do it

    Let’s create a pd.DataFrame with five rows and four columns:

    df = pd.DataFrame(np.arange(20).reshape(5, -1), columns=list("abcd"))
df


         a     b     c     d
0    0     1     2     3
1    4     5     6     7
2    8     9     10    11
3    12    13    14    15
4    16    17    18    19


    Passing two integer arguments to pd.DataFrame.iloc will return a scalar from that row and column position:

    df.iloc[2, 2]


    10


    In some cases, you may not want to select individual values from a particular axis, opting instead for everything that axis has to offer. An empty slice object, :, allows you to do this; i.e., if you wanted to select all rows of data from the first column of a pd.DataFrame, you would use:

    df.iloc[:, 0]


    0     0
1     4
2     8
3    12
4    16
Name: a, dtype: int64


    Flipping the order of the arguments to pd.DataFrame.iloc will change behavior. Instead of grabbing all rows for the first column, the below code selects all columns and only the first row of data:

    df.iloc[0, :]


    a    0
b    1
c    2
d    3
Name: 0, dtype: int64


    Because the preceding examples only return one dimension of data, they implicitly attempt to squeeze the return value from a pd.DataFrame down to a pd.Series. Following the patterns we have seen many times already in this chapter, you can prevent that implicit dimensionality reduction by passing a single-element list argument for the axis, which is not an empty slice. For example, to select all rows for the first column but still get back a pd.DataFrame, you would opt for:

    df.iloc[:, [0]]


         a
0    0
1    4
2    8
3    12
4    16


    Reversing those arguments gives us the first row and all columns back as a pd.DataFrame:

    df.iloc[[0], :]


         a    b    c    d
0    0    1    2    3


    Lists can be used to select multiple elements from both the rows and columns. If we wanted the first and second rows paired with the last and second-to-last columns of our pd.DataFrame, you could opt for an expression like:

    df.iloc[[0, 1], [-1, -2]]


         d    c
0    3    2
1    7    6


    There’s more…

    Empty slices are valid arguments to .iloc. Both ser.iloc[:] and df.iloc[:, :] will return everything from each axis, essentially giving you a copy of the object.

    Label-based selection from a Series

    In pandas, pd.Series.loc is used to perform selection by label instead of by position. This method is particularly useful when you consider the pd.Index of your pd.Series to contain lookup values, much like the key in a Python dictionary, rather than giving importance to the order or position of data in your pd.Series.

    How to do it

    Let’s create a pd.Series where we have a row index using integral labels that are also non-unique:

    ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser


    0     apple
1    banana
1    orange
dtype: object


    pd.Series.loc will select all rows where the index has a label of 1:

    ser.loc[1]


    1    banana
1    orange
dtype: object


    Of course, you are not limited to integral labels in pandas. Let’s see what this looks like with a pd.Index composed of string values:

    ser = pd.Series([2, 2, 4], index=["dog", "cat", "human"], name="num_legs")
ser


    dog      2
cat      2
human    4
Name: num_legs, dtype: int64


    pd.Series.loc can select all rows where the index has a label of "dog":

    ser.loc["dog"]


    2


    To select all rows where the index has a label of "dog" or "cat":

    ser.loc[["dog", "cat"]]


    dog    2
cat    2
Name: num_legs, dtype: int64


    Finally, to select all rows up to and including the label "cat":

    ser.loc[:"cat"]


    dog    2
cat    2
Name: num_legs, dtype: int64


    There’s more…

    Understanding label-based selection with pd.Series.loc provides powerful capabilities to access and manipulate data in a pd.Series. While this method may seem straightforward, it offers nuances and behaviors that are important to grasp for effective data handling.

    A very common mistake for users of all experience levels with pandas is to overlook the differences in behavior that slicing with pd.Series.loc has, compared to slicing in standard Python and the pd.Series.iloc case.

    To walk through this, let’s create a small Python list and a pd.Series with the same data:

    values = ["Jack", "Jill", "Jayne"]
ser = pd.Series(values)
ser


    0     Jack
1     Jill
2    Jayne
dtype: object


    As you have already seen with lists and other containers built into the Python language, slicing returns values up to but not including the provided position:

    values[:2]


    Jack    Jill


    Slicing with pd.Series.iloc matches this behavior, returning a pd.Series with the same exact length and elements as the Python list:

    ser.iloc[:2]


    0    Jack
1    Jill
dtype: object


    But slicing with pd.Series.loc actually produces a different result:

    ser.loc[:2]


    0     Jack
1     Jill
2    Jayne
dtype: object


    What is going on here? To try and get a grasp on this, it is important to remember that pd.Series.loc matches by label, not by position. The pandas library does something akin to a loop over each element in the pd.Series and its accompanying pd.Index, stopping at the point where it finds the value of 2 in the index. However, pandas cannot guarantee that there is only one value in the pd.Index with the value of 2, so it must continue going until it finds something else. You can see that in action if you try the same selection with a pd.Series that repeats the index label 2:

    repeats_2 = pd.Series(range(5), index=[0, 1, 2, 2, 0])
repeats_2.loc[:2]


    0    0
1    1
2    2
2    3
dtype: int64


    This can seem downright devious if you expect your row index to contain integers, but the main use case for pd.Series.loc is for working with a pd.Index where position/ordering is not important (for that, use pd.Series.iloc). Taking string labels as a more practical example, the slicing behavior of pd.Series.loc becomes more natural. The following code can essentially be thought of as asking pandas to loop over the pd.Series until the label "xxx" is found in the row index, continuing until a new label is found:

    ser = pd.Series(range(4), index=["zzz", "xxx", "xxx", "yyy"])
ser.loc[:"xxx"]


    zzz    0
xxx    1
xxx    2
dtype: int64


    In certain cases where you try to slice with pd.Series.loc but the index labels have no determinate ordering, pandas will end up raising an error:

    ser = pd.Series(range(4), index=["zzz", "xxx", "yyy", "xxx"])
ser.loc[:"xxx"]


    KeyError: "Cannot get right slice bound for non-unique label: 'xxx'"


    Label-based selection from a DataFrame

    As we discussed back in the Position-based selection of a DataFrame section, the most common use case with a pd.DataFrame is to use label-based selection when referring to columns and position-based selection when referring to rows. However, this is not an absolute requirement, and pandas allows you to use label-based selection from both the rows and columns.

    When compared to other data analysis tools, the ability to select by label from the rows of a pd.DataFrame is a unique advantage to pandas. For users familiar with SQL, there is no real equivalent to this provided by the language; columns are very easy to select when placed in a SELECT clause, but rows can only be filtered via a WHERE clause. For users adept at Microsoft Excel, you could create two-dimensional structures using a pivot table, with both row labels and column labels, but your ability to select or refer to data within that pivot table is effectively limited.

    For now, we will introduce selection for very small pd.DataFrame objects to get a feel for the syntax. In Chapter 8, Reshaping Data Frames, we will explore ways that you can create meaningful pd.DataFrame objects where row and column labels are significant. Combined with the knowledge introduced in this section, you will come to appreciate how unique this type of selection is to pandas, as well as how it can help you explore data in meaningful ways that other tools cannot express.

    How to do it

    Let’s create a pd.DataFrame where we have indices composed of strings in both the rows and columns:

    df = pd.DataFrame([
    [24, 180, "blue"],
    [42, 166, "brown"],
    [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"], index=["Jack", "Jill", "Jayne"])
df


            age    height_cm    eye_color
Jack    24     180          blue
Jill    42     166          brown
Jayne   22     160          green


    pd.DataFrame.loc can select by the row and column label:

    df.loc["Jayne", "eye_color"]


    green


    To select all rows from the column with the label "age":

    df.loc[:, "age"]


    Jack     24
Jill     42
Jayne    22
Name: age, dtype: int64


    To select all columns from the row with the label "Jack":

    df.loc["Jack", :]


    age            24
height_cm     180
eye_color    blue
Name: Jack, dtype: object


    To select all rows from the column with the label "age", maintaining the pd.DataFrame shape:

    df.loc[:, ["age"]]


             age
Jack     24
Jill     42
Jayne    22


    To select all columns from the row with the label "Jack", maintaining the pd.DataFrame shape:

    df.loc[["Jack"], :]


            age   height_cm    eye_color
Jack    24    180          blue


    To select both rows and columns using lists of labels:

    df.loc[["Jack", "Jill"], ["age", "eye_color"]]


            age   eye_color
Jack    24    blue
Jill    42    brown


    Mixing position-based and label-based selection

    Since pd.DataFrame.iloc is used for position-based selection and pd.DataFrame.loc is for label-based selection, users must take an extra step if attempting to select by label in one dimension and by position in another. As mentioned in previous sections, the majority of pd.DataFrame objects constructed will place heavy significance on the labels used for the columns, with little care for how those columns are ordered. The inverse is true for the rows, so being able to effectively mix and match both styles is of immense value.

    How to do it

    Let’s start with a pd.DataFrame that uses the default auto-numbered pd.RangeIndex in the rows but has custom string labels for the columns:

    df = pd.DataFrame([
    [24, 180, "blue"],
    [42, 166, "brown"],
    [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"])
df


         age   height_cm    eye_color
0    24    180          blue
1    42    166          brown
2    22    160          green


    The pd.Index.get_indexer method can help us convert a label or list of labels into their corresponding positions in a pd.Index:

    col_idxer = df.columns.get_indexer(["age", "eye_color"])
col_idxer


    array([0, 2])


    This can subsequently be used as an argument to .iloc, ensuring that you use position-based selection across both the rows and columns:

    df.iloc[[0, 1], col_idxer]


         age    eye_color
0    24     blue
1    42     brown


    There’s more…

    Instead of using pd.Index.get_indexer, you can split this expression up into a few steps, with one of the steps performing index-based selection and the other performing label-based selection. And if you did this, you’d end up getting the exact same result as shown above:

    df[["age", "eye_color"]].iloc[[0, 1]]


         age    eye_color
0    24     blue
1    42     brown


    There’s a strong argument to be made that this is more expressive than using pd.Index.get_indexer, which developers of all experience levels with pandas would agree with. So why even bother with pd.Index.get_indexer?

    While these appear the same on the surface, how pandas computes the result is drastically different. Adding some timing benchmarks to the various methods should highlight this. While the exact numbers will vary on your machine, compare the timing output of the idiomatic approach described in this section:

    import timeit
def get_indexer_approach():
  col_idxer = df.columns.get_indexer(["age", "eye_color"])
  df.iloc[[0, 1], col_idxer]
timeit.timeit(get_indexer_approach, number=10_000)
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