

 [image: Cover of Pandas Cookbook_Third Edition by William Ayd and Matthew Harrison]

 Pandas Cookbook

 Third Edition

 Practical recipes for scientific computing, time series, and exploratory data analysis using Python

 William Ayd

 Matthew Harrison

 [image:]

 Pandas Cookbook

 Third Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Tushar Gupta

 Acquisition Editor – Peer Reviews: Jane Dsouza

 Project Editor: Janice Gonsalves

 Content Development Editor: Shazeen Iqbal

 Copy Editor: Safis Editing

 Technical Editor: Gaurav Gavas

 Proofreader: Safis Editing

 Indexer: Manju Arasan

 Presentation Designer: Ajay Patule

 Developer Relations Marketing Executive: Vignesh Raju

 First published: October 2017

 Second edition: February 2020

 Third edition: October 2024

 Production reference: 0281024

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83620-587-6

 www.packt.com

 Foreword

 I started building what became the pandas project in 2008, during a rather different era in statistical computing and what we now call data science. At that time, data analysis was commonly performed using databases and SQL, Microsoft Excel, proprietary programming environments, and open-source languages like R. Python had a small but growing scientific computing community, yet it had little traction in statistical analysis and business analytics. While pandas began as my personal toolbox for data analysis work in Python, after a few years, it took on a life of its own as it became clear to me that Python had the potential to become a mainstream language for data analysis using open-source software.

 Until 2013, I actively developed and maintained pandas for about five years. Since then, it has been community-maintained by a small, passionate group of core developers and thousands of community contributors. I published one of the first books to teach users about pandas in 2012, but today there are many books and online resources catering to different audiences. Some books focus mainly on explaining how to use the features of pandas, while others use pandas as an essential data manipulation tool as part of learning how to do data science or machine learning.

 I’ve known Will Ayd and Matt Harrison for many years and have admired the work that they have done as open-source developers and educators for the Python community. Will is a member of the pandas core team and has built and maintained many of the features that are discussed in this book. Matt is an author of many successful Python books and possesses an amazing track record as a trainer and educator of Python programming, pandas, and other data science tools. This is a trustworthy duo to teach you how to do things the right way.

 I am excited to see the third edition of this book come together. It is an excellent resource full of practical solutions to problems you will encounter in your data analysis work in Python. It covers the essential features of pandas while delving into more advanced functionality and features that were only added to the library in the last few years.

 Wes McKinney

 Creator of the pandas and Ibis projects

 Co-creator of Apache Arrow

 Contributors

 About the authors

 William Ayd is a core maintainer of the pandas project, serving in that role since 2018. For over a decade working as a consultant, Will has helped countless clients get the most value from their data using pandas and the open-source ecosystem surrounding it.

 Matt Harrison has been using Python since 2000. He runs MetaSnake, which provides corporate training for Python and data science. He is the author of Machine Learning Pocket Reference, the bestselling Illustrated Guide to Python 3, and Learning the Pandas Library, among other books.

 About the reviewer

 Simon Hawkins holds a master’s degree in aeronautical engineering from Imperial College, London. Early in his career, he worked exclusively in the defense and nuclear sectors as a technology analyst, specializing in modeling capabilities and simulation techniques for high-integrity equipment. He later transitioned into e-commerce, where his focus shifted to data analysis. Today, Simon is passionate about data science and is an active member of the pandas core development team.

 Join our community on Discord

 Join our community’s Discord space for discussions with the authors and other readers:

 https://packt.link/pandas

 [image:]

 Preface

 pandas is a library for creating and manipulating structured data with Python. What do I mean by structured? I mean tabular data in rows and columns like what you would find in a spreadsheet or database. Data scientists, analysts, programmers, engineers, and others are leveraging it to mold their data.

 pandas is limited to “small data” (data that can fit in memory on a single machine). However, the syntax and operations have been adopted by or inspired other projects: PySpark, Dask, and cuDF, among others. These projects have different goals, but some of them will scale out to big data. So, there is value in understanding how pandas works as the features are becoming the de facto API for interacting with structured data.

 I, Will Ayd, have been a core maintainer of the pandas library since 2018. During that time, I have had the pleasure of contributing to and collaborating on a host of other open source projects in the same ecosystem, including but not limited to Arrow, NumPy and Cython.

 I also consult for a living, utilizing the same ecosystem that I contribute to. Using the best open source tooling, I help clients develop data strategies, implement processes and patterns, and train associates to stay ahead of the ever-changing analytics curve. I strongly believe in the freedom that open source tooling provides, and have proven that value to many companies.

 If your company is interested in optimizing your data strategy, feel free to reach out (will_ayd@innobi.io).

 Who this book is for

 This book contains a huge number of recipes, ranging from very simple to advanced. All recipes strive to be written in clear, concise, and modern idiomatic pandas code. The How it works sections contain extremely detailed descriptions of the intricacies of each step of the recipe. Often, in the There’s more… section, you will get what may seem like an entirely new recipe. This book is densely packed with an extraordinary amount of pandas code.

 While not strictly required, users are advised to read the book chronologically. The recipes are structured in such a way that they first introduce concepts and features using very small, directed examples, but continuously build from there into more complex applications.

 Due to the wide range of complexity, this book can be useful to both novice and everyday users alike. It has been my experience that even those who use pandas regularly will not master it without being exposed to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There are almost always multiple ways of completing the same operation, which can have users get the result they want but in a very inefficient manner. It is not uncommon to see an order of magnitude or more in performance difference between two sets of pandas solutions to the same problem.

 The only real prerequisite for this book is a fundamental knowledge of Python. It is assumed that the reader is familiar with all the common built-in data containers in Python, such as lists, sets, dictionaries, and tuples.

 What this book covers

 Chapter 1, pandas Foundations, introduces the main pandas objects, namely, Series, DataFrames, and Index.

 Chapter 2, Selection and Assignment, shows you how to sift through the data that you have loaded into any of the pandas data structures.

 Chapter 3, Data Types, explores the type system underlying pandas. This is an area that has evolved rapidly and will continue to do so, so knowing the types and what distinguishes them is invaluable information.

 Chapter 4, The pandas I/O System, shows why pandas has long been a popular tool to read from and write to a variety of storage formats.

 Chapter 5, Algorithms and How to Apply Them, introduces you to the foundation of performing calculations with the pandas data structures.

 Chapter 6, Visualization, shows you how pandas can be used directly for plotting, alongside the seaborn library which integrates well with pandas.

 Chapter 7, Reshaping DataFrames, discusses the many ways in which data can be transformed and summarized robustly via the pandas pd.DataFrame.

 Chapter 8, Group By, showcases how to segment and summarize subsets of your data contained within a pd.DataFrame.

 Chapter 9, Temporal Data Types and Algorithms, introduces users to the date/time types which underlie time-series-based analyses that pandas is famous for and highlights usage against real data.

 Chapter 10, General Usage/Performance Tips, goes over common pitfalls users run into when using pandas, and showcases the idiomatic solutions.

 Chapter 11, The pandas Ecosystem, discusses other open source libraries that integrate, extend, and/or complement pandas.

 To get the most out of this book

 There are a couple of things you can do to get the most out of this book. First, and most importantly, you should download all the code, which is stored in Jupyter Notebook. While reading through each recipe, run each step of code in the notebook. Make sure you explore on your own as you run through the code. Second, have the pandas official documentation open (http://pandas.pydata.org/pandas-docs/stable/) in one of your browser tabs. The pandas documentation is an excellent resource containing over 1,000 pages of material. There are examples for most of the pandas operations in the documentation, and they will often be directly linked from the See also section. While it covers the basics of most operations, it does so with trivial examples and fake data that don’t reflect situations that you are likely to encounter when analyzing datasets from the real world.

 What you need for this book

 pandas is a third-party package for the Python programming language and, as of the printing of this book, is transitioning from the 2.x to the 3.x series. The examples in this book should work with a minimum pandas version of 2.0 along with Python versions 3.9 and above.

 The code in this book will make use of the pandas, NumPy, and PyArrow libraries. Jupyter Notebook files are also a popular way to visualize and inspect code. All of these libraries should be installable via pip or the package manager of your choice. For pip users, you can run:

 python -m pip install pandas numpy pyarrow notebook

 Download the example code files

 You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support/errata and register to have the files emailed directly to you.

 You can download the code files by following these steps:

 	Log in or register at www.packt.com.

 	Select the Support tab.

 	Click on Code Downloads.

 	Enter the name of the book in the Search box and follow the on-screen instructions.

 The code bundle for the book is also hosted on GitHub at https://github.com/WillAyd/Pandas-Cookbook-Third-Edition. In case there is an update to the code, it will be updated in the existing GitHub repository.

 Running a Jupyter notebook

 The suggested method to work through the content of this book is to have a Jupyter notebook up and running so that you can run the code while reading through the recipes. Following along on your computer allows you to go off exploring on your own and gain a deeper understanding than by just reading the book alone.

 After installing Jupyter notebook, open a Command Prompt (type cmd at the search bar on Windows, or open Terminal on Mac or Linux) and type:

 jupyter notebook

 It is not necessary to run this command from your home directory. You can run it from any location, and the contents in the browser will reflect that location. Although we have now started the Jupyter Notebook program, we haven’t actually launched a single individual notebook where we can start developing in Python. To do so, you can click on the New button on the right-hand side of the page, which will drop down a list of all the possible kernels available for you to use. If you are working from a fresh installation, then you will only have a single kernel available to you (Python 3). After selecting the Python 3 kernel, a new tab will open in the browser, where you can start writing Python code.

 You can, of course, open previously created notebooks instead of beginning a new one. To do so, navigate through the filesystem provided in the Jupyter Notebook browser home page and select the notebook you want to open. All Jupyter Notebook files end in .ipynb.

 Alternatively, you may use cloud providers for a notebook environment. Both Google and Microsoft provide free notebook environments that come preloaded with pandas.

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781836205876.

 Conventions

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter/X handles. Here is an example: “You may need to install xlwt or openpyxl to write XLS or XLSX files, respectively.”

 A block of code is set as follows:

 import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies

 Bold: Indicates an important word, or words that you see on the screen. Here is an example: “Select System info from the Administration panel.”

 Italics: Indicates terminology that has extra importance within the context of the writing.

 Important notes

 Appear like this.

 Tips

 Appear like this.

 Assumptions for every recipe

 It should be assumed that at the beginning of each recipe, pandas, NumPy, PyArrow, and Matplotlib are imported into the namespace:

 import numpy as np
import pyarrow as pa
import pandas as pd

 Dataset descriptions

 There are about two dozen datasets that are used throughout this book. It can be very helpful to have background information on each dataset as you complete the steps in the recipes. A detailed description of each dataset may be found in the dataset_descriptions Jupyter Notebook file found at https://github.com/WillAyd/Pandas-Cookbook-Third-Edition. For each dataset, there will be a list of the columns, information about each column, and notes on how the data was procured.

 Sections

 In this book, you will find several headings that appear frequently.

 To give clear instructions on how to complete a recipe, we may use some or all of the following sections:

 How to do it

 This section contains the steps required to follow the recipe.

 How it works

 This section usually consists of a detailed explanation of what happened in the previous section.

 There’s more…

 This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit, www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Leave a Review!

 Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

 [image:]
 https://packt.link/NzOWQ

 Scan the QR code below to receive a free ebook of your choice.

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781836205876

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 pandas Foundations

 The pandas library is useful for dealing with structured data. What is structured data? Data that is stored in tables, such as CSV files, Excel spreadsheets, or database tables, is all structured. Unstructured data consists of free-form text, images, sound, or video. If you find yourself dealing with structured data, pandas will be of great utility to you.

 pd.Series is a one-dimensional collection of data. If you are coming from Excel, you can think of this as a column. The main difference is that, like a column in a database, all of the values within pd.Series must have a single, homogeneous type.

 pd.DataFrame is a two-dimensional object. Much like an Excel sheet or database table can be thought of as a collection of columns, pd.DataFrame can be thought of as a collection of pd.Series objects. Each pd.Series has a homogeneous data type, but the pd.DataFrame is allowed to be heterogeneous and store a variety of pd.Series objects with different data types.

 pd.Index does not have a direct analogy with other tools. Excel may offer the closest with auto-numbered rows on the left-hand side of a worksheet, but those numbers tend to be for display purposes only. pd.Index, as you will find over the course of this book, can be used for selecting values, joining tables, and much more.

 The recipes in this chapter will show you how to manually construct pd.Series and pd.DataFrame objects, customize the pd.Index object(s) associated with each, and showcase common attributes of the pd.Series and pd.DataFrame that you may need to inspect during your analyses.

 We are going to cover the following recipes in this chapter:

 	Importing pandas

 	Series

 	DataFrame

 	Index

 	Series attributes

 	DataFrame attributes

 Importing pandas

 Most users of the pandas library will use an import alias so they can refer to it as pd. In general, in this book, we will not show the pandas and NumPy imports, but they look like this:

 import pandas as pd
import numpy as np

 While it is an optional dependency in the 2.x series of pandas, many examples in this book will also leverage the PyArrow library, which we assume to be imported as:

 import pyarrow as pa

 Series

 The basic building block in pandas is a pd.Series, which is a one-dimensional array of data paired with a pd.Index. The index labels can be used as a simplistic way to look up values in the pd.Series, much like the Python dictionary built into the language uses key/value pairs (we will expand on this and much more pd.Index functionality in Chapter 2, Selection and Assignment).

 The following section demonstrates a few ways of creating a pd.Series directly.

 How to do it

 The easiest way to construct a pd.Series is to provide a sequence of values, like a list of integers:

 pd.Series([0, 1, 2])

 0 0
1 1
2 2
dtype: int64

 A tuple is another type of sequence, making it valid as an argument to the pd.Series constructor:

 pd.Series((12.34, 56.78, 91.01))

 0 12.34
1 56.78
2 91.01
dtype: float64

 When generating sample data, you may often reach for the Python range function:

 pd.Series(range(0, 7, 2))

 0 0
1 2
2 4
3 6
dtype: int64

 In all of the examples so far, pandas will try and infer a proper data type from its arguments for you. However, there are times when you will know more about the type and size of your data than can be inferred. Providing that information explicitly to pandas via the dtype= argument can be useful to save memory or ensure proper integration with other typed systems, like SQL databases.

 To illustrate this, let’s use a simple range argument to fill a pd.Series with a sequence of integers. When we did this before, the inferred data type was a 64-bit integer, but we, as developers, may know that we never expect to store larger values in this pd.Series and would be fine with only 8 bits of storage (if you do not know the difference between an 8-bit and 64-bit integer, that topic will be covered in Chapter 3, Data Types). Passing dtype="int8" to the pd.Series constructor will let pandas know we want to use the smaller data type:

 pd.Series(range(3), dtype="int8")

 0 0
1 1
2 2
dtype: int8

 A pd.Series can also have a name attached to it, which can be specified via the name= argument (if not specified, the name defaults to None):

 pd.Series(["apple", "banana", "orange"], name="fruit")

 0 apple
1 banana
2 orange
Name: fruit, dtype: object

 DataFrame

 While pd.Series is the building block, pd.DataFrame is the main object that comes to mind for users of pandas. pd.DataFrame is the primary and most commonly used object in pandas, and when people think of pandas, they typically envision working with a pd.DataFrame.

 In most analysis workflows, you will be importing your data from another source, but for now, we will show you how to construct a pd.DataFrame directly (input/output will be covered in Chapter 4, The pandas I/O System).

 How to do it

 The most basic construction of a pd.DataFrame happens with a two-dimensional sequence, like a list of lists:

 pd.DataFrame([
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
])

 0 1 2
0 0 1 2
1 3 4 5
2 6 7 8

 With a list of lists, pandas will automatically number the row and column labels for you. Typically, users of pandas will at least provide labels for columns, as it makes indexing and selecting from a pd.DataFrame much more intuitive (see Chapter 2, Selection and Assignment, for an introduction to indexing and selecting). To label your columns when constructing a pd.DataFrame from a list of lists, you can provide a columns= argument to the constructor:

 pd.DataFrame([
 [1, 2],
 [4, 8],
], columns=["col_a", "col_b"])

 col_a col_b
0 1 2
1 4 8

 Instead of using a list of lists, you could also provide a dictionary. The keys of the dictionary will be used as column labels, and the values of the dictionary will represent the values placed in that column of the pd.DataFrame:

 pd.DataFrame({
 "first_name": ["Jane", "John"],
 "last_name": ["Doe", "Smith"],
})

 first_name last_name
0 Jane Doe
1 John Smith

 In the above example, our dictionary values were lists of strings, but the pd.DataFrame does not strictly require lists. Any sequence will work, including a pd.Series:

 ser1 = pd.Series(range(3), dtype="int8", name="int8_col")
ser2 = pd.Series(range(3), dtype="int16", name="int16_col")
pd.DataFrame({ser1.name: ser1, ser2.name: ser2})

 int8_col int16_col
0 0 0
1 1 1
2 2 2

 Index

 When constructing both the pd.Series and pd.DataFrame objects in the previous sections, you likely noticed the values to the left of these objects starting at 0 and incrementing by 1 for each new row of data. The object responsible for those values is the pd.Index, highlighted in the following image:

 [image:]
 Figure 1.1: Default pd.Index, highlighted in red

 In the case of a pd.DataFrame, you have a pd.Index not only to the left of the object (often referred to as the row index or even just index) but also above (often referred to as the column index or columns):

 [image: A screenshot of a computer]
 Figure 1.2: A pd.DataFrame with a row and column index

 Unless explicitly provided, pandas will create an auto-numbered pd.Index for you (technically, this is a pd.RangeIndex, a subclass of the pd.Index class). However, it is very rare to use pd.RangeIndex for your columns, as referring to a column named City or Date is more expressive than referring to a column in the nth position. The pd.RangeIndex appears more commonly in the row index, although you may still want custom labels to appear there as well. More advanced selection operations with the default pd.RangeIndex and custom pd.Index values will be covered in Chapter 2, Selection and Assignment, to help you understand different use cases, but for now, let’s just look at how you would override the construction of the row and column pd.Index objects during pd.Series and pd.DataFrame construction.

 How to do it

 When constructing a pd.Series, the easiest way to change the row index is by providing a sequence of labels to the index= argument. In this example, the labels dog, cat, and human will be used instead of the default pd.RangeIndex numbered from 0 to 2:

 pd.Series([4, 4, 2], index=["dog", "cat", "human"])

 dog 4
cat 4
human 2
dtype: int64

 If you want finer control, you may want to construct the pd.Index yourself before passing it as an argument to index=. In the following example, the pd.Index is given the name animal, and the pd.Series itself is named num_legs, providing more context to the data:

 index = pd.Index(["dog", "cat", "human"], name="animal")
pd.Series([4, 4, 2], name="num_legs", index=index)

 animal
dog 4
cat 4
human 2
Name: num_legs, dtype: int64

 A pd.DataFrame uses a pd.Index for both dimensions. Much like with the pd.Series constructor, the index= argument can be used to specify the row labels, but you now also have the columns= argument to control the column labels:

 pd.DataFrame([
 [24, 180],
 [42, 166],
], columns=["age", "height_cm"], index=["Jack", "Jill"])

 age height_cm
Jack 24 180
Jill 42 166

 Series attributes

 Once you have a pd.Series, there are quite a few attributes you may want to inspect. The most basic attributes can tell you the type and size of your data, which is often the first thing you will inspect when reading in data from a data source.

 How to do it

 Let’s start by creating a pd.Series that has a name, alongside a custom pd.Index, which itself has a name. Although not all of these elements are required, having them will help us more clearly understand what the attributes we access through this recipe are actually showing us:

 index = pd.Index(["dog", "cat", "human"], name="animal")
ser = pd.Series([4, 4, 2], name="num_legs", index=index)
ser

 animal
dog 4
cat 4
human 2
Name: num_legs, dtype: int64

 The first thing users typically want to know about their data is the type of pd.Series. This can be inspected via the pd.Series.dtype attribute:

 ser.dtype

 dtype('int64')

 The name may be inspected via the pd.Series.name attribute. The data we constructed in this recipe was created with the name="num_legs" argument, which is what you will see when accessing this attribute (if not provided, this will return None):

 ser.name

 num_legs

 The associated pd.Index can be accessed via pd.Series.index:

 ser.index

 Index(['dog', 'cat', 'human'], dtype='object', name='animal')

 The name of the associated pd.Index can be accessed via pd.Series.index.name:

 ser.index.name

 animal

 The shape can be accessed via pd.Series.shape. For a one-dimensional pd.Series, the shape is returned as a one-tuple where the first element represents the number of rows:

 ser.shape

 3

 The size (number of elements) can be accessed via pd.Series.size:

 ser.size

 3

 The Python built-in function len can show you the length (number of rows):

 len(ser)

 3

 DataFrame attributes

 The pd.DataFrame shares many of the attributes of the pd.Series, with some slight differences. Generally, pandas tries to share as many attributes as possible between the pd.Series and pd.DataFrame, but the two-dimensional nature of the pd.DataFrame makes it more natural to express some things in plural form (for example, the .dtype attribute becomes .dtypes) and gives us a few more attributes to inspect (for example, .columns exists for a pd.DataFrame but not for a pd.Series).

 How to do it

 Much like we did in the previous section, we are going to construct a pd.DataFrame with a custom pd.Index in the rows, while also using custom labels in the columns. This will be more helpful when inspecting the various attributes:

 index = pd.Index(["Jack", "Jill"], name="person")
df = pd.DataFrame([
 [24, 180, "red"],
 [42, 166, "blue"],
], columns=["age", "height_cm", "favorite_color"], index=index)
df

 age height_cm favorite_color
person
Jack 24 180 red
Jill 42 166 blue

 The types of each column can be inspected via the pd.DataFrame.dtypes attribute. This attribute returns a pd.Series where each row shows the data type corresponding to each column in our pd.DataFrame:

 df.dtypes

 age int64
height_cm int64
favorite_color object
dtype: object

 The row index can be accessed via pd.DataFrame.index:

 df.index

 Index(['Jack', 'Jill'], dtype='object', name='person')

 The column index can be accessed via pd.DataFrame.columns:

 df.columns

 Index(['age', 'height_cm', 'favorite_color'], dtype='object')

 The shape can be accessed via pd.DataFrame.shape. For a two-dimensional pd.DataFrame, the shape is returned as a two-tuple where the first element represents the number of rows and the second element represents the number of columns:

 df.shape

 2 3

 The size (number of elements) can be accessed via pd.DataFrame.size:

 df.size

 6

 The Python built-in function len can show you the length (number of rows):

 len(df)

 2

 Join our community on Discord

 Join our community’s Discord space for discussions with the authors and other readers:

 https://packt.link/pandas

 [image:]

 2

 Selection and Assignment

 In the previous chapter, we looked at how to create a pd.Series and pd.DataFrame, and we also looked at their relationship to the pd.Index. With a foundation in constructors, we now shift focus to the crucial processes of selection and assignment. Selection, also referred to as indexing, is considered a getter; i.e., it is used to retrieve values from a pandas object. Assignment, by contrast, is a setter that is used to update values.

 The recipes in this chapter start out by showing you how to retrieve values from pd.Series and pd.DataFrame objects, with ever-increasing complexity. We will eventually introduce the pd.MultiIndex, which can be used to select data hierarchically, before finally ending with an introduction to the assignment operators. The pandas API takes great care to reuse many of the same methods for selection and assignment, which ultimately allows you to be very expressive in how you would like to interact with your data.

 By the end of this chapter, you will be adept at efficiently retrieving data from and updating values within your pandas objects. We are going to cover the following recipes in this chapter:

 	Basic selection from a Series

 	Basic selection from a DataFrame

 	Position-based selection of a Series

 	Position-based selection of a DataFrame

 	Label-based selection from a Series

 	Label-based selection from a DataFrame

 	Mixing position-based and label-based selection

 	DataFrame.filter

 	Selection by data type

 	Selection/filtering via Boolean arrays

 	Selection with a MultiIndex – A single level

 	Selection with a MultiIndex – Multiple levels

 	Selection with a MultiIndex – a DataFrame

 	Item assignment with .loc and .iloc

 	DataFrame column assignment

 Basic selection from a Series

 Selection from a pd.Series involves accessing elements either by their position or by their label. This is akin to accessing elements in a list by their index or in a dictionary by their key, respectively. The versatility of the pd.Series object allows intuitive and straightforward data retrieval, making it an essential tool for data manipulation.

 The pd.Series is considered a container in Python, much like the built-in list, tuple, and dict objects. As such, for simple selection operations, the first place users turn to is the Python index operator, using the [] syntax.

 How to do it

 To introduce the basics of selection, let’s start with a very simple pd.Series:

 ser = pd.Series(list("abc") * 3)
ser

 0 a
1 b
2 c
3 a
4 b
5 c
6 a
7 b
8 c
dtype: object

 In Python, you’ve already discovered that the [] operator can be used to select elements from a container; i.e., some_dictionary[0] will give you the value associated with a key of 0. With a pd.Series, basic selection behaves similarly:

 ser[3]

 a

 With the expression ser[3], pandas tries to find the label 3 in the index of the pd.Series and, assuming only one match, returns the value associated with that label.

 Instead of selecting the associated value from the pd.Series, alternatively, you may want a pd.Series returned, as doing so helps you keep the label 3 associated with the data element “a.” With pandas, you can do this by providing a list argument that contains a single element:

 ser[[3]]

 3 a
dtype: object

 Expanding on the usage of a list argument, you can select multiple values from the pd.Series if your list contains multiple elements:

 ser[[0, 2]]

 0 a
2 c
dtype: object

 Assuming you use the default index, you can use slice arguments that work very similarly to slicing a Python list. For example, to get up to (but not including) the element at position 3 of a pd.Series, you can use:

 ser[:3]

 0 a
1 b
2 c
dtype: object

 Negative slice indexers are not a problem for pandas. The following code will select the last four elements of the pd.Series:

 ser[-4:]

 5 c
6 a
7 b
8 c
dtype: object

 You can even provide slices with start and stop arguments. The following code will retrieve all elements of the pd.Series, starting in position 2 and up to (but not including) position 6:

 ser[2:6]

 2 c
3 a
4 b
5 c
dtype: object

 This final example on slices uses start, stop and step arguments to grab every third element, starting at position 1 and stopping when position 8 is encountered:

 ser[1:8:3]

 1 b
4 b
7 b
dtype: object

 Selection still works when providing your own pd.Index values. Let’s create a small pd.Series with string index labels to illustrate:

 ser = pd.Series(range(3), index=["Jack", "Jill", "Jayne"])
ser

 Jack 0
Jill 1
Jayne 2
dtype: int64

 Selection via ser["Jill"] will scan the index for the string Jill and return the corresponding element:

 ser["Jill"]

 1

 Once again, providing a single-element list argument will ensure that you receive a pd.Series in return instead of a single value:

 ser[["Jill"]]

 Jill 1
dtype: int64

 There’s more…

 A common pitfall when using the [] operator is to assume that selection with integer arguments works the same as when selecting from a Python list. This is only true when you use the default pd.Index, which is auto-numbered, starting at 0 (this is technically called a pd.RangeIndex).

 When not using a pd.RangeIndex, extra attention must be paid to the behavior. To illustrate, let’s start with a small pd.Series, which still uses integers in its pd.Index, but does not use an auto-incrementing sequence that starts at 0:

 ser = pd.Series(list("abc"), index=[2, 42, 21])
ser

 2 a
42 b
21 c
dtype: object

 It is important to note that an integer argument selects by label and not by position; i.e., the following code will return the value associated with a label of 2, not the value in position 2:

 ser[2]

 a

 While the integer argument matches by label and not by position, slicing still works positionally. The following example does not stop when encountering the number 2 and, instead, gives the first two elements back:

 ser[:2]

 2 a
42 b
dtype: object

 Users should also be familiar with selection behavior when working with a non-unique pd.Index. Let’s create a small pd.Series where the number 1 appears twice in our row index:

 ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser

 0 apple
1 banana
1 orange
dtype: object

 With this pd.Series, attempting to select the number 1 will not return a single value and, instead, return another pd.Series:

 ser[1]

 1 banana
1 orange
dtype: object

 The fact that a selection like ser[1] can be thought to be done by position or label interchangeably when using the default pd.RangeIndex but, in actuality, selects by label with other pd.Index types can be the source of subtle bugs in user programs. Many users may think they are selecting the nth element, only to have that assumption break when their data changes. To resolve the ambiguity between wanting to select by label or by position with an integer argument, it is highly recommended to leverage the .loc and .iloc methods introduced later in this chapter.

 Basic selection from a DataFrame

 When using the [] operator with a pd.DataFrame, simple selection typically involves selecting data from the column index rather than the row index. This distinction is crucial for effective data manipulation and analysis. Columns in a pd.DataFrame can be accessed by their labels, making it easy to work with named data from a pd.Series within the larger pd.DataFrame structure.

 Understanding this fundamental difference in selection behavior is key to utilizing the full power of a pd.DataFrame in pandas. By leveraging the [] operator, you can efficiently access and manipulate specific columns of data, setting the stage for more advanced operations and analyses.

 How to do it

 Let’s start by creating a simple 3x3 pd.DataFrame. The values of the pd.DataFrame are not important, but we are intentionally going to provide our own column labels instead of having pandas create an auto-numbered column index for us:

 df = pd.DataFrame(np.arange(9).reshape(3, -1), columns=["a", "b", "c"])
df

 a b c
0 0 1 2
1 3 4 5
2 6 7 8

 To select a single column, use the [] operator with a scalar argument:

 df["a"]

 0 0
1 3
2 6
Name: a, dtype: int64

 To select a single column but still get back a pd.DataFrame instead of a pd.Series, pass a single-element list:

 df[["a"]]

 a
0 0
1 3
2 6

 Multiple columns can be selected using a list:

 df[["a", "b"]]

 a b
0 0 1
1 3 4
2 6 7

 In all of these examples, the arguments for [] have been selected from the columns, but providing a slice argument exhibits different behavior and will actually select from rows. Note that the following example selects all columns and the first two rows of data, not the other way around:

 df[:2]

 a b c
0 0 1 2
1 3 4 5

 There’s more…

 When using a list argument for the [] operator, you have the flexibility to specify the order of columns in the output. This allows you to customize the pd.DataFrame to suit your needs. The order of columns in the output will exactly match the order of labels provided as input. For example:

 df[["a", "b"]]

 a b
0 0 1
1 3 4
2 6 7

 Swapping the order of the elements in the list as an argument to [] will swap the order of the columns in the resulting pd.DataFrame:

 df[["b", "a"]]

 b a
0 1 0
1 4 3
2 7 6

 This feature is particularly useful when you need to reorder columns for presentation purposes, or when preparing data for export to CSV or Excel formats where a specific column order is required (see Chapter 4, The pandas I/O System, for more on the pandas I/O system).

 Position-based selection of a Series

 As discussed back in the Basic selection from a DataFrame section, using [] as a selection mechanism does not signal the clearest intent and can sometimes be downright confusing. The fact that ser[42] selects from a label matching the number 42 and not the 42nd row of a pd.Series is a common mistake for new users, and such an ambiguity can grow even more complex as you start trying to select two dimensions with the [] operator from a pd.DataFrame.

 To clearly signal that you are trying to select by position instead of by label, you should use pd.Series.iloc.

 How to do it

 Let’s create a pd.Series where we have an index using integral labels that are also non-unique:

 ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser

 0 apple
1 banana
1 orange
dtype: object

 To select a scalar, you can use pd.Series.iloc with an integer argument:

 ser.iloc[1]

 banana

 Following the same patterns we have seen before, turning that integer argument into a list containing a single element will return a pd.Series instead of a scalar:

 ser.iloc[[1]]

 1 banana
dtype: object

 Multiple integers in the list argument will select multiple elements of the pd.Series by position:

 ser.iloc[[0, 2]]

 0 apple
1 orange
dtype: object

 Slices are a natural way of expressing a range of elements that you would select, and they pair very nicely as an argument to pd.Series.iloc:

 ser.iloc[:2]

 0 apple
1 banana
dtype: object

 Position-based selection of a DataFrame

 Much like with a pd.Series, integers, lists of integers, and slice objects are all valid arguments to DataFrame.iloc. However, with a pd.DataFrame, two arguments are required. The first argument handles selecting from the rows, and the second is responsible for the columns.

 In most use cases, users reach for position-based selection when retrieving rows and label-based selection when retrieving columns. We will cover the latter in the Label-based selection from a DataFrame section and will show you how to combine both in the Mixing position-based and label-based selection section. However, when your row index uses the default pd.RangeIndex and the order of columns is significant, the techniques shown in this section will be of immense value.

 How to do it

 Let’s create a pd.DataFrame with five rows and four columns:

 df = pd.DataFrame(np.arange(20).reshape(5, -1), columns=list("abcd"))
df

 a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19

 Passing two integer arguments to pd.DataFrame.iloc will return a scalar from that row and column position:

 df.iloc[2, 2]

 10

 In some cases, you may not want to select individual values from a particular axis, opting instead for everything that axis has to offer. An empty slice object, :, allows you to do this; i.e., if you wanted to select all rows of data from the first column of a pd.DataFrame, you would use:

 df.iloc[:, 0]

 0 0
1 4
2 8
3 12
4 16
Name: a, dtype: int64

 Flipping the order of the arguments to pd.DataFrame.iloc will change behavior. Instead of grabbing all rows for the first column, the below code selects all columns and only the first row of data:

 df.iloc[0, :]

 a 0
b 1
c 2
d 3
Name: 0, dtype: int64

 Because the preceding examples only return one dimension of data, they implicitly attempt to squeeze the return value from a pd.DataFrame down to a pd.Series. Following the patterns we have seen many times already in this chapter, you can prevent that implicit dimensionality reduction by passing a single-element list argument for the axis, which is not an empty slice. For example, to select all rows for the first column but still get back a pd.DataFrame, you would opt for:

 df.iloc[:, [0]]

 a
0 0
1 4
2 8
3 12
4 16

 Reversing those arguments gives us the first row and all columns back as a pd.DataFrame:

 df.iloc[[0], :]

 a b c d
0 0 1 2 3

 Lists can be used to select multiple elements from both the rows and columns. If we wanted the first and second rows paired with the last and second-to-last columns of our pd.DataFrame, you could opt for an expression like:

 df.iloc[[0, 1], [-1, -2]]

 d c
0 3 2
1 7 6

 There’s more…

 Empty slices are valid arguments to .iloc. Both ser.iloc[:] and df.iloc[:, :] will return everything from each axis, essentially giving you a copy of the object.

 Label-based selection from a Series

 In pandas, pd.Series.loc is used to perform selection by label instead of by position. This method is particularly useful when you consider the pd.Index of your pd.Series to contain lookup values, much like the key in a Python dictionary, rather than giving importance to the order or position of data in your pd.Series.

 How to do it

 Let’s create a pd.Series where we have a row index using integral labels that are also non-unique:

 ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser

 0 apple
1 banana
1 orange
dtype: object

 pd.Series.loc will select all rows where the index has a label of 1:

 ser.loc[1]

 1 banana
1 orange
dtype: object

 Of course, you are not limited to integral labels in pandas. Let’s see what this looks like with a pd.Index composed of string values:

 ser = pd.Series([2, 2, 4], index=["dog", "cat", "human"], name="num_legs")
ser

 dog 2
cat 2
human 4
Name: num_legs, dtype: int64

 pd.Series.loc can select all rows where the index has a label of "dog":

 ser.loc["dog"]

 2

 To select all rows where the index has a label of "dog" or "cat":

 ser.loc[["dog", "cat"]]

 dog 2
cat 2
Name: num_legs, dtype: int64

 Finally, to select all rows up to and including the label "cat":

 ser.loc[:"cat"]

 dog 2
cat 2
Name: num_legs, dtype: int64

 There’s more…

 Understanding label-based selection with pd.Series.loc provides powerful capabilities to access and manipulate data in a pd.Series. While this method may seem straightforward, it offers nuances and behaviors that are important to grasp for effective data handling.

 A very common mistake for users of all experience levels with pandas is to overlook the differences in behavior that slicing with pd.Series.loc has, compared to slicing in standard Python and the pd.Series.iloc case.

 To walk through this, let’s create a small Python list and a pd.Series with the same data:

 values = ["Jack", "Jill", "Jayne"]
ser = pd.Series(values)
ser

 0 Jack
1 Jill
2 Jayne
dtype: object

 As you have already seen with lists and other containers built into the Python language, slicing returns values up to but not including the provided position:

 values[:2]

 Jack Jill

 Slicing with pd.Series.iloc matches this behavior, returning a pd.Series with the same exact length and elements as the Python list:

 ser.iloc[:2]

 0 Jack
1 Jill
dtype: object

 But slicing with pd.Series.loc actually produces a different result:

 ser.loc[:2]

 0 Jack
1 Jill
2 Jayne
dtype: object

 What is going on here? To try and get a grasp on this, it is important to remember that pd.Series.loc matches by label, not by position. The pandas library does something akin to a loop over each element in the pd.Series and its accompanying pd.Index, stopping at the point where it finds the value of 2 in the index. However, pandas cannot guarantee that there is only one value in the pd.Index with the value of 2, so it must continue going until it finds something else. You can see that in action if you try the same selection with a pd.Series that repeats the index label 2:

 repeats_2 = pd.Series(range(5), index=[0, 1, 2, 2, 0])
repeats_2.loc[:2]

 0 0
1 1
2 2
2 3
dtype: int64

 This can seem downright devious if you expect your row index to contain integers, but the main use case for pd.Series.loc is for working with a pd.Index where position/ordering is not important (for that, use pd.Series.iloc). Taking string labels as a more practical example, the slicing behavior of pd.Series.loc becomes more natural. The following code can essentially be thought of as asking pandas to loop over the pd.Series until the label "xxx" is found in the row index, continuing until a new label is found:

 ser = pd.Series(range(4), index=["zzz", "xxx", "xxx", "yyy"])
ser.loc[:"xxx"]

 zzz 0
xxx 1
xxx 2
dtype: int64

 In certain cases where you try to slice with pd.Series.loc but the index labels have no determinate ordering, pandas will end up raising an error:

 ser = pd.Series(range(4), index=["zzz", "xxx", "yyy", "xxx"])
ser.loc[:"xxx"]

 KeyError: "Cannot get right slice bound for non-unique label: 'xxx'"

 Label-based selection from a DataFrame

 As we discussed back in the Position-based selection of a DataFrame section, the most common use case with a pd.DataFrame is to use label-based selection when referring to columns and position-based selection when referring to rows. However, this is not an absolute requirement, and pandas allows you to use label-based selection from both the rows and columns.

 When compared to other data analysis tools, the ability to select by label from the rows of a pd.DataFrame is a unique advantage to pandas. For users familiar with SQL, there is no real equivalent to this provided by the language; columns are very easy to select when placed in a SELECT clause, but rows can only be filtered via a WHERE clause. For users adept at Microsoft Excel, you could create two-dimensional structures using a pivot table, with both row labels and column labels, but your ability to select or refer to data within that pivot table is effectively limited.

 For now, we will introduce selection for very small pd.DataFrame objects to get a feel for the syntax. In Chapter 8, Reshaping Data Frames, we will explore ways that you can create meaningful pd.DataFrame objects where row and column labels are significant. Combined with the knowledge introduced in this section, you will come to appreciate how unique this type of selection is to pandas, as well as how it can help you explore data in meaningful ways that other tools cannot express.

 How to do it

 Let’s create a pd.DataFrame where we have indices composed of strings in both the rows and columns:

 df = pd.DataFrame([
 [24, 180, "blue"],
 [42, 166, "brown"],
 [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"], index=["Jack", "Jill", "Jayne"])
df

 age height_cm eye_color
Jack 24 180 blue
Jill 42 166 brown
Jayne 22 160 green

 pd.DataFrame.loc can select by the row and column label:

 df.loc["Jayne", "eye_color"]

 green

 To select all rows from the column with the label "age":

 df.loc[:, "age"]

 Jack 24
Jill 42
Jayne 22
Name: age, dtype: int64

 To select all columns from the row with the label "Jack":

 df.loc["Jack", :]

 age 24
height_cm 180
eye_color blue
Name: Jack, dtype: object

 To select all rows from the column with the label "age", maintaining the pd.DataFrame shape:

 df.loc[:, ["age"]]

 age
Jack 24
Jill 42
Jayne 22

 To select all columns from the row with the label "Jack", maintaining the pd.DataFrame shape:

 df.loc[["Jack"], :]

 age height_cm eye_color
Jack 24 180 blue

 To select both rows and columns using lists of labels:

 df.loc[["Jack", "Jill"], ["age", "eye_color"]]

 age eye_color
Jack 24 blue
Jill 42 brown

 Mixing position-based and label-based selection

 Since pd.DataFrame.iloc is used for position-based selection and pd.DataFrame.loc is for label-based selection, users must take an extra step if attempting to select by label in one dimension and by position in another. As mentioned in previous sections, the majority of pd.DataFrame objects constructed will place heavy significance on the labels used for the columns, with little care for how those columns are ordered. The inverse is true for the rows, so being able to effectively mix and match both styles is of immense value.

 How to do it

 Let’s start with a pd.DataFrame that uses the default auto-numbered pd.RangeIndex in the rows but has custom string labels for the columns:

 df = pd.DataFrame([
 [24, 180, "blue"],
 [42, 166, "brown"],
 [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"])
df

 age height_cm eye_color
0 24 180 blue
1 42 166 brown
2 22 160 green

 The pd.Index.get_indexer method can help us convert a label or list of labels into their corresponding positions in a pd.Index:

 col_idxer = df.columns.get_indexer(["age", "eye_color"])
col_idxer

 array([0, 2])

 This can subsequently be used as an argument to .iloc, ensuring that you use position-based selection across both the rows and columns:

 df.iloc[[0, 1], col_idxer]

 age eye_color
0 24 blue
1 42 brown

 There’s more…

 Instead of using pd.Index.get_indexer, you can split this expression up into a few steps, with one of the steps performing index-based selection and the other performing label-based selection. And if you did this, you’d end up getting the exact same result as shown above:

 df[["age", "eye_color"]].iloc[[0, 1]]

 age eye_color
0 24 blue
1 42 brown

 There’s a strong argument to be made that this is more expressive than using pd.Index.get_indexer, which developers of all experience levels with pandas would agree with. So why even bother with pd.Index.get_indexer?

 While these appear the same on the surface, how pandas computes the result is drastically different. Adding some timing benchmarks to the various methods should highlight this. While the exact numbers will vary on your machine, compare the timing output of the idiomatic approach described in this section:

 import timeit
def get_indexer_approach():
 col_idxer = df.columns.get_indexer(["age", "eye_color"])
 df.iloc[[0, 1], col_idxer]
timeit.timeit(get_indexer_approach, number=10_000)

OEBPS/Images/info.png

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/9781836205876_cov.png
EXPERT INSIGHT

Pandas
Cookbook

Practical recipes for scientific computing, time series,
and exploratory data analysis using Python

Foreword by:

Wes McKinney

Creator of the pandas and Ibis projects
Co-creator of Apache Arrow

Third Edition

William Ayd (pde'I')

Matthew Harrison

OEBPS/Text/toc.xhtml

 Contents

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Sections

 		How to do it

 		How it works

 		There’s more…

 		Get in touch

 		pandas Foundations

 		Importing pandas

 		Series

 		DataFrame

 		Index

 		Series attributes

 		DataFrame attributes

 		Selection and Assignment

 		Basic selection from a Series

 		Basic selection from a DataFrame

 		Position-based selection of a Series

 		Position-based selection of a DataFrame

 		Label-based selection from a Series

 		Label-based selection from a DataFrame

 		Mixing position-based and label-based selection

 		DataFrame.filter

 		Selection by data type

 		Selection/filtering via Boolean arrays

 		Selection with a MultiIndex – A single level

 		Selection with a MultiIndex – Multiple levels

 		Selection with a MultiIndex – a DataFrame

 		Item assignment with .loc and .iloc

 		DataFrame column assignment

 		Data Types

 		Integral types

 		Floating point types

 		Boolean types

 		String types

 		Missing value handling

 		Categorical types

 		Temporal types – datetime

 		Temporal types – timedelta

 		Temporal PyArrow types

 		PyArrow List types

 		PyArrow decimal types

 		NumPy type system, the object type, and pitfalls

 		Leave a Review!

 		The pandas I/O System

 		CSV – basic reading/writing

 		CSV – strategies for reading large files

 		Microsoft Excel – basic reading/writing

 		Microsoft Excel – finding tables in non-default locations

 		Microsoft Excel – hierarchical data

 		SQL using SQLAlchemy

 		SQL using ADBC

 		Apache Parquet

 		JSON

 		HTML

 		Pickle

 		Third-party I/O libraries

 		Algorithms and How to Apply Them

 		Basic pd.Series arithmetic

 		Basic pd.DataFrame arithmetic

 		Aggregations

 		Transformations

 		Map

 		Apply

 		Summary statistics

 		Binning algorithms

 		One-hot encoding with pd.get_dummies

 		Chaining with .pipe

 		Selecting the lowest-budget movies from the top 100

 		Calculating a trailing stop order price

 		Finding the baseball players best at…

 		Understanding which position scores the most per team

 		Visualization

 		Creating charts from aggregated data

 		Plotting distributions of non-aggregated data

 		Further plot customization with Matplotlib

 		Exploring scatter plots

 		Exploring categorical data

 		Exploring continuous data

 		Using seaborn for advanced plots

 		Reshaping DataFrames

 		Concatenating pd.DataFrame objects

 		Merging DataFrames with pd.merge

 		Joining DataFrames with pd.DataFrame.join

 		Reshaping with pd.DataFrame.stack and pd.DataFrame.unstack

 		Reshaping with pd.DataFrame.melt

 		Reshaping with pd.wide_to_long

 		Reshaping with pd.DataFrame.pivot and pd.pivot_table

 		Reshaping with pd.DataFrame.explode

 		Transposing with pd.DataFrame.T

 		Group By

 		Group by basics

 		Grouping and calculating multiple columns

 		Group by apply

 		Window operations

 		Selecting the highest rated movies by year

 		Comparing the best hitter in baseball across years

 		Temporal Data Types and Algorithms

 		Timezone handling

 		DateOffsets

 		Datetime selection

 		Resampling

 		Aggregating weekly crime and traffic accidents

 		Calculating year-over-year changes in crime by category

 		Accurately measuring sensor-collected events with missing values

 		Leave a Review!

 		General Usage and Performance Tips

 		Avoid dtype=object

 		Be cognizant of data sizes

 		Use vectorized functions instead of loops

 		Avoid mutating data

 		Dictionary-encode low cardinality data

 		Test-driven development features

 		The pandas Ecosystem

 		Foundational libraries

 		NumPy

 		PyArrow

 		Exploratory data analysis

 		YData Profiling

 		Data validation

 		Great Expectations

 		Visualization

 		Plotly

 		PyGWalker

 		Data science

 		scikit-learn

 		XGBoost

 		Databases

 		DuckDB

 		Other DataFrame libraries

 		Ibis

 		Dask

 		Polars

 		cuDF

 		Leave a Review!

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/blockquote-top.png

OEBPS/Images/B31091_01_02.png
pd. DataFrame([

oo ngn

"X" Joeo .zl
",y "2,

1

OEBPS/Images/QR_Code1474021820358918656.png
A

OEBPS/Images/New_Packt_Logo.png
<packn

OEBPS/Images/tip.png

OEBPS/Images/B31091_01_01.png
pd.Series(["x", "y", "z"])

0 X
L y
2 z

dtype: object

OEBPS/Images/QR_Code5040900042138312.png

OEBPS/Images/B31091_Free_PDF_QR.png

