
		
			[image: Cover of iOS 18 App Development Essentials by Neil Smyth]
		
	
		
			iOS 18 App Development

			Essentials

		

		
			iOS 18 App Development Essentials

			ISBN-13: 978-1-951442-99-6

			© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

			This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved.

			The content of this book is provided for informational purposes only. Neither the publisher nor the author offers any warranties or representation, express or implied, with regard to the accuracy of information contained in this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

			This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

			Rev: 1.0

			[image:]

			https://www.payloadbooks.com

		

	
		
			Table of Contents

			1. Start Here

			1.1 For Swift Programmers

			1.2 For Non-Swift Programmers

			1.3 Source Code Download

			1.4 Feedback

			1.5 Errata

			1.6 Take the Knowledge Tests

			2. Joining the Apple Developer Program

			2.1 Downloading Xcode 16 and the iOS 18 SDK

			2.2 Apple Developer Program

			2.3 When to Enroll in the Apple Developer Program?

			2.4 Enrolling in the Apple Developer Program

			2.5 Summary

			3. Installing Xcode 16 and the iOS 18 SDK

			3.1 Identifying Your macOS Version

			3.2 Installing Xcode 16 and the iOS 18 SDK

			3.3 Starting Xcode

			3.4 Adding Your Apple ID to the Xcode Preferences

			3.5 Developer and Distribution Signing Identities

			3.6 Summary

			4. An Introduction to Xcode 16 Playgrounds

			4.1 What is a Playground?

			4.2 Creating a New Playground

			4.3 A Swift Playground Example

			4.4 Viewing Results

			4.5 Adding Rich Text Comments

			4.6 Working with Playground Pages

			4.7 Working with SwiftUI and Live View in Playgrounds

			4.8 Summary

			5. Swift Data Types, Constants, and Variables

			5.1 Using a Swift Playground

			5.2 Swift Data Types

			5.2.1 Integer Data Types

			5.2.2 Floating Point Data Types

			5.2.3 Bool Data Type

			5.2.4 Character Data Type

			5.2.5 String Data Type

			5.2.6 Special Characters/Escape Sequences

			5.3 Swift Variables

			5.4 Swift Constants

			5.5 Declaring Constants and Variables

			5.6 Type Annotations and Type Inference

			5.7 The Swift Tuple

			5.8 The Swift Optional Type

			5.9 Type Casting and Type Checking

			5.10 Take the Knowledge Test

			5.11 Summary

			6. Swift Operators and Expressions

			6.1 Expression Syntax in Swift

			6.2 The Basic Assignment Operator

			6.3 Swift Arithmetic Operators

			6.4 Compound Assignment Operators

			6.5 Comparison Operators

			6.6 Boolean Logical Operators

			6.7 Range Operators

			6.8 The Ternary Operator

			6.9 Nil Coalescing Operator

			6.10 Bitwise Operators

			6.10.1 Bitwise NOT

			6.10.2 Bitwise AND

			6.10.3 Bitwise OR

			6.10.4 Bitwise XOR

			6.10.5 Bitwise Left Shift

			6.10.6 Bitwise Right Shift

			6.11 Compound Bitwise Operators

			6.12 Take the Knowledge Test

			6.13 Summary

			7. Swift Control Flow

			7.1 Looping Control Flow

			7.2 The Swift for-in Statement

			7.2.1 The while Loop

			7.3 The repeat ... while loop

			7.4 Breaking from Loops

			7.5 The continue Statement

			7.6 Conditional Control Flow

			7.7 Using the if Statement

			7.8 Using if ... else … Statements

			7.9 Using if ... else if ... Statements

			7.10 The guard Statement

			7.11 Take the Knowledge Test

			7.12 Summary

			8. The Swift Switch Statement

			8.1 Why Use a switch Statement?

			8.2 Using the switch Statement Syntax

			8.3 A Swift switch Statement Example

			8.4 Combining case Statements

			8.5 Range Matching in a switch Statement

			8.6 Using the where statement

			8.7 Fallthrough

			8.8 Take the Knowledge Test

			8.9 Summary

			9. Swift Functions, Methods, and Closures

			9.1 What is a Function?

			9.2 What is a Method?

			9.3 How to Declare a Swift Function

			9.4 Implicit Returns from Single Expressions

			9.5 Calling a Swift Function

			9.6 Handling Return Values

			9.7 Local and External Parameter Names

			9.8 Declaring Default Function Parameters

			9.9 Returning Multiple Results from a Function

			9.10 Variable Numbers of Function Parameters

			9.11 Parameters as Variables

			9.12 Working with In-Out Parameters

			9.13 Functions as Parameters

			9.14 Closure Expressions

			9.15 Shorthand Argument Names

			9.16 Closures in Swift

			9.17 Take the Knowledge Test

			9.18 Summary

			10. The Basics of Swift Object-Oriented Programming

			10.1 What is an Instance?

			10.2 What is a Class?

			10.3 Declaring a Swift Class

			10.4 Adding Instance Properties to a Class

			10.5 Defining Methods

			10.6 Declaring and Initializing a Class Instance

			10.7 Initializing and De-initializing a Class Instance

			10.8 Calling Methods and Accessing Properties

			10.9 Stored and Computed Properties

			10.10 Lazy Stored Properties

			10.11 Using self in Swift

			10.12 Understanding Swift Protocols

			10.13 Opaque Return Types

			10.14 Take the Knowledge Test

			10.15 Summary

			11. An Introduction to Swift Subclassing and Extensions

			11.1 Inheritance, Classes, and Subclasses

			11.2 A Swift Inheritance Example

			11.3 Extending the Functionality of a Subclass

			11.4 Overriding Inherited Methods

			11.5 Initializing the Subclass

			11.6 Using the SavingsAccount Class

			11.7 Swift Class Extensions

			11.8 Take the Knowledge Test

			11.9 Summary

			12. An Introduction to Swift Structures and Enumerations

			12.1 An Overview of Swift Structures

			12.2 Value Types vs. Reference Types

			12.3 When to Use Structures or Classes

			12.4 An Overview of Enumerations

			12.5 Take the Knowledge Test

			12.6 Summary

			13. An Introduction to Swift Property Wrappers

			13.1 Understanding Property Wrappers

			13.2 A Simple Property Wrapper Example

			13.3 Supporting Multiple Variables and Types

			13.4 Take the Knowledge Test

			13.5 Summary

			14. Working with Array and Dictionary Collections in Swift

			14.1 Mutable and Immutable Collections

			14.2 Swift Array Initialization

			14.3 Working with Arrays in Swift

			14.3.1 Array Item Count

			14.3.2 Accessing Array Items

			14.3.3 Random Items and Shuffling

			14.3.4 Appending Items to an Array

			14.3.5 Inserting and Deleting Array Items

			14.3.6 Array Iteration

			14.4 Creating Mixed Type Arrays

			14.5 Swift Dictionary Collections

			14.6 Swift Dictionary Initialization

			14.7 Sequence-based Dictionary Initialization

			14.8 Dictionary Item Count

			14.9 Accessing and Updating Dictionary Items

			14.10 Adding and Removing Dictionary Entries

			14.11 Dictionary Iteration

			14.12 Take the Knowledge Test

			14.13 Summary

			15. Understanding Error Handling in Swift 5

			15.1 Understanding Error Handling

			15.2 Declaring Error Types

			15.3 Throwing an Error

			15.4 Calling Throwing Methods and Functions

			15.5 Accessing the Error Object

			15.6 Disabling Error Catching

			15.7 Using the defer Statement

			15.8 Take the Knowledge Test

			15.9 Summary

			16. An Overview of SwiftUI

			16.1 UIKit and Interface Builder

			16.2 SwiftUI Declarative Syntax

			16.3 SwiftUI is Data Driven

			16.4 SwiftUI vs. UIKit

			16.5 Take the Knowledge Test

			16.6 Summary

			17. Using Xcode in SwiftUI Mode

			17.1 Starting Xcode 16

			17.2 Creating a SwiftUI Project

			17.3 Xcode in SwiftUI Mode

			17.4 The Preview Canvas

			17.5 Preview Pinning

			17.6 The Preview Toolbar

			17.7 Modifying the Design

			17.8 Editor Context Menu

			17.9 Running the App on a Simulator

			17.10 Running the App on a Physical iOS Device

			17.11 Managing Devices and Simulators

			17.12 Enabling Network Testing

			17.13 Dealing with Build Errors

			17.14 Monitoring Application Performance

			17.15 Exploring the User Interface Layout Hierarchy

			17.16 Take the Knowledge Test

			17.17 Summary

			18. SwiftUI Architecture

			18.1 SwiftUI App Hierarchy

			18.2 App

			18.3 Scenes

			18.4 Views

			18.5 Take the Knowledge Test

			18.6 Summary

			19. The Anatomy of a Basic SwiftUI Project

			19.1 Creating an Example Project

			19.2 The DemoProjectApp.swift File

			19.3 The ContentView.swift File

			19.4 Assets.xcassets

			19.5 DemoProject.entitlements

			19.6 Preview Content

			19.7 Take the Knowledge Test

			19.8 Summary

			20. Creating Custom Views with SwiftUI

			20.1 SwiftUI Views

			20.2 Creating a Basic View

			20.3 Adding Views

			20.4 SwiftUI Hierarchies

			20.5 Concatenating Text Views

			20.6 Working with Subviews

			20.7 Views as Properties

			20.8 Modifying Views

			20.9 Working with Text Styles

			20.10 Modifier Ordering

			20.11 Custom Modifiers

			20.12 Basic Event Handling

			20.13 Building Custom Container Views

			20.14 Working with the Label View

			20.15 Take the Knowledge Test

			20.16 Summary

			21. SwiftUI Stacks and Frames

			21.1 SwiftUI Stacks

			21.2 Spacers, Alignment and Padding

			21.3 Grouping Views

			21.4 Dynamic HStack and VStack Conversion

			21.5 Text Line Limits and Layout Priority

			21.6 Traditional vs. Lazy Stacks

			21.7 SwiftUI Frames

			21.8 Frames and the Geometry Reader

			21.9 Take the Knowledge Test

			21.10 Summary

			22. SwiftUI State Properties, Observation, and Environment Objects

			22.1 State Properties

			22.2 State Binding

			22.3 Observable Objects

			22.4 Observation using Combine

			22.5 Combine State Objects

			22.6 Using the Observation Framework

			22.7 Observation and @Bindable

			22.8 Environment Objects

			22.9 Take the Knowledge Test

			22.10 Summary

			23. A SwiftUI Example Tutorial

			23.1 Creating the Example Project

			23.2 Reviewing the Project

			23.3 Modifying the Layout

			23.4 Adding a Slider View to the Stack

			23.5 Adding a State Property

			23.6 Adding Modifiers to the Text View

			23.7 Adding Rotation and Animation

			23.8 Adding a TextField to the Stack

			23.9 Adding a Color Picker

			23.10 Tidying the Layout

			23.11 Take the Knowledge Test

			23.12 Summary

			24. SwiftUI Stack Alignment and Alignment Guides

			24.1 Container Alignment

			24.2 Alignment Guides

			24.3 Custom Alignment Types

			24.4 Cross Stack Alignment

			24.5 ZStack Custom Alignment

			24.6 Take the Knowledge Test

			24.7 Summary

			25. Predictive Code Completion in Xcode

			25.1 Enabling Predictive Code Completion

			25.2 Creating the CodeCompletion Project

			25.3 Working with Code Completion

			25.4 Code Completion from Comments

			25.5 Take the Knowledge Test

			25.6 Summary

			26. An Overview of Swift Structured Concurrency

			26.1 An Overview of Threads

			26.2 The Application Main Thread

			26.3 Completion Handlers

			26.4 Structured Concurrency

			26.5 Preparing the Project

			26.6 Non-Concurrent Code

			26.7 Introducing async/await Concurrency

			26.8 Asynchronous Calls from Synchronous Functions

			26.9 The await Keyword

			26.10 Using async-let Bindings

			26.11 Handling Errors

			26.12 Understanding Tasks

			26.13 Unstructured Concurrency

			26.14 Detached Tasks

			26.15 Task Management

			26.16 Working with Task Groups

			26.17 Avoiding Data Races

			26.18 The for-await Loop

			26.19 Asynchronous Properties

			26.20 Take the Knowledge Test

			26.21 Summary

			27. An Introduction to Swift Actors

			27.1 An Overview of Actors

			27.2 Declaring an Actor

			27.3 Understanding Data Isolation

			27.4 A Swift Actor Example

			27.5 Introducing the MainActor

			27.6 Take the Knowledge Test

			27.7 Summary

			28. SwiftUI Concurrency and Lifecycle Event Modifiers

			28.1 Creating the LifecycleDemo Project

			28.2 Designing the App

			28.3 The onAppear and onDisappear Modifiers

			28.4 The onChange Modifier

			28.5 ScenePhase and the onChange Modifier

			28.6 Launching Concurrent Tasks

			28.7 Take the Knowledge Test

			28.8 Summary

			29. SwiftUI Observable and Environment Objects – A Tutorial

			29.1 About the ObservableDemo Project

			29.2 Creating the Project

			29.3 Adding the Observable Object

			29.4 Designing the ContentView Layout

			29.5 Adding the Second View

			29.6 Adding Navigation

			29.7 Using an Environment Object

			29.8 Take the Knowledge Test

			29.9 Summary

			30. SwiftUI Data Persistence using AppStorage and SceneStorage

			30.1 The @SceneStorage Property Wrapper

			30.2 The @AppStorage Property Wrapper

			30.3 Creating and Preparing the StorageDemo Project

			30.4 Using Scene Storage

			30.5 Using App Storage

			30.6 Storing Custom Types

			30.7 Take the Knowledge Test

			30.8 Summary

			31. SwiftUI Lists and Navigation

			31.1 SwiftUI Lists

			31.2 Modifying List Separators and Rows

			31.3 SwiftUI Dynamic Lists

			31.4 Creating a Refreshable List

			31.5 SwiftUI NavigationStack and NavigationLink

			31.6 Navigation by Value Type

			31.7 Working with Navigation Paths

			31.8 Navigation Bar Customization

			31.9 Making the List Editable

			31.10 Hierarchical Lists

			31.11 Multicolumn Navigation

			31.12 Take the Knowledge Test

			31.13 Summary

			32. A SwiftUI List and NavigationStack Tutorial

			32.1 About the ListNavDemo Project

			32.2 Creating the ListNavDemo Project

			32.3 Preparing the Project

			32.4 Adding the Car Structure

			32.5 Adding the Data Store

			32.6 Designing the Content View

			32.7 Designing the Detail View

			32.8 Adding Navigation to the List

			32.9 Designing the Add Car View

			32.10 Implementing Add and Edit Buttons

			32.11 Adding a Navigation Path

			32.12 Adding the Edit Button Methods

			32.13 Summary

			33. An Overview of Split View Navigation

			33.1 Introducing NavigationSplitView

			33.2 Using NavigationSplitView

			33.3 Handling List Selection

			33.4 NavigationSplitView Configuration

			33.5 Controlling Column Visibility

			33.6 Take the Knowledge Test

			33.7 Summary

			34. A NavigationSplitView Tutorial

			34.1 About the Project

			34.2 Creating the NavSplitDemo Project

			34.3 Adding the Project Data

			34.4 Creating the Navigation View

			34.5 Building the Sidebar Column

			34.6 Adding the Content Column List

			34.7 Adding the Detail Column

			34.8 Configuring the Split Navigation Experience

			34.9 Summary

			35. An Overview of List, OutlineGroup and DisclosureGroup

			35.1 Hierarchical Data and Disclosures

			35.2 Hierarchies and Disclosure in SwiftUI Lists

			35.3 Using OutlineGroup

			35.4 Using DisclosureGroup

			35.5 Take the Knowledge Test

			35.6 Summary

			36. A SwiftUI List, OutlineGroup, and DisclosureGroup Tutorial

			36.1 About the Example Project

			36.2 Creating the OutlineGroupDemo Project

			36.3 Adding the Data Structure

			36.4 Adding the List View

			36.5 Testing the Project

			36.6 Using the Sidebar List Style

			36.7 Using OutlineGroup

			36.8 Working with DisclosureGroups

			36.9 Summary

			37. Building SwiftUI Grids with LazyVGrid and LazyHGrid

			37.1 SwiftUI Grids

			37.2 GridItems

			37.3 Creating the GridDemo Project

			37.4 Working with Flexible GridItems

			37.5 Adding Scrolling Support to a Grid

			37.6 Working with Adaptive GridItems

			37.7 Working with Fixed GridItems

			37.8 Using the LazyHGrid View

			37.9 Take the Knowledge Test

			37.10 Summary

			38. Building SwiftUI Grids with Grid and GridRow

			38.1 Grid and GridRow Views

			38.2 Creating the GridRowDemo Project

			38.3 A Simple Grid Layout

			38.4 Non-GridRow Children

			38.5 Automatic Empty Grid Cells

			38.6 Adding Empty Cells

			38.7 Column Spanning

			38.8 Grid Alignment and Spacing

			38.9 Take the Knowledge Test

			38.10 Summary

			39. Building Custom Containers

			39.1 Introducing custom containers

			39.2 Working with ViewBuilder Closures

			39.3 Supporting Section Headers

			39.4 Take the Knowledge Test

			39.5 Summary

			40. A SwiftUI Custom Container Tutorial

			40.1 About the Custom Container Project

			40.2 Creating the CustomContainerDemo Project

			40.3 Adding the Sample Data

			40.4 Declaring the Item View

			40.5 Designing the Container

			40.6 Using the Custom Container

			40.7 Completing the Item View

			40.8 Adding Section Headers

			40.9 Summary

			41. Building Tabbed and Paged Views in SwiftUI

			41.1 An Overview of SwiftUI TabView

			41.2 Creating the TabViewDemo App

			41.3 Adding the TabView Container

			41.4 Adding the Content Views

			41.5 Adding View Paging

			41.6 Adding the Tab Items

			41.7 Adding Tab Item Tags

			41.8 Take the Knowledge Test

			41.9 Summary

			42. Building Context Menus in SwiftUI

			42.1 Creating the ContextMenuDemo Project

			42.2 Preparing the Content View

			42.3 Adding the Context Menu

			42.4 Testing the Context Menu

			42.5 Take the Knowledge Test

			42.6 Summary

			43. Basic SwiftUI Graphics Drawing

			43.1 Creating the DrawDemo Project

			43.2 SwiftUI Shapes

			43.3 Using Overlays

			43.4 Drawing Custom Paths and Shapes

			43.5 Color Mixing

			43.6 Color Gradients and Shadows

			43.7 Drawing Gradients

			43.8 Mesh Gradients

			43.9 Take the Knowledge Test

			43.10 Summary

			44. SwiftUI Animation and Transitions

			44.1 Creating the AnimationDemo Example Project

			44.2 Implicit Animation

			44.3 Repeating an Animation

			44.4 Explicit Animation

			44.5 Animation and State Bindings

			44.6 Automatically Starting an Animation

			44.7 SwiftUI Transitions

			44.8 Combining Transitions

			44.9 Asymmetrical Transitions

			44.10 Take the Knowledge Test

			44.11 Summary

			45. Working with Gesture Recognizers in SwiftUI

			45.1 Creating the GestureDemo Example Project

			45.2 Basic Gestures

			45.3 The onChange Action Callback

			45.4 The updating Callback Action

			45.5 Composing Gestures

			45.6 Take the Knowledge Test

			45.7 Summary

			46. Creating a Customized SwiftUI ProgressView

			46.1 ProgressView Styles

			46.2 Creating the ProgressViewDemo Project

			46.3 Adding a ProgressView

			46.4 Using the Circular ProgressView Style

			46.5 Declaring an Indeterminate ProgressView

			46.6 ProgressView Customization

			46.7 Take the Knowledge Test

			46.8 Summary

			47. Presenting Data with SwiftUI Charts

			47.1 Introducing SwiftUI Charts

			47.2 Passing Data to the Chart

			47.3 Combining Mark Types

			47.4 Filtering Data into Multiple Graphs

			47.5 Changing the Chart Background

			47.6 Changing the Interpolation Method

			47.7 Take the Knowledge Test

			47.8 Summary

			48. A SwiftUI Charts Tutorial

			48.1 Creating the ChartDemo Project

			48.2 Adding the Project Data

			48.3 Adding the Chart View

			48.4 Creating Multiple Graphs

			48.5 Summary

			49. An Overview of SwiftUI DocumentGroup Scenes

			49.1 Documents in Apps

			49.2 Creating the DocDemo App

			49.3 The DocumentGroup Scene

			49.4 Declaring File Type Support

			49.4.1 Document Content Type Identifier

			49.4.2 Handler Rank

			49.4.3 Type Identifiers

			49.4.4 Filename Extensions

			49.4.5 Custom Type Document Content Identifiers

			49.4.6 Exported vs. Imported Type Identifiers

			49.5 Configuring File Type Support in Xcode

			49.6 The Document Structure

			49.7 The Content View

			49.8 Adding Navigation

			49.9 Running the Example App

			49.10 Customizing the Launch Screen

			49.11 Take the Knowledge Test

			49.12 Summary

			50. A SwiftUI DocumentGroup Tutorial

			50.1 Creating the ImageDocDemo Project

			50.2 Modifying the Info.plist File

			50.3 Adding an Image Asset

			50.4 Modifying the ImageDocDemoDocument.swift File

			50.5 Designing the Content View

			50.6 Filtering the Image

			50.7 Testing the App

			50.8 Summary

			51. An Introduction to Core Data and SwiftUI

			51.1 The Core Data Stack

			51.2 Persistent Container

			51.3 Managed Objects

			51.4 Managed Object Context

			51.5 Managed Object Model

			51.6 Persistent Store Coordinator

			51.7 Persistent Object Store

			51.8 Defining an Entity Description

			51.9 Initializing the Persistent Container

			51.10 Obtaining the Managed Object Context

			51.11 Setting the Attributes of a Managed Object

			51.12 Saving a Managed Object

			51.13 Fetching Managed Objects

			51.14 Retrieving Managed Objects based on Criteria

			51.15 Take the Knowledge Test

			51.16 Summary

			52. A SwiftUI Core Data Tutorial

			52.1 Creating the CoreDataDemo Project

			52.2 Defining the Entity Description

			52.3 Creating the Persistence Controller

			52.4 Setting up the View Context

			52.5 Preparing the ContentView for Core Data

			52.6 Designing the User Interface

			52.7 Saving Products

			52.8 Testing the addProduct() Function

			52.9 Deleting Products

			52.10 Adding the Search Function

			52.11 Testing the Completed App

			52.12 Summary

			53. An Overview of SwiftUI Core Data and CloudKit Storage

			53.1 An Overview of CloudKit

			53.2 CloudKit Containers

			53.3 CloudKit Public Database

			53.4 CloudKit Private Databases

			53.5 Data Storage Quotas

			53.6 CloudKit Records

			53.7 CloudKit Record IDs

			53.8 CloudKit References

			53.9 Record Zones

			53.10 CloudKit Console

			53.11 CloudKit Sharing

			53.12 CloudKit Subscriptions

			53.13 Take the Knowledge Test

			53.14 Summary

			54. A SwiftUI Core Data and CloudKit Tutorial

			54.1 Enabling CloudKit Support

			54.2 Enabling Background Notifications Support

			54.3 Switching to the CloudKit Persistent Container

			54.4 Testing the App

			54.5 Reviewing the Saved Data in the CloudKit Console

			54.6 Filtering and Sorting Queries

			54.7 Editing and Deleting Records

			54.8 Adding New Records

			54.9 Summary

			55. An Introduction to SwiftData

			55.1 Introducing SwiftData

			55.2 Model Classes

			55.3 Model Container

			55.4 Model Configuration

			55.5 Model Context

			55.6 Predicates and FetchDescriptors

			55.7 The @Query Macro

			55.8 Model Relationships

			55.9 Model Attributes

			55.10 Take the Knowledge Test

			55.11 Summary

			56. A SwiftData Tutorial

			56.1 About the SwiftData Project

			56.2 Creating the SwiftDataDemo Project

			56.3 Adding the Data Models

			56.4 Setting up the Model Container

			56.5 Accessing the Model Context

			56.6 Designing the Visitor List View

			56.7 Establishing the Relationship

			56.8 Creating the Visitor Detail View

			56.9 Modifying the Content View

			56.10 Testing the SwiftData Demo App

			56.11 Adding the Search Predicate

			56.12 Summary

			57. Building Widgets with SwiftUI and WidgetKit

			57.1 An Overview of Widgets

			57.2 The Widget Extension

			57.3 Widget Configuration Types

			57.4 Widget Entry View

			57.5 Widget Timeline Entries

			57.6 Widget Timeline

			57.7 Widget Provider

			57.8 Reload Policy

			57.9 Relevance

			57.10 Forcing a Timeline Reload

			57.11 Widget Sizes

			57.12 Widget Placeholder

			57.13 Take the Knowledge Test

			57.14 Summary

			58. A SwiftUI WidgetKit Tutorial

			58.1 About the WidgetDemo Project

			58.2 Creating the WidgetDemo Project

			58.3 Building the App

			58.4 Adding the Widget Extension

			58.5 Adding the Widget Data

			58.6 Creating Sample Timelines

			58.7 Adding Image and Color Assets

			58.8 Designing the Widget View

			58.9 Modifying the Widget Provider

			58.10 Configuring the Placeholder View

			58.11 Previewing the Widget

			58.12 Summary

			59. Supporting WidgetKit Size Families

			59.1 Supporting Multiple Size Families

			59.2 Adding Size Support to the Widget View

			59.3 Take the Knowledge Test

			59.4 Summary

			60. A SwiftUI WidgetKit Deep Link Tutorial

			60.1 Adding Deep Link Support to the Widget

			60.2 Adding Deep Link Support to the App

			60.3 Testing the Widget

			60.4 Summary

			61. Adding Configuration Options to a WidgetKit Widget

			61.1 Reviewing the Project Code

			61.2 Adding an App Entity

			61.3 Adding Entity Query

			61.4 Modifying the App Intent

			61.5 Modifying the Timeline Code

			61.6 Testing Widget Configuration

			61.7 Customizing the Configuration Intent UI

			61.8 Take the Knowledge Test

			61.9 Summary

			62. An Overview of Live Activities in SwiftUI

			62.1 Introducing Live Activities

			62.2 Creating a Live Activity

			62.3 Live Activity Attributes

			62.4 Designing the Live Activity Presentations

			62.4.1 Lock Screen/Banner

			62.4.2 Dynamic Island Expanded Regions

			62.4.3 Dynamic Island Compact Regions

			62.4.4 Dynamic Island Minimal

			62.5 Starting a Live Activity

			62.6 Updating a Live Activity

			62.7 Activity Alert Configurations

			62.8 Stopping a Live Activity

			62.9 Take the Knowledge Test

			62.10 Summary

			63. A SwiftUI Live Activity Tutorial

			63.1 About the LiveActivityDemo Project

			63.2 Creating the Project

			63.3 Building the View Model

			63.4 Designing the Content View

			63.5 Adding the Live Activity Extension

			63.6 Enabling Live Activities Support

			63.7 Enabling the Background Fetch Capability

			63.8 Defining the Activity Widget Attributes

			63.9 Adding the Percentage and Lock Screen Views

			63.10 Designing the Widget Layouts

			63.11 Launching the Live Activity

			63.12 Updating the Live Activity

			63.13 Stopping the Live Activity

			63.14 Testing the App

			63.15 Adding an Alert Notification

			63.16 Understanding Background Updates

			63.17 Summary

			64. Adding a Refresh Button to a Live Activity

			64.1 Adding Interactivity to Live Activities

			64.2 Adding the App Intent

			64.3 Setting a Stale Date

			64.4 Detecting Stale Data

			64.5 Testing the Live Activity Intent

			64.6 Take the Knowledge Test

			64.7 Summary

			65. A Live Activity Push Notifications Tutorial

			65.1 An Overview of Push Notifications

			65.2 Registering an APNs Key

			65.3 Enabling Push Notifications for the App

			65.4 Enabling Frequent Updates

			65.5 Requesting User Permission

			65.6 Changing the Push Type

			65.7 Obtaining a Push Token

			65.8 Removing the Refresh Button

			65.9 Take the Knowledge Test

			65.10 Summary

			66. Testing Live Activity Push Notifications

			66.1 Using the Push Notifications Console

			66.2 Configuring the Notification

			66.3 Defining the Payload

			66.4 Sending the Notification

			66.5 Sending Push Notifications from the Command Line

			66.6 Summary

			67. Troubleshooting Live Activity Push Notifications

			67.1 Push Notification Problems

			67.2 Push Notification Delivery

			67.3 Check the Payload Structure

			67.4 Validating the Push and Authentication Tokens

			67.5 Checking the Device Log

			67.6 Take the Knowledge Test

			67.7 Summary

			68. Integrating UIViews with SwiftUI

			68.1 SwiftUI and UIKit Integration

			68.2 Integrating UIViews into SwiftUI

			68.3 Adding a Coordinator

			68.4 Handling UIKit Delegation and Data Sources

			68.5 An Example Project

			68.6 Wrapping the UIScrolledView

			68.7 Implementing the Coordinator

			68.8 Using MyScrollView

			68.9 Take the Knowledge Test

			68.10 Summary

			69. Integrating UIViewControllers with SwiftUI

			69.1 UIViewControllers and SwiftUI

			69.2 Creating the ViewControllerDemo project

			69.3 Wrapping the UIImagePickerController

			69.4 Designing the Content View

			69.5 Completing MyImagePicker

			69.6 Completing the Content View

			69.7 Testing the App

			69.8 Take the Knowledge Test

			69.9 Summary

			70. Integrating SwiftUI with UIKit

			70.1 An Overview of the Hosting Controller

			70.2 A UIHostingController Example Project

			70.3 Adding the SwiftUI Content View

			70.4 Preparing the Storyboard

			70.5 Adding a Hosting Controller

			70.6 Configuring the Segue Action

			70.7 Embedding a Container View

			70.8 Embedding SwiftUI in Code

			70.9 Take the Knowledge Test

			70.10 Summary

			71. Preparing and Submitting an iOS 18 Application to the App Store

			71.1 Verifying the iOS Distribution Certificate

			71.2 Adding App Icons

			71.3 Assign the Project to a Team

			71.4 Archiving the Application for Distribution

			71.5 Configuring the Application in App Store Connect

			71.6 Validating and Submitting the Application

			71.7 Configuring and Submitting the App for Review

			Index

		

	

		
			1. Start Here

			This book aims to teach the skills necessary to build iOS 18 applications using SwiftUI, Xcode 16, and the Swift programming language.

			Beginning with the basics, this book outlines the steps to set up an iOS development environment, together with an introduction to using Swift Playgrounds to learn and experiment with Swift.

			The book also includes in-depth chapters introducing the Swift programming language, including data types, control flow, functions, object-oriented programming, property wrappers, structured concurrency, and error handling.

			A guided tour of Xcode in SwiftUI development mode follows an introduction to the key concepts of SwiftUI and project architecture. The book also covers creating custom SwiftUI views and explains how these views are combined to create user interface layouts, including stacks, frames, and forms.

			Other topics covered include data handling using state properties and observable, state, and environment objects, as are key user interface design concepts such as modifiers, lists, tabbed views, context menus, user interface navigation, and outline groups.

			The book also includes chapters covering graphics and chart drawing, user interface animation, view transitions and gesture handling, WidgetKit, Live Activities, document-based apps, Core Data, SwiftData, and CloudKit.

			Chapters also explain how to integrate SwiftUI views into existing UIKit-based projects and integrate UIKit code into SwiftUI.

			Finally, the book explains how to package up a completed app and upload it to the App Store for publication.

			Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code for which is also available for download.

			The aim of this book, therefore, is to teach you the skills to build your own apps for iOS 18 using SwiftUI. Assuming you are ready to download the iOS 18 SDK and Xcode 16 and have an Apple Mac system, you are ready to get started.

			1.1 For Swift Programmers

			This book has been designed to address the needs of both existing Swift programmers and those new to Swift and iOS app development. If you are familiar with the Swift programming language, you can probably skip the Swift-specific chapters. If you are not yet familiar with the SwiftUI-specific language features of Swift, however, we recommend that you at least read the sections covering implicit returns from single expressions, opaque return types, and property wrappers. These features are central to the implementation and understanding of SwiftUI.

			1.2 For Non-Swift Programmers

			If you are new to programming in Swift, then the entire book is appropriate for you. Just start at the beginning and keep going.

			1.3 Source Code Download

			The source code and Xcode project files for the examples contained in this book are available for download at:

			https://www.payloadbooks.com/product/ios18code/

			1.4 Feedback

			We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

			1.5 Errata

			While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a subject area of this size and complexity may include some errors and oversights. Any known issues with the book will be outlined, together with solutions, at the following URL:

			https://www.payloadbooks.com/ios18errata/

			In the event that you find an error not listed in the errata, please let us know by emailing our technical support team at info@payloadbooks.com.

			1.6 Take the Knowledge Tests

			
				
					
					
					
				
				
					
							
							
								
									[image:]
								

							

						
							
							Look for this section at the end of most chapters and use the link or scan the QR code to take a knowledge quiz to test and reinforce your understanding of the covered topic. Use the following link to review the full list of tests available for this book:

							https://www.answertopia.com/g3um

						
							
							
								
									[image:]
								

							

						
					

				
			

		

	
		
			2. Joining the Apple Developer Program

			The first step in the process of learning to develop iOS 18 based applications involves gaining an understanding of the advantages of enrolling in the Apple Developer Program and deciding the point at which it makes sense to pay to join. With these goals in mind, this chapter will outline the costs and benefits of joining the developer program and, finally, walk through the steps involved in enrolling.

			2.1 Downloading Xcode 16 and the iOS 18 SDK

			The latest versions of both the iOS SDK and Xcode can be downloaded free of charge from the macOS App Store. Since the tools are free, this raises the question of whether to enroll in the Apple Developer Program, or to wait until it becomes necessary later in your app development learning curve.

			2.2 Apple Developer Program

			Membership in the Apple Developer Program currently costs $99 per year to enroll as an individual developer. Organization level membership is also available.

			Much can be achieved without the need to pay to join the Apple Developer program. There are, however, areas of app development which cannot be fully tested without program membership. Of particular significance is the fact that Siri integration, iCloud access, Apple Pay, Game Center and In-App Purchasing can only be enabled and tested with Apple Developer Program membership.

			Of further significance is the fact that Apple Developer Program members have access to technical support from Apple’s iOS support engineers (though the annual fee initially covers the submission of only two support incident reports, more can be purchased). Membership also includes access to the Apple Developer forums; an invaluable resource both for obtaining assistance and guidance from other iOS developers, and for finding solutions to problems that others have encountered and subsequently resolved.

			Program membership also provides early access to the pre-release Beta versions of Xcode, macOS and iOS.

			By far the most important aspect of the Apple Developer Program is that membership is a mandatory requirement in order to publish an application for sale or download in the App Store.

			Clearly, program membership is going to be required at some point before your application reaches the App Store. The only question remaining is when exactly to sign up.

			2.3 When to Enroll in the Apple Developer Program?

			Clearly, there are many benefits to Apple Developer Program membership and, eventually, membership will be necessary to begin selling your apps. As to whether to pay the enrollment fee now or later will depend on individual circumstances. If you are still in the early stages of learning to develop iOS apps or have yet to come up with a compelling idea for an app to develop then much of what you need is provided without program membership. As your skill level increases and your ideas for apps to develop take shape you can, after all, always enroll in the developer program later.

			If, on the other hand, you are confident that you will reach the stage of having an application ready to publish, or know that you will need access to more advanced features such as Siri support, iCloud storage, In-App Purchasing and Apple Pay then it is worth joining the developer program sooner rather than later.

			2.4 Enrolling in the Apple Developer Program

			If your goal is to develop iOS apps for your employer, then it is first worth checking whether the company already has membership. That being the case, contact the program administrator in your company and ask them to send you an invitation from within the Apple Developer Program Member Center to join the team. Once they have done so, Apple will send you an email entitled You Have Been Invited to Join an Apple Developer Program containing a link to activate your membership. If you or your company is not already a program member, you can enroll online at:

			https://developer.apple.com/programs/enroll/

			Apple provides enrollment options for businesses and individuals. To enroll as an individual, you will need to provide credit card information in order to verify your identity. To enroll as a company, you must have legal signature authority (or access to someone who does) and be able to provide documentation such as a Dun & Bradstreet D-U-N-S number and documentation confirming legal entity status.

			Acceptance into the developer program as an individual member typically takes less than 24 hours with notification arriving in the form of an activation email from Apple. Enrollment as a company can take considerably longer (sometimes weeks or even months) due to the burden of the additional verification requirements.

			While awaiting activation you may log in to the Member Center with restricted access using your Apple ID and password at the following URL:

			https://developer.apple.com/membercenter

			Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing status of your application to join the developer program as Enrollment Pending. Once the activation email has arrived, log in to the Member Center again and note that access is now available to a wide range of options and resources, as illustrated in Figure 2-1:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 2-1

			2.5 Summary

			An important early step in the iOS 18 application development process involves identifying the best time to enroll in the Apple Developer Program. This chapter has outlined the benefits of joining the program, provided some guidance to keep in mind when considering developer program membership and walked briefly through the enrollment process. The next step is to download and install the iOS 18 SDK and Xcode 16 development environment.

		

	
		
			3. Installing Xcode 16 and the iOS 18 SDK

			iOS apps are developed using the iOS SDK and Apple’s Xcode development environment. Xcode is an integrated development environment (IDE) within which you will code, compile, test and debug your iOS applications.

			All of the examples in this book are based on Xcode version 15 and use features unavailable in earlier Xcode versions. This chapter will cover the steps involved in installing Xcode 16 and the iOS 18 SDK on macOS.

			3.1 Identifying Your macOS Version

			When developing with Xcode 16, a system running macOS Sonoma 14.5 or later or later is required. If you are unsure of the version of macOS on your Mac, you can find this information by clicking on the Apple menu in the top left-hand corner of the screen and selecting the About This Mac option from the menu. In the resulting dialog, check the macOS line:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 3-1

			If the “About This Mac” dialog does not indicate that macOS Sonoma 14.5 or later is running, click on the More Info... button to open the Settings app and check for available operating system updates.

			3.2 Installing Xcode 16 and the iOS 18 SDK

			The best way to obtain the latest Xcode and iOS SDK versions is to download them from the Apple Mac App Store. Launch the App Store on your macOS system, enter Xcode into the search box and click on the Get button to initiate the installation. This will install both Xcode and the iOS SDK.

			3.3 Starting Xcode

			Having successfully installed the SDK and Xcode, the next step is to launch it so we are ready to start development work. To start up Xcode, open the macOS Finder and search for Xcode. Since you will be frequently using this tool, take this opportunity to drag and drop it onto your dock for easier access in the future. Click on the Xcode icon in the dock to launch the tool. The first time Xcode runs you may be prompted to install additional components. Follow these steps, entering your username and password when prompted.

			Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system, you will be presented with the Welcome screen from which you are ready to proceed:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 3-2

			3.4 Adding Your Apple ID to the Xcode Preferences

			Whether or not you enroll in the Apple Developer Program, it is worth adding your Apple ID to Xcode now that it is installed and running. Select the Xcode -> Settings… menu option followed by the Accounts tab. On the Accounts screen, click on the + button highlighted in Figure 3-3, select Apple ID from the resulting panel and click on the Continue button. When prompted, enter your Apple ID and password before clicking on the Sign In button to add the account to the preferences.

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 3-3

			3.5 Developer and Distribution Signing Identities

			Once the Apple ID has been entered the next step is to generate signing identities. To view the current signing identities, select the newly added Apple ID in the Accounts panel and click on the Manage Certificates… button to display a list of available signing identity types. To create a signing identity, simply click on the + button highlighted in Figure 3-4 and make the appropriate selection from the menu:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 3-4

			If the Apple ID has been used to enroll in the Apple Developer program, the option to create an Apple Distribution certificate will appear in the menu which will, when clicked, generate the signing identity required to submit the app to the Apple App Store. You will also need to create a Developer ID Application certificate if you plan to integrate features such as iCloud and Siri into your app projects. If you have not yet signed up for the Apple Developer program, select the Apple Development option to allow apps to be tested during development.

			3.6 Summary

			This book was written using Xcode 16 and the iOS 18 SDK running on macOS 13.5.2 (Ventura). Before beginning SwiftUI development, the first step is to install Xcode and configure it with your Apple ID via the accounts section of the Preferences screen. Once these steps have been performed, a development certificate must be generated which will be used to sign apps developed within Xcode. This will allow you to build and test your apps on physical iOS-based devices.

			When you are ready to upload your finished app to the App Store, you will also need to generate a distribution certificate, a process requiring membership in the Apple Developer Program as outlined in the previous chapter.

			Having installed the iOS SDK and successfully launched Xcode 16, we can now look at Xcode in more detail, starting with Playgrounds.

		

	
		
			4. An Introduction to Xcode 16 Playgrounds

			Before introducing the Swift programming language in the following chapters, it is first worth learning about a feature of Xcode known as Playgrounds. This is a feature of Xcode designed to make learning Swift and experimenting with the iOS SDK much easier. The concepts covered in this chapter can be put to use when experimenting with many of the introductory Swift code examples contained in the chapters that follow.

			4.1 What is a Playground?

			A playground is an interactive environment where Swift code can be entered and executed with the results appearing in real-time. This makes an ideal environment in which to learn the syntax of Swift and the visual aspects of iOS app development without the need to work continuously through the edit/compile/run/debug cycle that would ordinarily accompany a standard Xcode iOS project. With support for rich text comments, playgrounds are also a good way to document code for future reference or as a training tool.

			4.2 Creating a New Playground

			To create a new Playground, start Xcode and select the File -> New -> Playground… menu option. Choose the iOS option on the resulting panel and select the Blank template.

			The Blank template is useful for trying out Swift coding. The Single View template, on the other hand, provides a view controller environment for trying out code that requires a user interface layout. The game and map templates provide preconfigured playgrounds that allow you to experiment with the iOS MapKit and SpriteKit frameworks respectively.

			On the next screen, name the playground LearnSwift and choose a suitable file system location into which the playground should be saved before clicking on the Create button.

			Once the playground has been created, the following screen will appear ready for Swift code to be entered:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-1

			The panel on the left-hand side of the window (marked A in Figure 4-1) is the Navigator panel which provides access to the folders and files that make up the playground. To hide and show this panel, click on the button indicated by the left-most arrow. The center panel (B) is the playground editor where the lines of Swift code are entered. The right-hand panel (C) is referred to as the results panel and is where the results of each Swift expression entered into the playground editor panel are displayed. The tab bar (D) will contain a tab for each file currently open within the playground editor. To switch to a different file, simply select the corresponding tab. To close an open file, hover the mouse pointer over the tab and click on the “X” button when it appears to the left of the file name.

			The button marked by the right-most arrow in the above figure is used to hide and show the Inspectors panel (marked A in Figure 4-2 below) where a variety of properties relating to the playground may be configured. Clicking and dragging the bar (B) upward will display the Debug Area (C) where diagnostic output relating to the playground will appear when code is executed:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-2

			By far the quickest way to gain familiarity with the playground environment is to work through some simple examples.

			4.3 A Swift Playground Example

			Perhaps the simplest of examples in any programming language (that at least does something tangible) is to write some code to output a single line of text. Swift is no exception to this rule so, within the playground window, begin adding another line of Swift code so that it reads as follows:

			import UIKit

			

			var greeting = "Hello, playground"

			

			print("Welcome to Swift")

			All that the additional line of code does is make a call to the built-in Swift print function which takes as a parameter a string of characters to be displayed on the console. Those familiar with other programming languages will note the absence of a semi-colon at the end of the line of code. In Swift, semi-colons are optional and generally only used as a separator when multiple statements occupy the same line of code.

			Note that although some extra code has been entered, nothing yet appears in the results panel. This is because the code has yet to be executed. One option to run the code is to click on the Execute Playground button located in the bottom left-hand corner of the main panel as indicated by the arrow in Figure 4-3:

			[image: A picture containing airplane, drawing

Description automatically generated]

			Figure 4-3

			When clicked, this button will execute all the code in the current playground page from the first line of code to the last. Another option is to execute the code in stages using the run button located in the margin of the code editor, as shown in Figure 4-4:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-4

			This button executes the line numbers with the shaded blue background including the line on which the button is currently positioned. In the above figure, for example, the button will execute lines 1 through 3 and then stop.

			The position of the run button can be moved by hovering the mouse pointer over the line numbers in the editor. In Figure 4-5, for example, the run button is now positioned on line 5 and will execute lines 4 and 5 when clicked. Note that lines 1 to 3 are no longer highlighted in blue indicating that these have already been executed and are not eligible to be run this time:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-5

			This technique provides an easy way to execute the code in stages making it easier to understand how the code functions and to identify problems in code execution.

			To reset the playground so that execution can be performed from the start of the code, simply click on the stop button as indicated in Figure 4-6:

			[image: A picture containing airplane, drawing

Description automatically generated]

			Figure 4-6

			Using this incremental execution technique, execute lines 1 through 3 and note that output now appears in the results panel indicating that the variable has been initialized:

			[image: A picture containing table

Description automatically generated]

			Figure 4-7

			Next, execute the remaining lines up to and including line 5 at which point the “Welcome to Swift” output should appear both in the results panel and debug area:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-8

			4.4 Viewing Results

			Playgrounds are particularly useful when working and experimenting with Swift algorithms. This can be useful when combined with the Quick Look feature. Remaining within the playground editor, enter the following lines of code beneath the existing print statement:

			var x = 10

			

			for index in 1...20 {

			 let y = index * x

			 x -= 1

			}

			This expression repeats a loop 20 times, performing arithmetic expressions on each iteration of the loop. Once the code has been entered into the editor, click on the run button positioned at line 13 to execute these new lines of code. The playground will execute the loop and display in the results panel the final value for each variable. More interesting information, however, may be obtained by hovering the mouse pointer over the results line so that an additional button appears, as shown in Figure 4-9:

			[image: A picture containing screenshot

Description automatically generated]

			Figure 4-9

			Hovering over the output will display the Quick Look button on the far right which, when selected, will show a popup panel displaying the results, as shown in Figure 4-10:

			[image: A screenshot of a computer

Description automatically generated]

			Figure 4-10

			The left-most button is the Show Result button which, when selected, displays the results in-line with the code:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-11

			4.5 Adding Rich Text Comments

			Rich text comments allow the code within a playground to be documented in a way that is easy to format and read. A single line of text can be marked as being rich text by preceding it with a //: marker. For example:

			//: This is a single line of documentation text

			Blocks of text can be added by wrapping the text in /*: and */ comment markers:

			/*:

			This is a block of documentation text that is intended

			to span multiple lines

			*/

			The rich text uses the Markup language and allows text to be formatted using a lightweight and easy-to-use syntax. A heading, for example, can be declared by prefixing the line with a ‘#’ character while text is displayed in italics when wrapped in ‘*’ characters. Bold text, on the other hand, involves wrapping the text in ‘**’ character sequences. It is also possible to configure bullet points by prefixing each line with a single ‘*’. Among the many other features of Markup is the ability to embed images and hyperlinks into the content of a rich text comment.

			To see rich text comments in action, enter the following markup content into the playground editor immediately after the print(“Welcome to Swift”) line of code:

			/*:

			# Welcome to Playgrounds

			This is your *first* playground which is intended to demonstrate:

			* The use of **Quick Look**

			* Placing results **in-line** with the code

			*/

			As the comment content is added it is said to be displayed in raw markup format. To display in rendered markup format, either select the Editor -> Show Rendered Markup menu option, or enable the Render Documentation option located under Playground Settings in the Inspector panel (marked A in Figure 4-2). If the Inspector panel is not currently visible, click on the button indicated by the right-most arrow in Figure 4-1 to display it. Once rendered, the above rich text should appear, as illustrated in Figure 4-12:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-12

			Detailed information about the Markup syntax can be found online at the following URL:

			https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

			4.6 Working with Playground Pages

			A playground can consist of multiple pages, with each page containing its own code, resources and, rich text comments. So far, the playground used in this chapter contains a single page. Add a page to the playground now by selecting the LearnSwift entry at the top of the Navigator panel, right-clicking, and selecting the New Playground Page menu option. If the Navigator panel is not currently visible, click the button indicated by the left-most arrow in Figure 4-1 above to display it. Note that two pages are now listed in the Navigator named “Untitled Page” and “Untitled Page 2”. Select and then click a second time on the “Untitled Page 2” entry so that the name becomes editable and change the name to SwiftUI Example as outlined in Figure 4-13:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-13

			Note that the newly added page has Markup links which, when clicked, navigate to the previous or next page in the playground.

			4.7 Working with SwiftUI and Live View in Playgrounds

			In addition to allowing you to experiment with the Swift programming language, playgrounds may also be used to work with SwiftUI. Not only does this allow SwiftUI views to be prototyped, but when combined with the playground live view feature, it is also possible to run and interact with those views.

			To try out SwiftUI and live view, begin by selecting the newly added SwiftUI Example page, deleting the current code lines, and modifying it to import both the SwiftUI and PlaygroundSupport frameworks:

			import SwiftUI

			import PlaygroundSupport

			The PlaygroundSupport module provides several useful features for playgrounds including the ability to present a live view within the playground timeline.

			Beneath the import statements, add the following code (rest assured, all of the techniques used in this example will be thoroughly explained in later chapters):

			struct ExampleView: View {

			

			 var body: some View {

			

			 VStack {

			 Rectangle()

			 .fill(Color.blue)

			 .frame(width: 200, height: 200)

			 Button(action: {

			 }) {

			 Text("Rotate")

			 }

			 }

			 .padding(10)

			 }

			}

			This declaration creates a custom SwiftUI view named ExampleView consisting of a blue Rectangle view and a Button, both contained within a vertical stack (VStack).

			The PlaygroundSupport module includes a class named PlaygroundPage which allows playground code to interact with the pages that make up a playground. This is achieved through a range of methods and properties of the class, one of which is the current property. This property, in turn, provides access to the current playground page. To execute the code within the playground, the liveView property of the current page needs to be set to our new container. To display the Live View panel, enable the Xcode Editor -> Live View menu option, as shown in Figure 4-14:

			[image: A screenshot of a cell phone

Description automatically generated]

			Figure 4-14

			Once the live view panel is visible, add the code to assign the container to the live view of the current page as follows:

			.

			.

			 VStack {

			 Rectangle()

			 .fill(Color.blue)

			 .frame(width: 200, height: 200)

			 Button(action: {

			 }) {

			 Text("Rotate")

			 }

			 }

			 .padding(10)

			 }

			}

			

			PlaygroundPage.current.setLiveView(ExampleView()

			 .padding(100))

			With the changes made, click on the run button to start the live view. After a short delay, the view should appear, as shown in Figure 4-15 below:

			[image:]

			Figure 4-15

			Since the button is not yet configured to do anything when clicked, it is difficult to see that the view is live. To see the live view in action, click on the stop button and modify the view declaration to rotate the blue square by 60° each time the button is clicked:

			import SwiftUI

			import PlaygroundSupport

			

			struct ExampleView: View {

			

			 @State private var rotation: Double = 0

			

			 var body: some View {

			

			 VStack {

			 Rectangle()

			 .fill(Color.blue)

			 .frame(width: 200, height: 200)

			 .rotationEffect(.degrees(rotation))

			 .animation(.linear(duration: 2), value: rotation)

			 Button(action: {

			 rotation = (rotation < 360 ? rotation + 60 : 0)

			 }) {

			 Text("Rotate")

			 }

			 }

			 .padding(10)

			 }

			}

			

			PlaygroundPage.current.setLiveView(ExampleView()

			 .padding(100))

			Click the run button to launch the view in the live view and note that the square rotates each time the button is clicked.

			[image:]

			Figure 4-16

			4.8 Summary

			This chapter has introduced the concept of playgrounds. Playgrounds provide an environment in which Swift code can be entered and the results of that code viewed dynamically. This provides an excellent environment both for learning the Swift programming language and for experimenting with many of the classes and APIs included in the iOS SDK without the need to create Xcode projects and repeatedly edit, compile and run code.

		

	
		
			5. Swift Data Types, Constants, and Variables

			If you are new to the Swift programming language then the next few chapters are recommended reading. Although SwiftUI makes the development of apps easier, it will still be necessary to learn Swift programming both to understand SwiftUI and develop fully functional apps.

			If, on the other hand, you are familiar with the Swift programming language you can skip the Swift specific chapters that follow (though if you are not familiar with implicit returns from single expressions, opaque return types and property wrappers you should at least read the sections and chapters relating to these features before moving on to the SwiftUI chapters).

			Prior to the introduction of iOS 8, the stipulated programming language for the development of iOS applications was Objective-C. When Apple announced iOS 8, however, the company also introduced an alternative to Objective-C in the form of the Swift programming language.

			Due entirely to the popularity of iOS, Objective-C had become one of the more widely used programming languages. With origins firmly rooted in the 40-year-old C Programming Language, however, and despite recent efforts to modernize some aspects of the language syntax, Objective-C was beginning to show its age.

			Swift, on the other hand, is a relatively new programming language designed specifically to make programming easier, faster and less prone to programmer error. Starting with a clean slate and no burden of legacy, Swift is a new and innovative language with which to develop applications for iOS, iPadOS, macOS, watchOS and tvOS with the advantage that much of the syntax will be familiar to those with experience of other programming languages.

			The next several chapters will provide an overview and introduction to Swift programming. The intention of these chapters is to provide enough information so that you can begin to confidently program using Swift. For an exhaustive and in-depth guide to all the features, intricacies and capabilities of Swift, some time spent reading Apple’s excellent book entitled “The Swift Programming Language” (available free of charge from within the Apple Books app) is strongly recommended.

			5.1 Using a Swift Playground

			Both this and the following few chapters are intended to introduce the basics of the Swift programming language. As outlined in the previous chapter, entitled “An Introduction to Xcode 16 Playgrounds” the best way to learn Swift is to experiment within a Swift playground environment. Before starting this chapter, therefore, create a new playground and use it to try out the code in both this and the other Swift introduction chapters that follow.

			5.2 Swift Data Types

			When we look at the different types of software that run on computer systems and mobile devices, from financial applications to graphics intensive games, it is easy to forget that computers are really just binary machines. Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks, resulting in faster performance than a 32-bit based system.

			Humans, of course, don’t think in binary. We work with decimal numbers, letters and words. In order for a human to easily (easily being a subjective term in this context) program a computer, some middle ground between human and computer thinking is needed. This is where programming languages such as Swift come into play. Programming languages allow humans to express instructions to a computer in terms and structures we understand, and then compile that down to a format that can be executed by a CPU.

			One of the fundamentals of any program involves data, and programming languages such as Swift define a set of data types that allow us to work with data in a format we understand when programming. For example, if we want to store a number in a Swift program, we could do so with syntax similar to the following:

			var mynumber = 10

			In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer in binary as:

			1010

			Now that we have a basic understanding of the concept of data types and why they are necessary we can take a closer look at some of the more commonly used data types supported by Swift.

			5.2.1 Integer Data Types

			Swift integer data types are used to store whole numbers (in other words a number with no decimal places). Integers can be signed (capable of storing positive, negative and zero values) or unsigned (positive and zero values only).

			Swift provides support for 8, 16, 32, 64, and 128-bit integers (represented by the Int8, Int16, Int32, Int64, and Int128 types respectively). The same variants are also available for unsigned integers (UInt8, UInt16, UInt32, UInt64, and UInt128).

			In general, Apple recommends using the Int data type rather than one of the above specifically sized data types. The Int data type will use the appropriate integer size for the platform on which the code is running.

			All integer data types contain bounds properties which can be accessed to identify the minimum and maximum supported values of that particular type. The following code, for example, outputs the minimum and maximum bounds for the 32-bit signed integer data type:

			print("Int32 Min = \(Int32.min) Int32 Max = \(Int32.max)")

			When executed, the above code will generate the following output:

			Int32 Min = -2147483648 Int32 Max = 2147483647

			5.2.2 Floating Point Data Types

			The Swift floating point data types are able to store values containing decimal places. For example, 4353.1223 would be stored in a floating-point data type. Swift provides two floating point data types in the form of Float and Double. Which type to use depends on the size of value to be stored and the level of precision required. The Double type can be used to store up to 64-bit floating point numbers with a level of precision of 15 decimal places or greater. The Float data type, on the other hand, is limited to 32-bit floating point numbers and offers a level of precision as low as 6 decimal places depending on the native platform on which the code is running. Alternatively, the Float16 type may be used to store 16-bit floating point values. Float16 provides greater performance at the expense of lower precision.

			5.2.3 Bool Data Type

			Swift, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions. Two Boolean constant values (true and false) are provided by Swift specifically for working with Boolean data types.

			5.2.4 Character Data Type

			The Swift Character data type is used to store a single character of rendered text such as a letter, numerical digit, punctuation mark or symbol. Internally characters in Swift are stored in the form of grapheme clusters. A grapheme cluster is made of two or more Unicode scalars that are combined to represent a single visible character.

			The following lines assign a variety of different characters to Character type variables:

			var myChar1 = "f"

			var myChar2 = ":"

			var myChar3 = "X"

			Characters may also be referenced using Unicode code points. The following example assigns the ‘X’ character to a variable using Unicode:

			var myChar4 = "\u{0058}"

			5.2.5 String Data Type

			The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing a storage mechanism, the String data type also includes a range of string manipulation features allowing strings to be searched, matched, concatenated and modified. Strings in Swift are represented internally as collections of characters (where a character is, as previously discussed, comprised of one or more Unicode scalar values).

			Strings can also be constructed using combinations of strings, variables, constants, expressions, and function calls using a concept referred to as string interpolation. For example, the following code creates a new string from a variety of different sources using string interpolation before outputting it to the console:

			var userName = "John"

			var inboxCount = 25

			let maxCount = 100

			

			var message = "\(userName) has \(inboxCount) messages. Message capacity remaining is \(maxCount - inboxCount) messages."

			

			print(message)

			When executed, the code will output the following message:

			John has 25 messages. Message capacity remaining is 75 messages.

			A multiline string literal may be declared by encapsulating the string within triple quotes as follows:

			var multiline = """

			

			 The console glowed with flashing warnings.

			 Clearly time was running out.

			

			 "I thought you said you knew how to fly this!" yelled Mary.

			

			 "It was much easier on the simulator" replied her brother,

			 trying to keep the panic out of his voice.

			

			"""

			

			print(multiline)

			The above code will generate the following output when run:

			 The console glowed with flashing warnings.

			 Clearly time was running out.

			

			 "I thought you said you knew how to fly this!" yelled Mary.

			

			 "It was much easier on the simulator" replied her brother,

			 trying to keep the panic out of his voice.

			The amount by which each line is indented within a multiline literal is calculated as the number of characters by which the line is indented minus the number of characters by which the closing triple quote line is indented. If, for example, the fourth line in the above example had a 10-character indentation and the closing triple quote was indented by 5 characters, the actual indentation of the fourth line within the string would be 5 characters. This allows multiline literals to be formatted tidily within Swift code while still allowing control over the indentation of individual lines.

			5.2.6 Special Characters/Escape Sequences

			In addition to the standard set of characters outlined above, there is also a range of special characters (also referred to as escape sequences) available for specifying items such as a new line, tab or a specific Unicode value within a string. These special characters are identified by prefixing the character with a backslash (a concept referred to as escaping). For example, the following assigns a new line to the variable named newline:

			var newline = "\n"

			In essence, any character that is preceded by a backslash is considered to be a special character and is treated accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved by escaping the backslash itself:

			var backslash = "\\"

			Commonly used special characters supported by Swift are as follows:

			•\n - New line

			•\r - Carriage return

			•\t - Horizontal tab

			•\\ - Backslash

			•\” - Double quote (used when placing a double quote into a string declaration)

			•\’ - Single quote (used when placing a single quote into a string declaration)

			•\u{nn} – Single byte Unicode scalar where nn is replaced by two hexadecimal digits representing the Unicode character.

			•\u{nnnn} – Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the Unicode character.

			•\u{nnnnnnnn} – Four-byte Unicode scalar where nnnnnnnn is replaced by eight hexadecimal digits representing the Unicode character.

			5.3 Swift Variables

			Variables are essentially locations in computer memory reserved for storing the data used by an application. Each variable is given a name by the programmer and assigned a value. The name assigned to the variable may then be used in the Swift code to access the value assigned to that variable. This access can involve either reading the value of the variable or changing the value. It is, of course, the ability to change the value of variables, which gives them the name variable.

			5.4 Swift Constants

			A constant is like a variable in that it provides a named location in memory to store a data value. Constants differ in one significant way in that once a value has been assigned to a constant it cannot subsequently be changed.

			Constants are particularly useful if a value is used repeatedly throughout the application code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a constant which is then referenced in the code. For example, it might not be clear to someone reading your Swift code why you used the value 5 in an expression. If, instead of the value 5, you use a constant named interestRate the purpose of the value becomes much clearer. Constants also have the advantage that if the programmer needs to change a widely used value, it only needs to be changed once in the constant declaration and not each time it is referenced.

			As with variables, constants have a type, a name and a value. Unlike variables, however, once a value has been assigned to a constant, that value cannot subsequently be changed.

			5.5 Declaring Constants and Variables

			Variables are declared using the var keyword and may be initialized with a value at creation time. If the variable is declared without an initial value, it must be declared as being optional (a topic that will be covered later in this chapter). The following, for example, is a typical variable declaration:

			var userCount = 10

			Constants are declared using the let keyword.

			let maxUserCount = 20

			A constant can be declared without an initial value, but the declaration must specify the type and be initialized before it is used:

			let userName: String

			userName = "Juliette Nichols"

			print(userName)

			For greater code efficiency and execution performance, Apple recommends using constants rather than variables whenever possible.

			5.6 Type Annotations and Type Inference

			Swift is categorized as a type safe programming language. This essentially means that once the data type of a variable has been identified, that variable cannot subsequently be used to store data of any other type without inducing a compilation error. This contrasts to loosely typed programming languages where a variable, once declared, can subsequently be used to store other data types.

			There are two ways in which the type of a constant or variable will be identified. One approach is to use a type annotation at the point the variable or constant is declared in the code. This is achieved by placing a colon after the constant or variable name followed by the type declaration. The following line of code, for example, declares a variable named userCount as being of type Int:

			var userCount: Int = 10

			In the absence of a type annotation in a declaration, the Swift compiler uses a technique referred to as type inference to identify the type of the constant or variable. When relying on type inference, the compiler looks to see what type of value is being assigned to the constant or variable at the point that it is initialized and uses that as the type. Consider, for example, the following variable and constant declarations:

			var signalStrength = 2.231

			let companyName = "My Company"

			During compilation of the above lines of code, Swift will infer that the signalStrength variable is of type Double (type inference in Swift defaults to Double for all floating-point numbers) and that the companyName constant is of type String.

			When a constant is declared without a type annotation it must be assigned a value at the point of declaration:

			let bookTitle = "iOS 18 App Development Essentials"

			If a type annotation is used when the constant is declared, however, the value can be assigned later in the code. For example:

			let bookTitle: String

			.

			.

			if iosBookType {

			 bookTitle = "iOS 18 App Development Essentials"

			} else {

			 bookTitle = "Android Studio Development Essentials"

			}

			It is important to note that a value may only be assigned to a constant once. A second attempt to assign a value to a constant will result in a syntax error.

			5.7 The Swift Tuple

			Before proceeding, now is a good time to introduce the Swift tuple. The tuple is perhaps one of the simplest, yet most powerful features of the Swift programming language. A tuple is, quite simply, a way to temporarily group together multiple values into a single entity. The items stored in a tuple can be of any type and there are no restrictions requiring that those values all be of the same type. A tuple could, for example, be constructed to contain an Int value, a Double value and a String as follows:

			let myTuple = (10, 432.433, "This is a String")

			The elements of a tuple can be accessed using a number of different techniques. A specific tuple value can be accessed simply by referencing the index position (with the first value being at index position 0). The code below, for example, extracts the string resource (at index position 2 in the tuple) and assigns it to a new string variable:

			let myTuple = (10, 432.433, "This is a String")

			let myString = myTuple.2

			print(myString)

			Alternatively, all the values in a tuple may be extracted and assigned to variables or constants in a single statement:

			let (myInt, myFloat, myString) = myTuple

			This same technique can be used to extract selected values from a tuple while ignoring others by replacing the values to be ignored with an underscore character. The following code fragment extracts the integer and string values from the tuple and assigns them to variables, but ignores the floating-point value:

			var (myInt, _, myString) = myTuple

			When creating a tuple, it is also possible to assign a name to each value:

			let myTuple = (count: 10, length: 432.433, message: "This is a String")

			The names assigned to the values stored in a tuple may then be used to reference those values in code. For example, to output the message string value from the myTuple instance, the following line of code could be used:

			print(myTuple.message)

			Perhaps the most powerful use of tuples is, as will be seen in later chapters, the ability to return multiple values from a function.

			5.8 The Swift Optional Type

			The Swift optional data type is a new concept that does not exist in most other programming languages. The purpose of the optional type is to provide a safe and consistent approach to handling situations where a variable or constant may not have any value assigned to it.

			Variables are declared as being optional by placing a ? character after the type declaration. The following code declares an optional Int variable named index:

			var index: Int?

			The variable index can now either have an integer value assigned to it or have nothing assigned to it. Behind the scenes, and as far as the compiler and runtime are concerned, an optional with no value assigned to it actually has a value of nil.

			An optional can easily be tested (typically using an if statement) to identify whether it has a value assigned to it as follows:

			var index: Int?

			

			if index != nil {

			 // index variable has a value assigned to it

			} else {

			 // index variable has no value assigned to it

			}

			If an optional has a value assigned to it, that value is said to be “wrapped” within the optional. The value wrapped in an optional may be accessed using a concept referred to as forced unwrapping. This simply means that the underlying value is extracted from the optional data type, a procedure that is performed by placing an exclamation mark (!) after the optional name.

			To explore this concept of unwrapping optional types in more detail, consider the following code:

			var index: Int?

			

			index = 3

			

			var treeArray = ["Oak", "Pine", "Yew", "Birch"]

			

			if index != nil {

			 print(treeArray[index!])

			} else {

			 print("index does not contain a value")

			}

			The code simply uses an optional variable to hold the index into an array of strings representing the names of tree species (Swift arrays will be covered in more detail in the chapter entitled “Working with Array and Dictionary Collections in Swift”). If the index optional variable has a value assigned to it, the tree name at that location in the array is printed to the console. Since the index is an optional type, the value has been unwrapped by placing an exclamation mark after the variable name:

			print(treeArray[index!])

			Had the index not been unwrapped (in other words the exclamation mark omitted from the above line), the compiler would have issued an error similar to the following:

			Value of optional type ‘Int?’ must be unwrapped to a value of type ‘Int’

			As an alternative to forced unwrapping, the value assigned to an optional may be allocated to a temporary variable or constant using optional binding, the syntax for which is as follows:

			if let constantname = optionalName {

			

			}

			

			if var variablename = optionalName {

			

			}

			The above constructs perform two tasks. In the first instance, the statement ascertains whether the designated optional contains a value. Second, in the event that the optional has a value, that value is assigned to the declared constant or variable and the code within the body of the statement is executed. The previous forced unwrapping example could, therefore, be modified as follows to use optional binding instead:

			var index: Int?

			

			index = 3

			

			var treeArray = ["Oak", "Pine", "Yew", "Birch"]

			

			if let myvalue = index {

			 print(treeArray[myvalue])

			} else {

			 print("index does not contain a value")

			}

			In this case the value assigned to the index variable is unwrapped and assigned to a temporary (also referred to as shadow) constant named myvalue which is then used as the index reference into the array. Note that the myvalue constant is described as temporary since it is only available within the scope of the if statement. Once the if statement completes execution, the constant will no longer exist. For this reason, there is no conflict in using the same temporary name as that assigned to the optional. The following is, for example, valid code:

			.

			.

			if let index = index {

			 print(treeArray[index])

			} else {

			.

			.

			When considering the above example, the use of the temporary value begins to seem redundant. Fortunately, the Swift development team arrived at the same conclusion and introduced the following shorthand if-let syntax in Swift 5.7:

			var index: Int?

			

			index = 3

			

			var treeArray = ["Oak", "Pine", "Yew", "Birch"]

			

			if let index {

			 print(treeArray[index])

			} else {

			 print("index does not contain a value")

			}

			Using this approach it is no longer necessary to assign the optional to a temporary value.

			Optional binding may also be used to unwrap multiple optionals and include a Boolean test condition, the syntax for which is as follows:

			if let constname1 = optName1, let constname2 = optName2,

			 let optName3 = …, <boolean statement> {

			

			}

			The shorthand if-let syntax is also available when working with multiple optionals and test conditions avoiding the need to use temporary values:

			if let constname1, let constname2,

			 let optName3, ... <boolean statement> {

			

			}

			The following code, for example, uses shorthand optional binding to unwrap two optionals within a single statement:

			var pet1: String?

			var pet2: String?

			

			pet1 = "cat"

			pet2 = "dog"

			

			if let pet1, let pet2 {

			 print(pet1)

			 print(pet2)

			} else {

			 print("insufficient pets")

			}

			The code fragment below, on the other hand, also makes use of the Boolean test clause condition:

			if let pet1, let pet2, petCount > 1 {

			 print(pet1)

			 print(pet2)

			} else {

			 print("insufficient pets")

			}

			In the above example, the optional binding will not be attempted unless the value assigned to petCount is greater than 1.

			It is also possible to declare an optional as being implicitly unwrapped. When an optional is declared in this way, the underlying value can be accessed without having to perform forced unwrapping or optional binding. An optional is declared as being implicitly unwrapped by replacing the question mark (?) with an exclamation mark (!) in the declaration. For example:

			var index: Int! // Optional is now implicitly unwrapped

			

			index = 3

			

			var treeArray = ["Oak", "Pine", "Yew", "Birch"]

			

			if index != nil {

			 print(treeArray[index])

			} else {

			 print("index does not contain a value")

			}

			With the index optional variable now declared as being implicitly unwrapped, it is no longer necessary to unwrap the value when it is used as an index into the array in the above print call.

			One final observation with regard to optionals in Swift is that only optional types are able to have no value or a value of nil assigned to them. In Swift it is not, therefore, possible to assign a nil value to a non-optional variable or constant. The following declarations, for instance, will all result in errors from the compiler since none of the variables are declared as optional:

			var myInt = nil // Invalid code

			var myString: String = nil // Invalid Code

			let myConstant = nil // Invalid code

			5.9 Type Casting and Type Checking

			When writing Swift code, situations will occur where the compiler is unable to identify the specific type of a value. This is often the case when a value of ambiguous or unexpected type is returned from a method or function call. In this situation it may be necessary to let the compiler know the type of value that your code is expecting or requires using the as keyword (a concept referred to as type casting).

			The following code, for example, lets the compiler know that the value returned from the object(forKey:) method needs to be treated as a String type:

			let myValue = record.object(forKey: "comment") as! String

			In fact, there are two types of casting which are referred to as upcasting and downcasting. Upcasting occurs when an object of a particular class is cast to one of its superclasses. Upcasting is performed using the as keyword and is also referred to as guaranteed conversion since the compiler can tell from the code that the cast will be successful. The UIButton class, for example, is a subclass of the UIControl class, as shown in the fragment of the UIKit class hierarchy shown in Figure 5-1:

			[image: A picture containing drawing Description automatically generated]

			Figure 5-1

			Since UIButton is a subclass of UIControl, the object can be safely upcast as follows:

			let myButton: UIButton = UIButton()

			

			let myControl = myButton as UIControl

			Downcasting, on the other hand, occurs when a conversion is made from one class to another where there is no guarantee that the cast can be made safely or that an invalid casting attempt will be caught by the compiler. When an invalid cast is made in downcasting and not identified by the compiler it will most likely lead to an error at runtime.

			Downcasting usually involves converting from a class to one of its subclasses. Downcasting is performed using the as! keyword syntax and is also referred to as forced conversion. Consider, for example, the UIKit UIScrollView class which has as subclasses both the UITableView and UITextView classes, as shown in Figure 5-2:

			[image: A picture containing drawing Description automatically generated]

			Figure 5-2

			In order to convert a UIScrollView object to a UITextView class a downcast operation needs to be performed. The following code attempts to downcast a UIScrollView object to UITextView using the guaranteed conversion or upcast approach:

			let myScrollView: UIScrollView = UIScrollView()

			

			let myTextView = myScrollView as UITextView

			The above code will result in the following error:

			‘UIScrollView’ is not convertible to ‘UITextView’

			The compiler is indicating that a UIScrollView instance cannot be safely converted to a UITextView class instance. This does not necessarily mean that it is incorrect to do so, the compiler is simply stating that it cannot guarantee the safety of the conversion for you. The downcast conversion could instead be forced using the as! annotation:

			let myTextView = myScrollView as! UITextView

			Now the code will compile without an error. As an example of the dangers of downcasting, however, the above code will crash on execution stating that UIScrollView cannot be cast to UITextView. Forced downcasting should, therefore, be used with caution.

			A safer approach to downcasting is to perform an optional binding using as?. If the conversion is performed successfully, an optional value of the specified type is returned, otherwise the optional value will be nil:

			if let myTextView = myScrollView as? UITextView {

			 print("Type cast to UITextView succeeded")

			} else {

			 print("Type cast to UITextView failed")

			}

			It is also possible to type check a value using the is keyword. The following code, for example, checks that a specific object is an instance of a class named MyClass:

			if myobject is MyClass {

			 // myobject is an instance of MyClass

			}

			5.10 Take the Knowledge Test

			
				
					
					
					
				
				
					
							
							
								
									[image:]
								

							

						
							
							Click the link below or scan the QR code to test your knowledge and understanding of Swift data types:

							https://www.answertopia.com/q6c8

						
							
							
								
									[image:]
								

							

						
					

				
			

			5.11 Summary

			This chapter has begun the introduction to Swift by exploring data types together with an overview of how to declare constants and variables. The chapter has also introduced concepts such as type safety, type inference and optionals, each of which is an integral part of Swift programming, and designed specifically to make code writing less prone to error.

		

	

		
			6. Swift Operators and Expressions

			So far we have looked at using variables and constants in Swift and also described the different data types. Being able to create variables, however, is only part of the story. The next step is to learn how to use these variables and constants in Swift code. The primary method for working with data is in the form of expressions.

			6.1 Expression Syntax in Swift

			The most basic Swift expression consists of an operator, two operands and an assignment. The following is an example of an expression:

			var myresult = 1 + 2

			In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=) subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily been variables (or a mixture of constants and variables) instead of the actual numerical values used in the example.

			In the remainder of this chapter we will look at the basic types of operators available in Swift.

			6.2 The Basic Assignment Operator

			We have already looked at the most basic of assignment operators, the = operator. This assignment operator simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands. The left-hand operand is the variable or constant to which a value is to be assigned and the right-hand operand is the value to be assigned. The right-hand operand is, more often than not, an expression that performs some type of arithmetic or logical evaluation, the result of which will be assigned to the variable or constant. The following examples are all valid uses of the assignment operator:

			var x: Int? // Declare an optional Int variable

			var y = 10 // Declare and initialize a second Int variable

			

			x = 10 // Assign a value to x

			x = x! + y // Assign the result of x + y to x

			x = y // Assign the value of y to x

			6.3 Swift Arithmetic Operators

			Swift provides a range of operators for the purpose of creating mathematical expressions. These operators primarily fall into the category of binary operators in that they take two operands. The exception is the unary negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:

			var x = -10 // Unary - operator used to assign -10 to variable x

			x = x - 5 // Subtraction operator. Subtracts 5 from x

			The following table lists the primary Swift arithmetic operators:

			
				
					
					
				
				
					
							
							Operator

						
							
							Description

						
					

					
							
							-(unary)

						
							
							Negates the value of a variable or expression

						
					

					
							
							*

						
							
							Multiplication

						
					

					
							
							/

						
							
							Division

						
					

					
							
							+

						
							
							Addition

						
					

					
							
							-

						
							
							Subtraction

						
					

					
							
							%

						
							
							Remainder/Modulo

						
					

				
			

			Table 6-1

			Note that multiple operators may be used in a single expression.

			For example:

			x = y * 10 + z - 5 / 4

			6.4 Compound Assignment Operators

			In an earlier section we looked at the basic assignment operator (=). Swift provides a number of operators designed to combine an assignment with a mathematical or logical operation. These are primarily of use when performing an evaluation where the result is to be stored in one of the operands. For example, one might write an expression as follows:

			x = x + y

			The above expression adds the value contained in variable x to the value contained in variable y and stores the result in variable x. This can be simplified using the addition compound assignment operator:

			x += y

			The above expression performs exactly the same task as x = x + y but saves the programmer some typing.

			Numerous compound assignment operators are available in Swift, the most frequently used of which are outlined in the following table:

			
				
					
					
				
				
					
							
							Operator

						
							
							Description

						
					

					
							
							x += y

						
							
							Add x to y and place result in x

						
					

					
							
							x -= y

						
							
							Subtract y from x and place result in x

						
					

					
							
							x *= y

						
							
							Multiply x by y and place result in x

						
					

					
							
							x /= y

						
							
							Divide x by y and place result in x

						
					

					
							
							x %= y

						
							
							Perform Modulo on x and y and place result in x

						
					

				
			

			Table 6-2

			6.5 Comparison Operators

			Swift also includes a set of logical operators useful for performing comparisons. These operators all return a Boolean result depending on the result of the comparison. These operators are binary operators in that they work with two operands.

			Comparison operators are most frequently used in constructing program flow control logic. For example, an if statement may be constructed based on whether one value matches another:

			if x == y {

			 // Perform task

			}

			The result of a comparison may also be stored in a Bool variable. For example, the following code will result in a true value being stored in the variable result:

			var result: Bool?

			var x = 10

			var y = 20

			

			result = x < y

			Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full set of Swift comparison operators:

			
				
					
					
				
				
					
							
							Operator

						
							
							Description

						
					

					
							
							x == y

						
							
							Returns true if x is equal to y

						
					

					
							
							x > y

						
							
							Returns true if x is greater than y

						
					

					
							
							x >= y

						
							
							Returns true if x is greater than or equal to y

						
					

					
							
							x < y

						
							
							Returns true if x is less than y

						
					

					
							
							x <= y

						
							
							Returns true if x is less than or equal to y

						
					

					
							
							x != y

						
							
							Returns true if x is not equal to y

						
					

				
			

			Table 6-3

			6.6 Boolean Logical Operators

			Swift also provides a set of so-called logical operators designed to return Boolean true or false values. These operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!), AND (&&) and OR (||).

			The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value to false:

			var flag = true // variable is true

			var secondFlag = !flag // secondFlag set to false

			The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For example, the following code evaluates to true because at least one of the expressions either side of the OR operator is true:

			if (10 < 20) || (20 < 10) {

			 print("Expression is true")

			}

			The AND (&&) operator returns true only if both operands evaluate to be true. The following example will return false because only one of the two operand expressions evaluates to true:

			if (10 < 20) && (20 < 10) {

			 print("Expression is true")

			}

			6.7 Range Operators

			Swift includes several useful operators that allow ranges of values to be declared. As will be seen in later chapters, these operators are invaluable when working with looping in program logic.

			The syntax for the closed range operator is as follows:

			x…y

			This operator represents the range of numbers starting at x and ending at y where both x and y are included within the range. The range operator 5…8, for example, specifies the numbers 5, 6, 7 and 8.

			The half-open range operator, on the other hand uses the following syntax:

			x..<y

			In this instance, the operator encompasses all the numbers from x up to, but not including, y. A half-closed range operator 5..<8, therefore, specifies the numbers 5, 6 and 7.

			Finally, the one-sided range operator specifies a range that can extend as far as possible in a specified range direction until the natural beginning or end of the range is reached (or until some other condition is met). A one-sided range is declared by omitting the number from one side of the range declaration, for example:

			x…

			or

			…y

			The previous chapter, for example, explained that a String in Swift is actually a collection of individual characters. A range to specify the characters in a string starting with the character at position 2 through to the last character in the string (regardless of string length) would be declared as follows:

			2…

			Similarly, to specify a range that begins with the first character and ends with the character at position 6, the range would be specified as follows:

			…6

			6.8 The Ternary Operator

			Swift supports the ternary operator to provide a shortcut way of making decisions within code. The syntax of the ternary operator (also known as the conditional operator) is as follows:

			condition ? true expression : false expression

			The way the ternary operator works is that condition is replaced with an expression that will return either true or false. If the result is true then the expression that replaces the true expression is evaluated. Conversely, if the result was false then the false expression is evaluated. Let’s see this in action:

			let x = 10

			let y = 20

			

			print("Largest number is \(x > y ? x : y)")

			The above code example will evaluate whether x is greater than y. Clearly this will evaluate to false resulting in y being returned to the print call for display to the user:

			Largest number is 20

			6.9 Nil Coalescing Operator

			The nil coalescing operator (??) allows a default value to be used in the event that an optional has a nil value. The following example will output text which reads “Welcome back, customer” because the customerName optional is set to nil:

			let customerName: String? = nil

			print("Welcome back, \(customerName ?? "customer")")

			If, on the other hand, customerName is not nil, the optional will be unwrapped and the assigned value displayed:

			let customerName: String? = "John"

			print("Welcome back, \(customerName ?? "customer")")

			On execution, the print statement output will now read “Welcome back, John”.

			6.10 Bitwise Operators

			As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros, each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we, as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Swift provides a range of bit operators.

			Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find nothing new in this area of the Swift language syntax. For those unfamiliar with binary numbers, now may be a good time to seek out reference materials on the subject in order to understand how ones and zeros are formed into bytes to form numbers. Other authors have done a much better job of describing the subject than we can do within the scope of this book.

			For the purposes of this exercise we will be working with the binary representation of two numbers (for the sake of brevity we will be using 8-bit values in the following examples). First, the decimal number 171 is represented in binary as:

			10101011

			Second, the number 3 is represented by the following binary sequence:

			00000011

			Now that we have two binary numbers with which to work, we can begin to look at the Swift bitwise operators:

			6.10.1 Bitwise NOT

			The Bitwise NOT is represented by the tilde (~) character and has the effect of inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros. Taking our example 3 number, a Bitwise NOT operation has the following result:

			00000011 NOT

			========

			11111100

			The following Swift code, therefore, results in a value of -4:

			let y = 3

			let z = ~y

			

			print("Result is \(z)")

			6.10.2 Bitwise AND

			The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two numbers. Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result. Taking our two example numbers, this would appear as follows:

			10101011 AND

			00000011

			========

			00000011

			As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in Swift code, therefore, we should find that the result is 3 (00000011):

			let x = 171

			let y = 3

			let z = x & y

			

			print("Result is \(z)")

			6.10.3 Bitwise OR

			The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the OR places a 1 in the result if there is a 1 in the first or second operand. The operator is represented by a single vertical bar character (|). Using our example numbers, the result will be as follows:

			10101011 OR

			00000011

			========

			10101011

			If we perform this operation in a Swift example the result will be 171:

			let x = 171

			let y = 3

			let z = x | y

			

			print("Result is \(z)")

			6.10.4 Bitwise XOR

			The bitwise XOR (commonly referred to as exclusive OR and represented by the caret ‘^’ character) performs a similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For example:

			10101011 XOR

			00000011

			========

			10101000

			The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some Swift code:

			let x = 171

			let y = 3

			let z = x ^ y

			

			print("Result is \(z)")

			6.10.5 Bitwise Left Shift

			The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an integer one position to the left has the effect of doubling the value.

			As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high order bits are discarded:

			10101011 Left Shift one bit

			========

			101010110

			In Swift the bitwise left shift operator is represented by the ‘<<’ sequence, followed by the number of bit positions to be shifted. For example, to shift left by 1 bit:

			let x = 171

			let z = x << 1

			

			print("Result is \(z)")

			When compiled and executed, the above code will display a message stating that the result is 342 which, when converted to binary, equates to 101010110.

			6.10.6 Bitwise Right Shift

			A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite direction. Shifting an integer one position to the right has the effect of halving the value.

			Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the data type used to contain the result. As a result, the low order bits are discarded. Whether or not the vacated high order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and negative numbers is set or not.

			10101011 Right Shift one bit

			========

			01010101

			The bitwise right shift is represented by the ‘>>’ character sequence followed by the shift count:

			let x = 171

			let z = x >> 1

			

			print("Result is \(z)")

			When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

			6.11 Compound Bitwise Operators

			As with the arithmetic operators, each bitwise operator has a corresponding compound operator that allows the operation and assignment to be performed using a single operator:

			
				
					
					
				
				
					
							
							Operator

						
							
							Description

						
					

					
							
							x &= y

						
							
							Perform a bitwise AND of x and y and assign result to x

						
					

					
							
							x |= y

						
							
							Perform a bitwise OR of x and y and assign result to x

						
					

					
							
							x ^= y

						
							
							Perform a bitwise XOR of x and y and assign result to x

						
					

					
							
							x <<= n

						
							
							Shift x left by n places and assign result to x

						
					

					
							
							x >>= n

						
							
							Shift x right by n places and assign result to x

						
					

				
			

			Table 6-4

			6.12 Take the Knowledge Test

			
				
					
					
					
				
				
					
							
							
								
									[image:]
								

							

						
							
							Click the link below or scan the QR code to test your knowledge and understanding of Swift operators and expressions:

							https://www.answertopia.com/jgce

						
							
							
								
									[image:]
								

							

						
					

				
			

			6.13 Summary

			Operators and expressions provide the underlying mechanism by which variables and constants are manipulated and evaluated within Swift code. This can take the simplest of forms whereby two numbers are added using the addition operator in an expression and the result stored in a variable using the assignment operator. Operators fall into a range of categories, details of which have been covered in this chapter.

		

	
		
			7. Swift Control Flow

			Regardless of the programming language used, application development is largely an exercise in applying logic, and much of the art of programming involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets executed, how many times it is executed and, conversely, which code gets by-passed when the program is executing. This is often referred to as control flow since it controls the flow of program execution. Control flow typically falls into the categories of looping control (how often code is executed) and conditional control flow (whether code is executed). This chapter will provide an introductory overview of both types of control flow in Swift.

			7.1 Looping Control Flow

			This chapter will begin by looking at control flow in the form of loops. Loops are essentially sequences of Swift statements that are to be executed repeatedly until a specified condition is met. The first looping statement we will explore is the for-in loop.

			7.2 The Swift for-in Statement

			The for-in loop is used to iterate over a sequence of items contained in a collection or number range and provides a simple-to-use looping option.

			The syntax of the for-in loop is as follows:

			for constant name in collection or range {

			 // code to be executed

			}

			In this syntax, constant name is the name to be used for a constant that will contain the current item from the collection or range through which the loop is iterating. The code in the body of the loop will typically use this constant name as a reference to the current item in the loop cycle. The collection or range references the item through which the loop is iterating. This could, for example, be an array of string values, a range operator or even a string of characters (the topic of collections will be covered in greater detail within the chapter entitled “Working with Array and Dictionary Collections in Swift”).

			Consider, for example, the following for-in loop construct:

			for index in 1...5 {

			 print("Value of index is \(index)")

			}

			The loop begins by stating that the current item is to be assigned to a constant named index. The statement then declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at 1 and ending at 5. The body of the loop simply prints out a message to the console panel indicating the current value assigned to the index constant, resulting in the following output:

			Value of index is 1

			Value of index is 2

			Value of index is 3

			Value of index is 4

			Value of index is 5

			As will be demonstrated in the “Working with Array and Dictionary Collections in Swift” chapter of this book, the for-in loop is of particular benefit when working with collections such as arrays and dictionaries.

			The declaration of a constant name in which to store a reference to the current item is not mandatory. In the event that a reference to the current item is not required in the body of the for loop, the constant name in the for loop declaration can be replaced by an underscore character. For example:

			var count = 0

			

			for _ in 1...5 {

			 // No reference to the current value is required.

			 count += 1

			}

			7.2.1 The while Loop

			The Swift for loop described previously works well when it is known in advance how many times a particular task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to meet that criterion. To address this need, Swift provides the while loop.

			Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is defined as follows:

			while condition {

			 // Swift statements go here

			}

			In the above syntax, condition is an expression that will return either true or false and the // Swift statements go here comment represents the code to be executed while the condition expression is true. For example:

			var myCount = 0

			

			while myCount < 100 {

			 myCount += 1

			}

			In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

			If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is greater than 100, at which point the loop exits.

			7.3 The repeat ... while loop

			The repeat … while loop replaces the Swift 1.x do .. while loop. It is often helpful to think of the repeat ... while loop as an inverted while loop. The while loop evaluates an expression before executing the code contained in the body of the loop. If the expression evaluates to false on the first check then the code is not executed. The repeat ... while loop, on the other hand, is provided for situations where you know that the code contained in the body of the loop will always need to be executed at least once. For example, you may want to keep stepping through the items in an array until a specific item is found. You know that you have to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the repeat ... while loop is as follows:

			repeat {

			 // Swift statements here

			} while conditional expression

			In the repeat ... while example below the loop will continue until the value of a variable named i equals 0:

			var i = 10

			

			repeat {

			 i -= 1

			} while (i > 0)

			7.4 Breaking from Loops

			Having created a loop, it is possible that under certain conditions you might want to break out of the loop before the completion criteria have been met (particularly if you have created an infinite loop). One such example might involve continually checking for activity on a network socket. Once activity has been detected it will most likely be necessary to break out of the monitoring loop and perform some other task.

			For the purpose of breaking out of a loop, Swift provides the break statement which breaks out of the current loop and resumes execution at the code directly after the loop. For example:

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/xcode_12_playground_enable_live_preview.png

OEBPS/image/xcode_playground_run_button.png

OEBPS/image/swift_data_types.png

OEBPS/image/xcode_playground_quick_look_button.png

OEBPS/image/answertopia_checkmark.png

OEBPS/image/Image17371.png

OEBPS/image/xcode_playground_new_page.png

OEBPS/image/xcode_13_add_certificates.png

OEBPS/image/xcode_13_account_settings.png

OEBPS/image/swiftui_playground_rotated.png

OEBPS/toc.xhtml

		
		Contents

			
						1. Start Here
					
								1.1 For Swift Programmers

								1.2 For Non-Swift Programmers

								1.3 Source Code Download

								1.4 Feedback

								1.5 Errata

								1.6 Take the Knowledge Tests

					

				

						2. Joining the Apple Developer Program
					
								2.1 Downloading Xcode 16 and the iOS 18 SDK

								2.2 Apple Developer Program

								2.3 When to Enroll in the Apple Developer Program?

								2.4 Enrolling in the Apple Developer Program

								2.5 Summary

					

				

						3. Installing Xcode 16 and the iOS 18 SDK
					
								3.1 Identifying Your macOS Version

								3.2 Installing Xcode 16 and the iOS 18 SDK

								3.3 Starting Xcode

								3.4 Adding Your Apple ID to the Xcode Preferences

								3.5 Developer and Distribution Signing Identities

								3.6 Summary

					

				

						4. An Introduction to Xcode 16 Playgrounds
					
								4.1 What is a Playground?

								4.2 Creating a New Playground

								4.3 A Swift Playground Example

								4.4 Viewing Results

								4.5 Adding Rich Text Comments

								4.6 Working with Playground Pages

								4.7 Working with SwiftUI and Live View in Playgrounds

								4.8 Summary

					

				

						5. Swift Data Types, Constants, and Variables
					
								5.1 Using a Swift Playground

								5.2 Swift Data Types
							
										5.2.1 Integer Data Types

										5.2.2 Floating Point Data Types

										5.2.3 Bool Data Type

										5.2.4 Character Data Type

										5.2.5 String Data Type

										5.2.6 Special Characters/Escape Sequences

							

						

								5.3 Swift Variables

								5.4 Swift Constants

								5.5 Declaring Constants and Variables

								5.6 Type Annotations and Type Inference

								5.7 The Swift Tuple

								5.8 The Swift Optional Type

								5.9 Type Casting and Type Checking

								5.10 Take the Knowledge Test

								5.11 Summary

					

				

						6. Swift Operators and Expressions
					
								6.1 Expression Syntax in Swift

								6.2 The Basic Assignment Operator

								6.3 Swift Arithmetic Operators

								6.4 Compound Assignment Operators

								6.5 Comparison Operators

								6.6 Boolean Logical Operators

								6.7 Range Operators

								6.8 The Ternary Operator

								6.9 Nil Coalescing Operator

								6.10 Bitwise Operators
							
										6.10.1 Bitwise NOT

										6.10.2 Bitwise AND

										6.10.3 Bitwise OR

										6.10.4 Bitwise XOR

										6.10.5 Bitwise Left Shift

										6.10.6 Bitwise Right Shift

							

						

								6.11 Compound Bitwise Operators

								6.12 Take the Knowledge Test

								6.13 Summary

					

				

						7. Swift Control Flow
					
								7.1 Looping Control Flow

								7.2 The Swift for-in Statement
							
										7.2.1 The while Loop

							

						

								7.3 The repeat ... while loop

								7.4 Breaking from Loops

								7.5 The continue Statement

								7.6 Conditional Control Flow

								7.7 Using the if Statement

								7.8 Using if ... else … Statements

								7.9 Using if ... else if ... Statements

								7.10 The guard Statement

								7.11 Take the Knowledge Test

								7.12 Summary

					

				

						8. The Swift Switch Statement
					
								8.1 Why Use a switch Statement?

								8.2 Using the switch Statement Syntax

								8.3 A Swift switch Statement Example

								8.4 Combining case Statements

								8.5 Range Matching in a switch Statement

								8.6 Using the where statement

								8.7 Fallthrough

								8.8 Take the Knowledge Test

								8.9 Summary

					

				

						9. Swift Functions, Methods, and Closures
					
								9.1 What is a Function?

								9.2 What is a Method?

								9.3 How to Declare a Swift Function

								9.4 Implicit Returns from Single Expressions

								9.5 Calling a Swift Function

								9.6 Handling Return Values

								9.7 Local and External Parameter Names

								9.8 Declaring Default Function Parameters

								9.9 Returning Multiple Results from a Function

								9.10 Variable Numbers of Function Parameters

								9.11 Parameters as Variables

								9.12 Working with In-Out Parameters

								9.13 Functions as Parameters

								9.14 Closure Expressions

								9.15 Shorthand Argument Names

								9.16 Closures in Swift

								9.17 Take the Knowledge Test

								9.18 Summary

					

				

						10. The Basics of Swift Object-Oriented Programming
					
								10.1 What is an Instance?

								10.2 What is a Class?

								10.3 Declaring a Swift Class

								10.4 Adding Instance Properties to a Class

								10.5 Defining Methods

								10.6 Declaring and Initializing a Class Instance

								10.7 Initializing and De-initializing a Class Instance

								10.8 Calling Methods and Accessing Properties

								10.9 Stored and Computed Properties

								10.10 Lazy Stored Properties

								10.11 Using self in Swift

								10.12 Understanding Swift Protocols

								10.13 Opaque Return Types

								10.14 Take the Knowledge Test

								10.15 Summary

					

				

						11. An Introduction to Swift Subclassing and Extensions
					
								11.1 Inheritance, Classes, and Subclasses

								11.2 A Swift Inheritance Example

								11.3 Extending the Functionality of a Subclass

								11.4 Overriding Inherited Methods

								11.5 Initializing the Subclass

								11.6 Using the SavingsAccount Class

								11.7 Swift Class Extensions

								11.8 Take the Knowledge Test

								11.9 Summary

					

				

						12. An Introduction to Swift Structures and Enumerations
					
								12.1 An Overview of Swift Structures

								12.2 Value Types vs. Reference Types

								12.3 When to Use Structures or Classes

								12.4 An Overview of Enumerations

								12.5 Take the Knowledge Test

								12.6 Summary

					

				

						13. An Introduction to Swift Property Wrappers
					
								13.1 Understanding Property Wrappers

								13.2 A Simple Property Wrapper Example

								13.3 Supporting Multiple Variables and Types

								13.4 Take the Knowledge Test

								13.5 Summary

					

				

						14. Working with Array and Dictionary Collections in Swift
					
								14.1 Mutable and Immutable Collections

								14.2 Swift Array Initialization

								14.3 Working with Arrays in Swift
							
										14.3.1 Array Item Count

										14.3.2 Accessing Array Items

										14.3.3 Random Items and Shuffling

										14.3.4 Appending Items to an Array

										14.3.5 Inserting and Deleting Array Items

										14.3.6 Array Iteration

							

						

								14.4 Creating Mixed Type Arrays

								14.5 Swift Dictionary Collections

								14.6 Swift Dictionary Initialization

								14.7 Sequence-based Dictionary Initialization

								14.8 Dictionary Item Count

								14.9 Accessing and Updating Dictionary Items

								14.10 Adding and Removing Dictionary Entries

								14.11 Dictionary Iteration

								14.12 Take the Knowledge Test

								14.13 Summary

					

				

						15. Understanding Error Handling in Swift 5
					
								15.1 Understanding Error Handling

								15.2 Declaring Error Types

								15.3 Throwing an Error

								15.4 Calling Throwing Methods and Functions

								15.5 Accessing the Error Object

								15.6 Disabling Error Catching

								15.7 Using the defer Statement

								15.8 Take the Knowledge Test

								15.9 Summary

					

				

						16. An Overview of SwiftUI
					
								16.1 UIKit and Interface Builder

								16.2 SwiftUI Declarative Syntax

								16.3 SwiftUI is Data Driven

								16.4 SwiftUI vs. UIKit

								16.5 Take the Knowledge Test

								16.6 Summary

					

				

						17. Using Xcode in SwiftUI Mode
					
								17.1 Starting Xcode 16

								17.2 Creating a SwiftUI Project

								17.3 Xcode in SwiftUI Mode

								17.4 The Preview Canvas

								17.5 Preview Pinning

								17.6 The Preview Toolbar

								17.7 Modifying the Design

								17.8 Editor Context Menu

								17.9 Running the App on a Simulator

								17.10 Running the App on a Physical iOS Device

								17.11 Managing Devices and Simulators

								17.12 Enabling Network Testing

								17.13 Dealing with Build Errors

								17.14 Monitoring Application Performance

								17.15 Exploring the User Interface Layout Hierarchy

								17.16 Take the Knowledge Test

								17.17 Summary

					

				

						18. SwiftUI Architecture
					
								18.1 SwiftUI App Hierarchy

								18.2 App

								18.3 Scenes

								18.4 Views

								18.5 Take the Knowledge Test

								18.6 Summary

					

				

						19. The Anatomy of a Basic SwiftUI Project
					
								19.1 Creating an Example Project

								19.2 The DemoProjectApp.swift File

								19.3 The ContentView.swift File

								19.4 Assets.xcassets

								19.5 DemoProject.entitlements

								19.6 Preview Content

								19.7 Take the Knowledge Test

								19.8 Summary

					

				

						20. Creating Custom Views with SwiftUI
					
								20.1 SwiftUI Views

								20.2 Creating a Basic View

								20.3 Adding Views

								20.4 SwiftUI Hierarchies

								20.5 Concatenating Text Views

								20.6 Working with Subviews

								20.7 Views as Properties

								20.8 Modifying Views

								20.9 Working with Text Styles

								20.10 Modifier Ordering

								20.11 Custom Modifiers

								20.12 Basic Event Handling

								20.13 Building Custom Container Views

								20.14 Working with the Label View

								20.15 Take the Knowledge Test

								20.16 Summary

					

				

						21. SwiftUI Stacks and Frames
					
								21.1 SwiftUI Stacks

								21.2 Spacers, Alignment and Padding

								21.3 Grouping Views

								21.4 Dynamic HStack and VStack Conversion

								21.5 Text Line Limits and Layout Priority

								21.6 Traditional vs. Lazy Stacks

								21.7 SwiftUI Frames

								21.8 Frames and the Geometry Reader

								21.9 Take the Knowledge Test

								21.10 Summary

					

				

						22. SwiftUI State Properties, Observation, and Environment Objects
					
								22.1 State Properties

								22.2 State Binding

								22.3 Observable Objects

								22.4 Observation using Combine

								22.5 Combine State Objects

								22.6 Using the Observation Framework

								22.7 Observation and @Bindable

								22.8 Environment Objects

								22.9 Take the Knowledge Test

								22.10 Summary

					

				

						23. A SwiftUI Example Tutorial
					
								23.1 Creating the Example Project

								23.2 Reviewing the Project

								23.3 Modifying the Layout

								23.4 Adding a Slider View to the Stack

								23.5 Adding a State Property

								23.6 Adding Modifiers to the Text View

								23.7 Adding Rotation and Animation

								23.8 Adding a TextField to the Stack

								23.9 Adding a Color Picker

								23.10 Tidying the Layout

								23.11 Take the Knowledge Test

								23.12 Summary

					

				

						24. SwiftUI Stack Alignment and Alignment Guides
					
								24.1 Container Alignment

								24.2 Alignment Guides

								24.3 Custom Alignment Types

								24.4 Cross Stack Alignment

								24.5 ZStack Custom Alignment

								24.6 Take the Knowledge Test

								24.7 Summary

					

				

						25. Predictive Code Completion in Xcode
					
								25.1 Enabling Predictive Code Completion

								25.2 Creating the CodeCompletion Project

								25.3 Working with Code Completion

								25.4 Code Completion from Comments

								25.5 Take the Knowledge Test

								25.6 Summary

					

				

						26. An Overview of Swift Structured Concurrency
					
								26.1 An Overview of Threads

								26.2 The Application Main Thread

								26.3 Completion Handlers

								26.4 Structured Concurrency

								26.5 Preparing the Project

								26.6 Non-Concurrent Code

								26.7 Introducing async/await Concurrency

								26.8 Asynchronous Calls from Synchronous Functions

								26.9 The await Keyword

								26.10 Using async-let Bindings

								26.11 Handling Errors

								26.12 Understanding Tasks

								26.13 Unstructured Concurrency

								26.14 Detached Tasks

								26.15 Task Management

								26.16 Working with Task Groups

								26.17 Avoiding Data Races

								26.18 The for-await Loop

								26.19 Asynchronous Properties

								26.20 Take the Knowledge Test

								26.21 Summary

					

				

						27. An Introduction to Swift Actors
					
								27.1 An Overview of Actors

								27.2 Declaring an Actor

								27.3 Understanding Data Isolation

								27.4 A Swift Actor Example

								27.5 Introducing the MainActor

								27.6 Take the Knowledge Test

								27.7 Summary

					

				

						28. SwiftUI Concurrency and Lifecycle Event Modifiers
					
								28.1 Creating the LifecycleDemo Project

								28.2 Designing the App

								28.3 The onAppear and onDisappear Modifiers

								28.4 The onChange Modifier

								28.5 ScenePhase and the onChange Modifier

								28.6 Launching Concurrent Tasks

								28.7 Take the Knowledge Test

								28.8 Summary

					

				

						29. SwiftUI Observable and Environment Objects – A Tutorial
					
								29.1 About the ObservableDemo Project

								29.2 Creating the Project

								29.3 Adding the Observable Object

								29.4 Designing the ContentView Layout

								29.5 Adding the Second View

								29.6 Adding Navigation

								29.7 Using an Environment Object

								29.8 Take the Knowledge Test

								29.9 Summary

					

				

						30. SwiftUI Data Persistence using AppStorage and SceneStorage
					
								30.1 The @SceneStorage Property Wrapper

								30.2 The @AppStorage Property Wrapper

								30.3 Creating and Preparing the StorageDemo Project

								30.4 Using Scene Storage

								30.5 Using App Storage

								30.6 Storing Custom Types

								30.7 Take the Knowledge Test

								30.8 Summary

					

				

						31. SwiftUI Lists and Navigation
					
								31.1 SwiftUI Lists

								31.2 Modifying List Separators and Rows

								31.3 SwiftUI Dynamic Lists

								31.4 Creating a Refreshable List

								31.5 SwiftUI NavigationStack and NavigationLink

								31.6 Navigation by Value Type

								31.7 Working with Navigation Paths

								31.8 Navigation Bar Customization

								31.9 Making the List Editable

								31.10 Hierarchical Lists

								31.11 Multicolumn Navigation

								31.12 Take the Knowledge Test

								31.13 Summary

					

				

						32. A SwiftUI List and NavigationStack Tutorial
					
								32.1 About the ListNavDemo Project

								32.2 Creating the ListNavDemo Project

								32.3 Preparing the Project

								32.4 Adding the Car Structure

								32.5 Adding the Data Store

								32.6 Designing the Content View

								32.7 Designing the Detail View

								32.8 Adding Navigation to the List

								32.9 Designing the Add Car View

								32.10 Implementing Add and Edit Buttons

								32.11 Adding a Navigation Path

								32.12 Adding the Edit Button Methods

								32.13 Summary

					

				

						33. An Overview of Split View Navigation
					
								33.1 Introducing NavigationSplitView

								33.2 Using NavigationSplitView

								33.3 Handling List Selection

								33.4 NavigationSplitView Configuration

								33.5 Controlling Column Visibility

								33.6 Take the Knowledge Test

								33.7 Summary

					

				

						34. A NavigationSplitView Tutorial
					
								34.1 About the Project

								34.2 Creating the NavSplitDemo Project

								34.3 Adding the Project Data

								34.4 Creating the Navigation View

								34.5 Building the Sidebar Column

								34.6 Adding the Content Column List

								34.7 Adding the Detail Column

								34.8 Configuring the Split Navigation Experience

								34.9 Summary

					

				

						35. An Overview of List, OutlineGroup and DisclosureGroup
					
								35.1 Hierarchical Data and Disclosures

								35.2 Hierarchies and Disclosure in SwiftUI Lists

								35.3 Using OutlineGroup

								35.4 Using DisclosureGroup

								35.5 Take the Knowledge Test

								35.6 Summary

					

				

						36. A SwiftUI List, OutlineGroup, and DisclosureGroup Tutorial
					
								36.1 About the Example Project

								36.2 Creating the OutlineGroupDemo Project

								36.3 Adding the Data Structure

								36.4 Adding the List View

								36.5 Testing the Project

								36.6 Using the Sidebar List Style

								36.7 Using OutlineGroup

								36.8 Working with DisclosureGroups

								36.9 Summary

					

				

						37. Building SwiftUI Grids with LazyVGrid and LazyHGrid
					
								37.1 SwiftUI Grids

								37.2 GridItems

								37.3 Creating the GridDemo Project

								37.4 Working with Flexible GridItems

								37.5 Adding Scrolling Support to a Grid

								37.6 Working with Adaptive GridItems

								37.7 Working with Fixed GridItems

								37.8 Using the LazyHGrid View

								37.9 Take the Knowledge Test

								37.10 Summary

					

				

						38. Building SwiftUI Grids with Grid and GridRow
					
								38.1 Grid and GridRow Views

								38.2 Creating the GridRowDemo Project

								38.3 A Simple Grid Layout

								38.4 Non-GridRow Children

								38.5 Automatic Empty Grid Cells

								38.6 Adding Empty Cells

								38.7 Column Spanning

								38.8 Grid Alignment and Spacing

								38.9 Take the Knowledge Test

								38.10 Summary

					

				

						39. Building Custom Containers
					
								39.1 Introducing custom containers

								39.2 Working with ViewBuilder Closures

								39.3 Supporting Section Headers

								39.4 Take the Knowledge Test

								39.5 Summary

					

				

						40. A SwiftUI Custom Container Tutorial
					
								40.1 About the Custom Container Project

								40.2 Creating the CustomContainerDemo Project

								40.3 Adding the Sample Data

								40.4 Declaring the Item View

								40.5 Designing the Container

								40.6 Using the Custom Container

								40.7 Completing the Item View

								40.8 Adding Section Headers

								40.9 Summary

					

				

						41. Building Tabbed and Paged Views in SwiftUI
					
								41.1 An Overview of SwiftUI TabView

								41.2 Creating the TabViewDemo App

								41.3 Adding the TabView Container

								41.4 Adding the Content Views

								41.5 Adding View Paging

								41.6 Adding the Tab Items

								41.7 Adding Tab Item Tags

								41.8 Take the Knowledge Test

								41.9 Summary

					

				

						42. Building Context Menus in SwiftUI
					
								42.1 Creating the ContextMenuDemo Project

								42.2 Preparing the Content View

								42.3 Adding the Context Menu

								42.4 Testing the Context Menu

								42.5 Take the Knowledge Test

								42.6 Summary

					

				

						43. Basic SwiftUI Graphics Drawing
					
								43.1 Creating the DrawDemo Project

								43.2 SwiftUI Shapes

								43.3 Using Overlays

								43.4 Drawing Custom Paths and Shapes

								43.5 Color Mixing

								43.6 Color Gradients and Shadows

								43.7 Drawing Gradients

								43.8 Mesh Gradients

								43.9 Take the Knowledge Test

								43.10 Summary

					

				

						44. SwiftUI Animation and Transitions
					
								44.1 Creating the AnimationDemo Example Project

								44.2 Implicit Animation

								44.3 Repeating an Animation

								44.4 Explicit Animation

								44.5 Animation and State Bindings

								44.6 Automatically Starting an Animation

								44.7 SwiftUI Transitions

								44.8 Combining Transitions

								44.9 Asymmetrical Transitions

								44.10 Take the Knowledge Test

								44.11 Summary

					

				

						45. Working with Gesture Recognizers in SwiftUI
					
								45.1 Creating the GestureDemo Example Project

								45.2 Basic Gestures

								45.3 The onChange Action Callback

								45.4 The updating Callback Action

								45.5 Composing Gestures

								45.6 Take the Knowledge Test

								45.7 Summary

					

				

						46. Creating a Customized SwiftUI ProgressView
					
								46.1 ProgressView Styles

								46.2 Creating the ProgressViewDemo Project

								46.3 Adding a ProgressView

								46.4 Using the Circular ProgressView Style

								46.5 Declaring an Indeterminate ProgressView

								46.6 ProgressView Customization

								46.7 Take the Knowledge Test

								46.8 Summary

					

				

						47. Presenting Data with SwiftUI Charts
					
								47.1 Introducing SwiftUI Charts

								47.2 Passing Data to the Chart

								47.3 Combining Mark Types

								47.4 Filtering Data into Multiple Graphs

								47.5 Changing the Chart Background

								47.6 Changing the Interpolation Method

								47.7 Take the Knowledge Test

								47.8 Summary

					

				

						48. A SwiftUI Charts Tutorial
					
								48.1 Creating the ChartDemo Project

								48.2 Adding the Project Data

								48.3 Adding the Chart View

								48.4 Creating Multiple Graphs

								48.5 Summary

					

				

						49. An Overview of SwiftUI DocumentGroup Scenes
					
								49.1 Documents in Apps

								49.2 Creating the DocDemo App

								49.3 The DocumentGroup Scene

								49.4 Declaring File Type Support
							
										49.4.1 Document Content Type Identifier

										49.4.2 Handler Rank

										49.4.3 Type Identifiers

										49.4.4 Filename Extensions

										49.4.5 Custom Type Document Content Identifiers

										49.4.6 Exported vs. Imported Type Identifiers

							

						

								49.5 Configuring File Type Support in Xcode

								49.6 The Document Structure

								49.7 The Content View

								49.8 Adding Navigation

								49.9 Running the Example App

								49.10 Customizing the Launch Screen

								49.11 Take the Knowledge Test

								49.12 Summary

					

				

						50. A SwiftUI DocumentGroup Tutorial
					
								50.1 Creating the ImageDocDemo Project

								50.2 Modifying the Info.plist File

								50.3 Adding an Image Asset

								50.4 Modifying the ImageDocDemoDocument.swift File

								50.5 Designing the Content View

								50.6 Filtering the Image

								50.7 Testing the App

								50.8 Summary

					

				

						51. An Introduction to Core Data and SwiftUI
					
								51.1 The Core Data Stack

								51.2 Persistent Container

								51.3 Managed Objects

								51.4 Managed Object Context

								51.5 Managed Object Model

								51.6 Persistent Store Coordinator

								51.7 Persistent Object Store

								51.8 Defining an Entity Description

								51.9 Initializing the Persistent Container

								51.10 Obtaining the Managed Object Context

								51.11 Setting the Attributes of a Managed Object

								51.12 Saving a Managed Object

								51.13 Fetching Managed Objects

								51.14 Retrieving Managed Objects based on Criteria

								51.15 Take the Knowledge Test

								51.16 Summary

					

				

						52. A SwiftUI Core Data Tutorial
					
								52.1 Creating the CoreDataDemo Project

								52.2 Defining the Entity Description

								52.3 Creating the Persistence Controller

								52.4 Setting up the View Context

								52.5 Preparing the ContentView for Core Data

								52.6 Designing the User Interface

								52.7 Saving Products

								52.8 Testing the addProduct() Function

								52.9 Deleting Products

								52.10 Adding the Search Function

								52.11 Testing the Completed App

								52.12 Summary

					

				

						53. An Overview of SwiftUI Core Data and CloudKit Storage
					
								53.1 An Overview of CloudKit

								53.2 CloudKit Containers

								53.3 CloudKit Public Database

								53.4 CloudKit Private Databases

								53.5 Data Storage Quotas

								53.6 CloudKit Records

								53.7 CloudKit Record IDs

								53.8 CloudKit References

								53.9 Record Zones

								53.10 CloudKit Console

								53.11 CloudKit Sharing

								53.12 CloudKit Subscriptions

								53.13 Take the Knowledge Test

								53.14 Summary

					

				

						54. A SwiftUI Core Data and CloudKit Tutorial
					
								54.1 Enabling CloudKit Support

								54.2 Enabling Background Notifications Support

								54.3 Switching to the CloudKit Persistent Container

								54.4 Testing the App

								54.5 Reviewing the Saved Data in the CloudKit Console

								54.6 Filtering and Sorting Queries

								54.7 Editing and Deleting Records

								54.8 Adding New Records

								54.9 Summary

					

				

						55. An Introduction to SwiftData
					
								55.1 Introducing SwiftData

								55.2 Model Classes

								55.3 Model Container

								55.4 Model Configuration

								55.5 Model Context

								55.6 Predicates and FetchDescriptors

								55.7 The @Query Macro

								55.8 Model Relationships

								55.9 Model Attributes

								55.10 Take the Knowledge Test

								55.11 Summary

					

				

						56. A SwiftData Tutorial
					
								56.1 About the SwiftData Project

								56.2 Creating the SwiftDataDemo Project

								56.3 Adding the Data Models

								56.4 Setting up the Model Container

								56.5 Accessing the Model Context

								56.6 Designing the Visitor List View

								56.7 Establishing the Relationship

								56.8 Creating the Visitor Detail View

								56.9 Modifying the Content View

								56.10 Testing the SwiftData Demo App

								56.11 Adding the Search Predicate

								56.12 Summary

					

				

						57. Building Widgets with SwiftUI and WidgetKit
					
								57.1 An Overview of Widgets

								57.2 The Widget Extension

								57.3 Widget Configuration Types

								57.4 Widget Entry View

								57.5 Widget Timeline Entries

								57.6 Widget Timeline

								57.7 Widget Provider

								57.8 Reload Policy

								57.9 Relevance

								57.10 Forcing a Timeline Reload

								57.11 Widget Sizes

								57.12 Widget Placeholder

								57.13 Take the Knowledge Test

								57.14 Summary

					

				

						58. A SwiftUI WidgetKit Tutorial
					
								58.1 About the WidgetDemo Project

								58.2 Creating the WidgetDemo Project

								58.3 Building the App

								58.4 Adding the Widget Extension

								58.5 Adding the Widget Data

								58.6 Creating Sample Timelines

								58.7 Adding Image and Color Assets

								58.8 Designing the Widget View

								58.9 Modifying the Widget Provider

								58.10 Configuring the Placeholder View

								58.11 Previewing the Widget

								58.12 Summary

					

				

						59. Supporting WidgetKit Size Families
					
								59.1 Supporting Multiple Size Families

								59.2 Adding Size Support to the Widget View

								59.3 Take the Knowledge Test

								59.4 Summary

					

				

						60. A SwiftUI WidgetKit Deep Link Tutorial
					
								60.1 Adding Deep Link Support to the Widget

								60.2 Adding Deep Link Support to the App

								60.3 Testing the Widget

								60.4 Summary

					

				

						61. Adding Configuration Options to a WidgetKit Widget
					
								61.1 Reviewing the Project Code

								61.2 Adding an App Entity

								61.3 Adding Entity Query

								61.4 Modifying the App Intent

								61.5 Modifying the Timeline Code

								61.6 Testing Widget Configuration

								61.7 Customizing the Configuration Intent UI

								61.8 Take the Knowledge Test

								61.9 Summary

					

				

						62. An Overview of Live Activities in SwiftUI
					
								62.1 Introducing Live Activities

								62.2 Creating a Live Activity

								62.3 Live Activity Attributes

								62.4 Designing the Live Activity Presentations
							
										62.4.1 Lock Screen/Banner

										62.4.2 Dynamic Island Expanded Regions

										62.4.3 Dynamic Island Compact Regions

										62.4.4 Dynamic Island Minimal

							

						

								62.5 Starting a Live Activity

								62.6 Updating a Live Activity

								62.7 Activity Alert Configurations

								62.8 Stopping a Live Activity

								62.9 Take the Knowledge Test

								62.10 Summary

					

				

						63. A SwiftUI Live Activity Tutorial
					
								63.1 About the LiveActivityDemo Project

								63.2 Creating the Project

								63.3 Building the View Model

								63.4 Designing the Content View

								63.5 Adding the Live Activity Extension

								63.6 Enabling Live Activities Support

								63.7 Enabling the Background Fetch Capability

								63.8 Defining the Activity Widget Attributes

								63.9 Adding the Percentage and Lock Screen Views

								63.10 Designing the Widget Layouts

								63.11 Launching the Live Activity

								63.12 Updating the Live Activity

								63.13 Stopping the Live Activity

								63.14 Testing the App

								63.15 Adding an Alert Notification

								63.16 Understanding Background Updates

								63.17 Summary

					

				

						64. Adding a Refresh Button to a Live Activity
					
								64.1 Adding Interactivity to Live Activities

								64.2 Adding the App Intent

								64.3 Setting a Stale Date

								64.4 Detecting Stale Data

								64.5 Testing the Live Activity Intent

								64.6 Take the Knowledge Test

								64.7 Summary

					

				

						65. A Live Activity Push Notifications Tutorial
					
								65.1 An Overview of Push Notifications

								65.2 Registering an APNs Key

								65.3 Enabling Push Notifications for the App

								65.4 Enabling Frequent Updates

								65.5 Requesting User Permission

								65.6 Changing the Push Type

								65.7 Obtaining a Push Token

								65.8 Removing the Refresh Button

								65.9 Take the Knowledge Test

								65.10 Summary

					

				

						66. Testing Live Activity Push Notifications
					
								66.1 Using the Push Notifications Console

								66.2 Configuring the Notification

								66.3 Defining the Payload

								66.4 Sending the Notification

								66.5 Sending Push Notifications from the Command Line

								66.6 Summary

					

				

						67. Troubleshooting Live Activity Push Notifications
					
								67.1 Push Notification Problems

								67.2 Push Notification Delivery

								67.3 Check the Payload Structure

								67.4 Validating the Push and Authentication Tokens

								67.5 Checking the Device Log

								67.6 Take the Knowledge Test

								67.7 Summary

					

				

						68. Integrating UIViews with SwiftUI
					
								68.1 SwiftUI and UIKit Integration

								68.2 Integrating UIViews into SwiftUI

								68.3 Adding a Coordinator

								68.4 Handling UIKit Delegation and Data Sources

								68.5 An Example Project

								68.6 Wrapping the UIScrolledView

								68.7 Implementing the Coordinator

								68.8 Using MyScrollView

								68.9 Take the Knowledge Test

								68.10 Summary

					

				

						69. Integrating UIViewControllers with SwiftUI
					
								69.1 UIViewControllers and SwiftUI

								69.2 Creating the ViewControllerDemo project

								69.3 Wrapping the UIImagePickerController

								69.4 Designing the Content View

								69.5 Completing MyImagePicker

								69.6 Completing the Content View

								69.7 Testing the App

								69.8 Take the Knowledge Test

								69.9 Summary

					

				

						70. Integrating SwiftUI with UIKit
					
								70.1 An Overview of the Hosting Controller

								70.2 A UIHostingController Example Project

								70.3 Adding the SwiftUI Content View

								70.4 Preparing the Storyboard

								70.5 Adding a Hosting Controller

								70.6 Configuring the Segue Action

								70.7 Embedding a Container View

								70.8 Embedding SwiftUI in Code

								70.9 Take the Knowledge Test

								70.10 Summary

					

				

						71. Preparing and Submitting an iOS 18 Application to the App Store
					
								71.1 Verifying the iOS Distribution Certificate

								71.2 Adding App Icons

								71.3 Assign the Project to a Team

								71.4 Archiving the Application for Distribution

								71.5 Configuring the Application in App Store Connect

								71.6 Validating and Submitting the Application

								71.7 Configuring and Submitting the App for Review

					

				

						Index

			

		
		
		Landmarks

			
						Cover

						Table of Contents

						Index

			

		
	

OEBPS/image/xcode_13_playground_run_line_3.png

OEBPS/image/Image17888.png

OEBPS/image/xcode_playground_show_result.png

OEBPS/image/xcode_13_playground_run_line_5.png

OEBPS/image/xcode_playground_hello_output.png

OEBPS/image/apple_developer_program_account.png

OEBPS/image/xcode_15_welcome.png

OEBPS/image/xcode_playground_quick_look.png

OEBPS/image/ios_18_front_cover_large.png

OEBPS/image/xcode_playground_welcome_output.png

OEBPS/image/swiftui_playground_static.png

OEBPS/image/about_macos.png

OEBPS/image/swiftui_all_tests.png

OEBPS/image/xcode_playground_stop_button.png

OEBPS/image/xcode_playground_inspectors.png

OEBPS/image/swift_operators.png

OEBPS/image/Image17879.png

OEBPS/image/xcode_playground_main_screen.png

OEBPS/image/payload-publishing.png

OEBPS/image/answertopia_checkmark1.png

