Einstieg in Deep Reinforcement Learning

KI-Agenten mit Python und PyTorch programmieren

- Grundlegende Konzepte und Terminologie - Praktischer Einsatz mit PyTorch - Projekte umsetzen Dieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen. Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von... alles anzeigen expand_more

- Grundlegende Konzepte und Terminologie


- Praktischer Einsatz mit PyTorch


- Projekte umsetzen





Dieses Buch zeigt Ihnen, wie Sie Agenten programmieren, die basierend auf direktem Feedback aus ihrer Umgebung selbstständig lernen und sich dabei verbessern. Sie werden Netzwerke mit dem beliebten PyTorch-Deep-Learning-Framework aufbauen, um bestärkende Lernalgorithmen zu erforschen. Diese reichen von Deep-Q-Networks über Methoden zur Gradientenmethode bis hin zu evolutionären Algorithmen.


Im weiteren Verlauf des Buches wenden Sie Ihre Kenntnisse in praktischen Projekten wie der Steuerung simulierter Roboter, der Automatisierung von Börsengeschäften oder dem Aufbau eines Spiel-Bots an.





Aus dem Inhalt:


- Strukturierungsprobleme als Markov-Entscheidungsprozesse


- Beliebte Algorithmen wie Deep Q-Networks, Policy Gradient-Methode und Evolutionäre Algorithmen und die Intuitionen, die sie antreiben


- Anwendung von Verstärkungslernalgorithmen auf reale Probleme



DE

weniger anzeigen expand_less
Weiterführende Links zu "Einstieg in Deep Reinforcement Learning"

Versandkostenfreie Lieferung! (eBook-Download)

Als Sofort-Download verfügbar

eBook
39,99 €

  • SW9783446466098450914.1
info